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Abstract: The impact of climate change in recent years has caused considerable risks to both urban
and rural systems. How to mitigate the damage caused by extreme weather events has attracted
much attention from countries in recent years. However, most of the previous studies on resilience
focused on either urban areas or rural areas, and failed to clearly identify the difference between urban
and rural resilience. In fact, the exploration of the difference between the resilience characteristics
of cities and villages under climate change can help to improve the planning strategy and the
allocation of resources. In this study, the indicators of resilience were firstly built through a literature
review, and then a Principal Component Analysis was conducted to construct an evaluation system
involving indicators such as “greenland resilience”, “community age structure resilience”, “traditional
knowledge resilience”, “infrastructure resilience” and “residents economic independence resilience”.
Then the analysis of Local Indicators of Spatial Association showed some resilience abilities are
concentrated in either urban or rural. Binary logistic regression was performed, and the results
showed urban areas have more prominent abilities in infrastructure resilience (the coefficient value is
1.339), community age structure resilience (0.694), and greenland resilience (0.3), while rural areas are
more prominent in terms of the residents economic independence resilience (−0.398) and traditional
knowledge resilience (−0.422). It can be seen that urban areas rely more on the resilience of the socio-
economic structure, while rural areas are more dependent on their own knowledge and economic
independence. This result can be used as a reference for developing strategies to improve urban and
rural resilience.

Keywords: resilience indicator; climate change; evaluation system; urban–rural differences; binary
logistic regression

1. Introduction

Global warming in recent years has triggered extreme weather events across the world.
Particularly, the intensity and frequency of typhoons and rainfall are increasing, which
intensifies the risk of disasters to life and property. How to reduce the risks brought by
climate change has been one of the important issues that have attracted much attention in
spatial planning and disaster management [1,2]. In order to mitigate the risk of extreme
weather events caused by climate change, the United Nations Office for Disaster Risk
Reduction (UNDRR) has proposed resilience as an important concept for the reduction
in the harm of disasters. So far, the concept of resilient cities and resilience planning
has received wide attention from international government organizations and the urban
planning field. It has gradually transformed from an emerging research issue to a dominant
research direction [3,4]. The so-called resilience refers to the ability to cope with the threat
of external events under the existing internal conditions of the human system. The field of
ecology first introduced the concept of resilience, defining it as “a measure of the persistence
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of a system and its ability to absorb change and disturbance” [5]. Since then, many concepts
of resilience have been derived. The concept of resilience is sometimes used as a measure of
the ability of a system to recover after an event occurs, and sometimes it is regarded as the
speed at which the system returns to its original state when an event occurs. However, it is
generally the ability of internal systems to resist, buffer disturbances, absorb disturbances,
self-organize, learn and adapt in response to external shock events [6,7]. Therefore, this
study focuses the concept of resilience on the ability of human systems to withstand the
threat of external events under existing internal conditions.

However, the previous discussion on the resilience strategy to cope with climate
change mainly focuses on urban spaces or densely populated areas [8], while ignoring
rural areas that are also threatened by climate change. Therefore, there is still a lack of
understanding of the risks and corresponding strategies in rural areas. In fact, cities and
rural areas have significantly different resilience in society, economy, environment, and
infrastructure when facing disaster risks caused by climate change [9]. However, most of
the previous studies on urban resilience explored the ability of the economy and industry of
urban systems to respond to the threat posed by climate change, while most of the studies
on rural resilience focused on the ability of the rural areas to survive under climate change.
The external events will bring the same impact to both the urban and rural areas. Therefore,
building an indicator framework of resilience that adapts to the cities and villages will
help to identify the difference in resilience between the urban area and rural area, and will
facilitate the future allocation of related resources and improve strategies. The research on
urban and rural resilience is also a strategic exploration to cope with the different responses
of urban and rural areas to disasters and corresponding mechanisms under climate change.

Cities have functions to meet the various needs of local residents, and climate change
will cause an inevitable impact on the functions that the urban system provides [10]. These
functions include social and economic functions, infrastructure, environment, and anti-
disaster facilities. This is also the main basis for scholars to establish the indicators of
resilience. However, for rural areas, in addition to their basic functions, the experience
left over from history also plays an important role in coping with climate disasters [11].
Therefore, traditional knowledge is also a major factor in dealing with disasters.

In terms of resilience assessment, there is still a lack of consensus on the measurement
methods and operations of resilience. The Disaster Resilience of Place Model proposed by
Cutter et al. (2008) is mainly to quantify the spatial resilience of selected places, which can
be classified as a local resilience model; the Coupled Social-Ecological Metrics model mainly
introduces the tools of system dynamics and complexity to analyze the resilience of the
community; the Teleconnection Metrics model mainly hopes to solve the problem of nonlin-
ear dynamics in the Nested System, so it analyzes through different geographical locations
to explore how the community is related to factors in different geographical locations
through long-distance connections, but this method is mainly qualitative evaluation [12,13].
Taken together, community resilience is deeply affected by vulnerability, global climate
change, and natural disasters, resulting in each knowledge area having its own research
framework and a set of ways to conceptualize community resilience. As a result, there is
currently a lack of consensus on quantitative methods for assessing community resilience.
Since this research hopes to establish resilience indicators that can be used to evaluate local
urban and rural areas, the construction of the resilience indicators will be based on the local
resilience indicators, and the advantages of various evaluation methods will be integrated
to establish an evaluation model of urban and rural resilience.

The huge difference between urban and rural spatial patterns makes it particularly
crucial to explore the difference between urban and rural resilience in that spatial unit.
Although relevant studies have conducted a comprehensive evaluation of resilience at a
single spatial level [6,14], the spatial scale is too high to clearly identify the resilience of local
communities in the face of climate change, and even the urban and rural areas cannot be
clearly distinguished in the spatial unit. Therefore, it is impossible to obtain the difference
between urban and rural resilience. Through literature review, this study explored the
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risks that cities and villages face under climate change and the key factors affecting their
resilience and then constructed the indicators of resilience that can evaluate cities and
villages under climate change. After that, spatial autocorrelation was used to identify
whether the resilience in the research area is spatially related, and to identify whether the
hotspots are concentrated in urban or rural areas. Finally, according to the results of spatial
autocorrelation, binary logistic regression was conducted to find the differences between
urban and rural resilience. The analysis results can be used as guidance for the future
strategy of improving urban and rural resilience.

2. Methodology
2.1. Research Framework

In this study, a three-stage research framework was constructed (Figure 1). In the first
stage, an indicator system of resilience was built based on urban and rural areas. At this
stage, the indicators of urban and rural resilience in the past studies were comprehensively
analyzed through a literature review, and the corresponding dimensions of the indicators
were determined. However, since the indicators of resilience in this study were established
through a literature review, the impact of the indicators on resilience is highly correlated.
Therefore, Principal Component Analysis was used to reorganize the principal component
of the originally selected indicators, analyze the relationship behind the indicators of
resilience, and then establish the indicator structure of resilience.
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Figure 1. Research framework for comparing urban and rural resilience.

The second stage is the spatial autocorrelation analysis of the indicators of resilience.
First, whether different resilience abilities are spatially correlated was explored through
Moran’s I. Then, the spatial distribution patterns of different resilience abilities were
identified through LISA, so as to investigate whether the spatial distribution of different
resilience abilities is the same, and whether some spatial characteristics are concentrated in
urban or rural areas.

In the third stage, urban and rural resilience was compared. The characteristics of
urban and rural space units on different indicators of resilience were compared according
to the results of the second stage through binary logistic regression, so as to explain and



Int. J. Environ. Res. Public Health 2022, 19, 8911 4 of 14

discuss the analysis results. In the operation of the binary logistic regression model, through
the establishment of a dummy variable, this study first defined the smallest statistical
area belonging to a city in the spatial units as 1, and defined the smallest statistical area
belonging to the rural area as 0. Second, the iterative history was analyzed by SPSS
software, and Maximum Likelihood Estimation was used to obtain the optimal parameter
values. Finally, the accuracy of the model was verified through the Omnibus model
coefficient, Nagelkerke R2 and Hosmer–Lemeshow. According to the regression coefficient,
the relationship between each independent variable and the dependent variable can be
confirmed, and then the category of the indicators belonging to the urban area or rural
area can be acquired so that the difference in resilience between the city and village can
be identified.

2.2. The Research Area and the Identification of Urban and Rural Spatial Units

Due to the complex terrain and special geographical location, Taiwan is severely
threatened by the extreme weather events caused by climate change, such as flood disasters
in coastal areas and the debris flow in mountainous areas [15]. In this case, to study local
resilience, the research scope must cover various risk areas that may face extreme climate
events with diverse terrains. Chiayi County in Taiwan is an area that is severely affected by
natural disasters, thus it is suitable for the research. At the same time, in order to compare
the characteristics of the urban and rural areas on each resilience indicator, the statistical
unit of urban and rural spaces should be defined first. In terms of the selection of cities, the
urban planning district of Chiayi County was used as the standard, which defines the scope
of the metropolitan area. Therefore, we select its community boundary as the statistical unit.
Regarding the selection of villages, the rural area in the non-urban land use zoning was
used as the standard. Its original definition standard is based on the current situation of
use. Therefore, the minimum statistical area is mainly based on the community boundaries
and village boundaries defined by the government. Finally, a total of 512 smallest statistical
areas were selected as rural areas, and 1133 smallest statistical areas were selected as cities.
The results can be used as the statistical units in the subsequent binary logistic regression
model to compare the difference in the indicators of resilience between the urban and rural
areas after Principal Component Analysis (Figure 2).
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2.3. A Comparative Approach to Urban–Rural Resilience Differences
2.3.1. Principal Component Analysis (PCA)

Principal Component Analysis was used to process the content of the indicators to
make the indicators of resilience more complete. Principal Component Analysis is mainly
used to analyze the correlation between variables, and then reduce the original number
of variables to generate new variables [16,17]. This process is called dimension reduction,
and the new variable obtained is the principal component. If the original variables are
not correlated, Principal Component Analysis cannot reduce the number of variables at
all. Only when the variables are highly correlated with each other can the number of
variables be simplified, and the stronger the correlation, the higher the simplification
of the variables [18]. We used Statistical Product and Service Solutions (SPSS) software
for analysis.

2.3.2. Local Indicators of Spatial Association (LISA)

The analysis of Local Indicators of Spatial Association is a basic concept of Global
Moran’s I that extends spatial autocorrelation. It mainly compares whether adjacent
attributes are close to each other by directly calculating the difference in attribute values [19].
This study uses LISA to identify the spatial distribution patterns of different resilience
abilities, and then explores the spatial differences of different resilience abilities. Based
on the results, binary logistic regression can be performed on the urban and rural spatial
units to examine the difference between urban and rural resilience. The calculation of
the correlation between the space units of LISA and the surrounding space is shown in
Formula (1):

Ii = Zi ∑
j

WijZj (1)

where Ii is the value of Local Moran’s I; z represents the spatial attribute relationship
between two adjacent regions; Zi is the value of z of Xi; Zj is the value of z of Xj; Wij is the
spatial weight matrix between the research objects i and j.

When the significance reaches the standard and Local Moran’s I is positive, if Zi > 0, it
means that the observed value of location i and the adjacent areas is relatively high, which
is expressed as a high-high district; if Zi < 0, it indicates that the observed value of location
i and the adjacent areas is relatively small, which is represented by the low-low district
in this study. These two results indicate that a certain area is positively correlated with
its neighboring areas. On the contrary, when the significance reaches the standard and
Local Moran’s I is negative, if Zi > 0, it means that the observed value of position i is much
higher than that of the adjacent areas, which is expressed as a high-low district; if Zi < 0, it
means the observed value of position i is much lower than that of the adjacent areas, which
is a low-high aggregation and is expressed as a low-high district in this study. These two
results indicate a negative spatial correlation [20].

2.3.3. Binary Logistic Regression

This study aims to compare urban and rural resilience. Therefore, if the urban and
rural areas are defined as binary in the dependent variable, with the help of LISA’s spatial
analysis results and binary logistic regression analysis, it is possible to distinguish the
influence of the independent variables of each resilience characteristic on the urban and
rural areas, and then produce the analysis results that can facilitate the comparison of
the characteristics of urban and rural resilience. Logistic regression adopts the Maximum
Likelihood Estimation (MLE) to maximize the probability of observation of the variable
in the result to obtain the optimal estimate of the independent variables [21,22]. Logistic
regression is a probability model in which the dependent variable (p) varies between 0 and
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1. When multiple independent variables are added, the Formula (2) of logistic regression
can be expressed as follows:

Logit p = ln
p

(1 − p)
= ∑ bixi (2)

where bi is the influence coefficient, and xi is the indicator of resilience.
Compared with the previous studies that only conducted comprehensive score eval-

uation or the comparison of the overall difference between urban or rural resilience, this
study used the binary logistic regression model to further explore the aspects where urban
and rural resilience is strong or weak.

3. Results Analysis
3.1. The Construction of the Indicator System and Principal Component Analysis

With reference to the existing literature and the framework of CIMO (context–intervention--
mechanism–outcome), and based on the principles of scientificity, objectivity, comprehen-
siveness, and data availability, this study initially established an urban and rural disaster
resilience indicator system [23]. In order to eliminate the subjectivity of index selection
decisions, we refer to three databases, CNKI, Web of Science, and ScienceDirect, and select
index elements with high frequency in recent years. These indicators are further selected
by consultants and government staff in the fields of resilient cities, disaster risk, and urban–
rural development, and are constructed in two dimensions: urban resilience and rural
resilience (specific indicators are shown in Supplemental Table S1).

The key factors affecting local resilience under climate change were analyzed through
a literature review. Since this research focuses more on urban and rural resilience to cope
with climate change, rather than resilience in the face of disaster risk, the indicators of
resilience in the category of non-climate change were excluded. Regarding the indicators of
urban resilience, most studies believe that the indicators of resilience should involve the
abilities of the city to alleviate the impact caused by disasters. Two dimensions, society
and economy, are regarded as one of the indicators in all studies. These two indicators
play a key role in urban resilience [8,24]. Some studies presented a view that the existence
of resilience cannot be separated from the process of social operation, thus the natural
environmental system, social environmental system, and built environmental system are all
interconnected [13,25]. For example, Yoon et al. (2016) established six dimensions, includ-
ing people, society, economy, environment, disaster prevention system, and urban space,
and then assessed the resilience of communities in the face of disasters [6]. The key influ-
encing factors of urban resilience include infrastructure and environmental factors [6,26].
In addition, since this study established the indicators of resilience under climate change,
disaster threat is also a key factor [14,27]. For example, Maziar Yazdani et al. studied the
impact of flood risk on medical infrastructure and proposed a new modeling framework to
improve the resilience of medical infrastructure to floods [28,29]. In terms of the indicators
of rural resilience, in addition to the indicators of urban resilience, two other aspects are
particularly emphasized. First, the socio-economic background plays the most important
part. To improve the resilience or adaptability of mountainous villages in the context of cli-
mate change, the primary method is to stimulate the economic development of the villages,
so as to enhance the economic income of the residents. Especially, attention should be paid
to how to reduce the dependence on agriculture and create more diversified income sources
for mountainous villages [24,30]. Therefore, “the number of agricultural households” and
“residents’ income” were incorporated into the economic indicators. Second, most rural
areas make production decisions based on years of empirical observations, which can be
called a decision-making process based on a traditional knowledge system [11]. Rural
residents often use the life experience and knowledge inherited from their ancestors to deal
with the impact of external climate change events [11,31]. For example, the study by Altieri
et al. (2017) found that traditional knowledge can effectively reduce the impact of climate
change on local residents and maintain a certain amount of agricultural products. This
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also means that traditional knowledge for villages will help improve their resilience [11].
Therefore, traditional knowledge is also a key factor affecting resilience. Most research
results showed that the traditional knowledge possessed by the indigenous population can
provide strategies to cope with climate change or disasters [31,32]. Hence, relevant indica-
tors of the indigenous people were included in the indicators of resilience. In summary,
this study established an initial indicator system of resilience, which contains 22 indicators
in six orientations, including society, economy, infrastructure, environment, disaster threat,
and traditional knowledge (Table 1).

Table 1. Indicator system and Principal Component Analysis.

Orientation Indicator Relation
Principal Component

1 2 3 4 5

Society

Aging index − 0.156 0.482 0.046 0.235 −0.069
Education level + −0.238 −0.739 * 0.085 0.297 0.084
Household size + −0.093 −0.831 * 0.082 0.171 0.085

Dependency ratio − 0.054 0.702 * −0.007 −0.031 0.033
Population density − 0.803 * 0.111 0.001 −0.105 −0.122

Disabled population − 0.041 0.499 −0.002 0.129 0.183

Economy

Agricultural land area + 0.863 * 0.09 −0.157 0.012 0.124
Number of agricultural households + −0.007 −0.152 −0.047 −0.131 0.19

Residence income + −0.099 0.099 −0.036 0.616 * −0.031
Low-income households − −0.004 0.207 −0.106 0.09 0.508 *

Infrastructure

Medical facilities + −0.161 −0.018 −0.078 0.577 * 0.008
School + −0.526 * −0.172 −0.015 0.178 −0.114

Fire station + −0.223 −0.099 −0.116 0.565 * −0.155
Road density + −0.722 * 0.018 −0.072 0.172 0.037

Environment
Impervious area − 0.009 0.018 −0.291 −0.002 0.103

Green infrastructure + 0.157 −0.088 0.127 0.556 * 0.373
Green area + −0.09 0.093 −0.469 0.232 −0.183

Disaster threat
Earth−rock flow potential − 0.857 * 0.214 0.026 −0.07 −0.1

Stratum subsidence − −0.057 0.075 −0.005 0.065 −0.730 *
Landslides − 0.886 * 0.047 0.075 0.009 0.184

Traditional
knowledge

Percentage of indigenous population + −0.005 0.013 0.872 * −0.015 −0.021
Proportion of aboriginal elderly

population + −0.019 0.033 0.841 * 0.018 −0.034

Eigenvalues 4.469 2.168 1.833 1.522 1.1

Measures of variation (%) 20.313 9.853 8.33 6.92 5.002

Cumulative explained variance ratio(%) 20.313 20.166 38.495 45.416 50.418

Kaiser−Meyer−Olkin (KMO) 0.767

Bartlett’s sphericity test Significance: 0.000; degree of freedom: 0.231

Note: * indicates high correlation; + and − indicates the degree of positive and negative influence of data size.

In this study, 22 indicators were input into SPSS software for analysis (see Supple-
mental Table S1 for specific calculation methods and data sources of indicators). First,
Kaiser–Meyer–Olkin (KMO) (0.767) and Bartlett’s Sphericity Test were performed on the
original indicators, and the results revealed there are common factors between the original
indicators, thus factor analysis can be conducted. Then Principal Component Analysis
was performed, and the principal components were extracted with the eigenvalue of 1
as the standard. Finally, five principal components were extracted, with the explanatory
variable of 20.313%, 9.853%, 8.330%, 6.920%, and 5.002%, respectively. The total explanatory
variable is 50.418%.

(1) Principal component 1: Greenland resilience

The analysis result is highly positively correlated with such original indicators as
“agricultural land area”, “green area”, “population density” and “impervious area”, and is
highly negatively correlated with “school” and “road density”. The low population density
of the area leads to the lack of infrastructure. Therefore, the greenland and agricultural land
of the local community have not been developed and became the resilience ability on which
the area heavily relies. Thus, this principal component was named greenland resilience.
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(2) Principal component 2: Community age structure resilience

The analysis result shows a high positive correlation with the original indicator,
“dependency ratio”, and exhibits a high negative correlation with “education level” and
“household size”. This resilience ability shows that due to the small dependency ratio
of the area, the household size is bound to be smaller than that of the three-generation
community. When the community with such an age structure faces the risks caused by
climate change, the loss caused by external events can be reduced owing to a small number
of senior citizens, thereby increasing community resilience. Thus, this principal component
was named “community age structure resilience”.

(3) Principal component 3: Traditional knowledge resilience

The analysis result is highly positively correlated with the original indicators such as
“percentage of indigenous population” and “proportion of aboriginal elderly population”.
Principal component 3 mainly shows that the indigenous population who have lived in the
area for a long time can use the knowledge inherited from their ancestors or their own accu-
mulated experience to deal with natural disasters, and formulate corresponding strategies.
Therefore, this principal component was named “traditional knowledge resilience”.

(4) Principal component 4: Infrastructure resilience

The analysis result is highly positively correlated with the original indicators: “resi-
dents’ income”, “medical facilities”, “fire station”, and “stratum subsidence”. This principal
component indicates that since the local residents have a high economic level, they possess
more choices regarding residences, and the economic level can also provide funding for the
construction and maintenance of local community infrastructure. It can be seen that this
principal component mainly represents the degree to which the infrastructure is complete,
hence it was named “infrastructure resilience”.

(5) Principal component 5: Residents economic independence resilience

The analysis result is highly positively correlated with the original indicator “low-
income households”, and is highly negatively correlated with “green infrastructure”. This
principal component indicates that the lack of local planning and establishment of green
infrastructure has resulted in the absence of the ability to deal with the risks of climate
change. Therefore, local residents must rely on their own economic independence. This
principal component was named “residents economic independence resilience”.

3.2. Spatial Autocorrelation Analysis of the Indicators of Resilience

The spatial autocorrelation analysis of the indicators of resilience demonstrated that
Moran’s I exceeds 0.26, and aggregated distribution is presented. In order to understand
the spatial distribution mode of each resilience indicator, this study used the univariate
spatial autocorrelation analysis in the GeoDa software to identify the spatial correlation
between the indicators of resilience. The local spatial autocorrelation results of the five
indicators of resilience constructed in this research are all different. The detailed results are
shown in Figure 3.

In terms of the spatial distribution pattern of greenland resilience (Figure 3a), most
of the non-mountainous and coastal areas have high resilience scores of spatial units and
adjacent spatial units. In addition, among the space units in the coastal area, many space
units and their adjacent space units have low values. In the resilience score of community
age structure resilience (Figure 3b), most of the regions with high values of spatial units and
adjacent spaces are located in the west, and some spatial units in the eastern mountainous
areas also exhibit such characteristics. In the resilience score of traditional knowledge
capacity (Figure 3c), the spatial units in the eastern mountainous area and the adjacent
spatial units show a distribution pattern of high-value concentration. In addition, the
spatial distribution patterns with low toughness scores and adjacent spatial units with
low values are mostly located in the western coastal areas. In the score of infrastructure
resilience (Figure 3d), the areas with high values of both spatial units and adjacent spatial
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units are mostly concentrated in the urban areas near the west. The spatial units with
lower resilience scores and the adjacent spatial units with low values are located in the
western coastal and eastern hilly areas. Among the resilience scores of residents economic
independence ability (Figure 3e), those with high resilience scores and their adjacent spatial
units are mostly concentrated in the eastern non-mountainous areas. Those with low
resilience scores and their adjacent spatial units are mostly located in the western coastal
areas. The analysis results of spatial correlation showed that there may be differences in the
resilience abilities between cities and villages. Therefore, it is necessary to further explore
the differences between urban and rural resilience.
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3.3. Analysis of the Difference between Urban and Rural Resilience

The spatial autocorrelation analysis revealed that the five types of resilience abilities
are all spatially concentrated in high values. In this study, the ArcGIS software was used
to select the urban and rural statistical units, and then the binary logistic regression in the
SPSS software was adopted to explore the difference between urban and rural resilience
in different dimensions. The results of the analysis are shown in Table 2. The accuracy of
the binary logistic regression model used in this study is 41.1% (Nagelkerke R2 = 0.411),
indicating that the predictive analysis accuracy of this model was the best at 41.1%. The
Hosmer–Lemeshow test is mainly used to test the fit of the model. The significance of the
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test result in this study is 0.408 > 0.05, which means that the hypothesis of good fit of the
regression model is accepted. The categories of the statistical units of principal component
1, principal component 2, and principal component 4 are prominent in urban areas, while
the statistical unit categories of principal component 3 and principal component 5 are more
obvious in rural areas.

Table 2. Binary logistic regression model analysis.

Resilience Indicator B S.E. Wald Exp(B) Significance Possible Categories That
Increase per Unit Volume

Pc4 Infrastructure resilience 1.339 0.082 264.721 3.817 0.000 Urban
Pc2 Community age structure resilience 0.694 0.105 43.680 2.003 0.000 Urban
Pc1 Greenland resilience 0.300 0.069 18.812 1.350 0.000 Urban

Pc5 Residents economic independence
resilience −0.398 0.088 20.386 0.671 0.000 Rural

Pc3 Traditional knowledge resilience −0.422 0.149 7.994 0.655 0.005 Rural

Constant term 1.065 0.101 111.010 1 0.000

Model sig = 0.000 Nagelkerke R2 = 0.411 Hosmer−lemeshow = 0.408 > 0.05

Number of samples = 1645 (rural = 512, urban = 1133)

Note: B is the estimated value of the regression coefficient; S.E. is the standard error; Wald is used to test the
significance of the regression coefficient; df is the degree of freedom; Exp(B) is used to explain the meaning of the
regression equation; Nagelkerke R2 represents the explanatory ability of the model; Hosmer–Lemeshow is mainly
used to test the fit of the model.

(1) Infrastructure resilience

Infrastructure resilience shows positive loading, and residents’ income, stratum subsi-
dence, fire station, and medical facilities have a significant contribution. Part of the funds
for improving community infrastructure come from the taxation of local residents, and
part of the funds for the construction or maintenance of medical facilities/fire stations
even come from donations from local residents. Under this condition, the maintenance of
infrastructure is highly dependent on the economic ability of local residents. The higher the
residents’ income, the more helpful it is to the construction and subsequent maintenance of
infrastructure. In areas where the stratum subsidence is severe, the land with a relatively
stable geological space is mainly selected for urban development, and there are few areas
for agricultural use in the subsequent industrial strategy of urban planning. To sum up,
since cities are not threatened by severe stratum subsidence and have infrastructure sup-
ported by local residents’ income, the resilience of urban areas in the face of climate change
has been strengthened.

(2) Community age structure resilience

In terms of the community age structure resilience, the indicators with large loading
include education level, household size, and dependency ratio. The loading of education
level and household size is negative, and the loading of dependency ratio is positive.
The analysis results are relatively consistent with the age structure of communities and
households in urban areas. In fact, since the 1960s in Taiwan, with the development of
urbanization, the household structure has gradually changed from a large family where
dozens of people lived together to a small family with only about four people, that is, the
size of urban households is relatively small. As the size of the urban households shrinks,
the proportion of elders in most households gradually decreases, and the dependency ratio
of the community is reduced correspondingly. Generally speaking, the family structure
and community age structure in urban areas have a more significant impact on the degree
of resilience than those in rural areas.

(3) Greenland resilience

Regarding greenland resilience, the indicators with obvious loading include pop-
ulation density, agricultural land area, school, and road density. The resilience ability
of this principal component is relatively inadequate due to the insufficient community
infrastructure such as school and road density. Therefore, the resilience ability is more
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dependent on the small population density and green space. The analysis results showed
that the greenland resilience in urban areas is more significant than that in rural areas. In
urban areas, the greenland that was previously regarded as less economically valuable has
increased the resilience of cities under the threat of climate change. However, because there
is less greenland in rural areas, the greenland does not help to improve the resilience of
rural communities under the threat of climate change.

(4) Residents economic independence resilience

In terms of the residents economic independence resilience, the indicators with promi-
nent loading in this principal component are low-income households and green infras-
tructure. This ability is mainly used to explore how local residents can strengthen their
resilience through their own economic independence in the absence of green infrastructure.
The analysis results showed this type of resilience ability is more prominent in rural spaces.
It can be seen that although rural areas are close to farmland or forests, there is no green
infrastructure in rural space units, leading to a lack of the green base to provide environ-
mental resilience. In this case, it can be said that rural residents are quite dependent on
their own economic level due to the absence of planning for green infrastructure.

(5) Traditional knowledge resilience

Regarding the traditional knowledge resilience, the indicators with significant loading
in this principal component include the percentage of the indigenous population and the
proportion of the aboriginal elderly population. Since the indigenous population has lived
in this area for a long time, they have more prominent sensitivity to local climate change,
resource utilization, and familiarity with geographic space than ordinary people. At the
same time, the aboriginal elders can help to disseminate and inherit traditional knowledge.
The analysis results showed that rural areas possess prominent resilience ability in terms of
traditional knowledge, which can also be found from the spatial distribution pattern in the
spatial autocorrelation analysis. The research scope mainly covers the places where a large
indigenous population gathers, and most of these places are rural areas. Therefore, rural
area has more significant traditional knowledge resilience than urban area.

4. Discussion

Most of the previous studies on resilience emphasized the influence of infrastruc-
ture and socio-economic factors, thus these factors were often selected for exploring
resilience [6,33]. However, after a literature review, it was found that traditional knowledge
plays a significant role in coping with climate change in certain areas. Our research results
also suggested that rural areas have more prominent resilience than urban areas in this
respect. It can be seen that due to the lack of strong social and economic background, or
the lack of complete infrastructure, the resilience of the rural areas heavily depends on the
traditional knowledge of local residents.

In previous research, Tobin (1999) took Florida as the research object, which mainly
measured the degree of internal resilience of the state after the impact of Hurricane An-
drew [34]. However, it does not have a corresponding practice site but is based on qualita-
tive analysis. This study combines local characteristics and provides the possibility to assess
urban and rural resilience. Second, Mayunga’s (2007) study further extended to various
disaster types and established a Community Disaster Resilience Index [35]. However, in
resilience assessment, it is mainly discussed from the perspective of economic capital, but
it ignores resilience capabilities other than environmental or social capital. A major feature
of this study is that it expands the concept of resilience and establishes an evaluation
system for urban and rural resilience from social, economic, environmental, and traditional
knowledge. Then Yoon et al. (2016) also established six dimensions including people,
society, economy, environment, disaster prevention system, and urban space based on the
Community Disaster Resilience Index, and conducted resilience measures for 229 basic
self-governing groups in South Korea [6]. However, the blind spot lies in the failure to
clearly identify the resilience of local communities for discussion, while this study is based
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on local resilience construction and has wide practical implementation. Research by Hudec,
Reggiani, and Šiserová (2018) developed the Resilience Capacity Index to measure the
resilience or rebound of regions from climate change shocks, but it also failed to clearly
identify the resilience of local communities [8]. To sum up, there is a lack of application
of urban and rural resilience indicators in previous resilience index assessments. The
establishment of indicators for key factors affecting urban and rural resilience in this study
is an important step to improve localized urban and rural resilience.

Regarding the formulation of strategies for cities to respond to climate change, most of
the previous research focused on reducing the impact of climate change through infrastruc-
ture planning [36,37]. The analysis results of this study also confirmed the importance of
infrastructure to urban resilience, but on the other hand, it was also found that green space
is also one of the key factors of urban resilience. In fact, green space in the city used to be
regarded as land without economic value, but it has become a key factor affecting urban
resilience under the threat of climate change. Therefore, how to increase the proportion of
urban green space can be used as one of the important strategies for each city and county to
establish spatial planning. Although it is also emphasized that infrastructure is an essential
strategy for improving rural resilience, the long-term lack of a comprehensive planning
strategy in rural areas makes it difficult to increase the construction of infrastructure. Ac-
cording to the analysis results of this study, the resilience abilities of the rural areas mainly
depend on the economic independence of local residents and traditional knowledge at a
non-hardware level. Therefore, in spatial planning, how to effectively use these abilities is
the key to the subsequent overall planning of rural resilience, and it is also the foundation
of maintaining rural resilience before the infrastructure is improved in rural areas. To sum
up, when planning the location of infrastructure in the future, it will help to reduce the
damage caused by the city if we can consider the characteristics of infrastructure for the
city in coping with climate change and pay attention to its co-benefits. Villages have long
lacked sound planning strategies and should rely more on their own resilience (such as
traditional knowledge) to cope with climate change.

The biggest contribution of this research is the construction of an indicator framework
of resilience that adapts to urban and rural areas. This framework helps to explore the
differences between the corresponding resilience characteristics of cities and villages under
the threat of climate change. By integrating the indicators of urban and rural resilience, the
indicator system is more applicable. Through the Local Indicators of Spatial Association,
this framework established the correlation between the indicators of resilience regarding
spatial distribution, so as to understand the aggregation in the urban or rural areas. In
addition, a binary logistic regression model was used to explore the different resilience
capabilities of urban and rural areas more thoroughly.

There are still some limitations in this research. (I) Since the data were published in
different years, the analysis based on the latest related data cannot facilitate the comparison
of the changes in urban and rural resilience in terms of time under the influence of climate
change. If more time-section data can be used, it will help to obtain more accurate resilience
capabilities, and thus deepen the understanding of the differences in resilience between
urban and rural areas. (II) The spatial units compared in this study are limited to urban
and rural areas formulated in the research design, and many areas that are not located in
the above spatial units are ignored. Therefore, it is impossible to compare various types
of national land spaces. (III) The results of this study are obtained based on correlations
and have certain limitations. Follow-up research can also help analyze the presentation of
results from the “causal inference” approach.

5. Conclusions

Climate change has imposed a great impact on both urban and non-urban systems,
but under the threat of climate change, the resilience characteristics of urban and rural
areas are quite different [38,39]. Through the establishment of the indicator framework of
resilience, the following conclusions were obtained:
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(I) Based on the literature review, this study selected the indicators of resilience suit-
able for evaluating both urban and rural areas and used Principal Component Analysis to
reduce dimensions. Finally, five principal components were extracted, namely, greenland
resilience, community age structure resilience, traditional knowledge resilience, infras-
tructure resilience, and residents economic independence resilience. (II) In this research,
spatial autocorrelation was conducted to analyze and explore the spatial autocorrelation of
resilience abilities. The spatial location of the hot and cold spots of the various resilience
abilities derived from the analysis can provide reference for relevant government depart-
ments. (III) A comprehensive analysis of the five types of resilience abilities found that
under the threat of climate change, cities are relatively dependent on the infrastructure
built with local resource input and the resilience provided by the environment. The rural
areas are relatively dependent on the economic abilities of the local residents themselves
or the resilience at the level of knowledge application. This is also the biggest difference
between the urban and rural areas under the threat of climate change.

The comparison of urban and rural resilience abilities can help to develop stronger
targeted measures in the four stages of disaster management: disaster reduction, disaster
preparedness, response, and recovery. However, it needs to be emphasized that the research
on resilience is still in a preliminary stage regarding the handling of climate change and
risk management, and further efforts need to be invested.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijerph19158911/s1, Table S1. The calculation method and
data source of the indicator.
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32. Van Oudenhoven Frederik, J.W.; Mijatović, D.; Eyzaguirre Pablo, B. Social-ecological indicators of resilience in agrarian and
natural landscapes. Manag. Environ. Qual. Int. J. 2011, 22, 154–173. [CrossRef]

33. Bianco, F.; García-Ayllón, S. Coastal resilience potential as an indicator of social and morphological vulnerability to beach
management. Estuar. Coast. Shelf Sci. 2021, 253, 107290. [CrossRef]

34. Tobin, G.A. Sustainability and community resilience: The holy grail of hazards planning? Glob. Environ. Chang. Part B Environ.
Hazards 1999, 1, 13–25. [CrossRef]

35. Mayunga, J. Understanding and applying the concept of community disaster resilience: A capital-based approach. Summer Acad.
Soc. Vulnerabil. Resil. Build. 2007, 1, 1–16.

36. Kong, J.; Zhang, C.; Simonovic, S.P. Optimizing the resilience of interdependent infrastructures to regional natural hazards with
combined improvement measures. Reliab. Eng. Syst. Saf. 2021, 210, 107538. [CrossRef]

37. Sen, M.K.; Dutta, S.; Kabir, G. Development of flood resilience framework for housing infrastructure system: Integration of
best-worst method with evidence theory. J. Clean. Prod. 2021, 290, 125197. [CrossRef]

38. Srivastava, N.; Shaw, R. Occupational resilience to floods across the urban–rural domain in Greater Ahmedabad. India. Int. J.
Disaster Risk Reduct. 2015, 12, 81–92. [CrossRef]

39. Chang, H.-S.; Su, Q. The Response of Taiwan’s Space Disaster Prevention System from the Perspective of Resilient City. Urban
Dev. Stud. 2020, 27, 97–105.

http://doi.org/10.1007/s10584-013-0909-y
http://doi.org/10.1016/j.gloenvcha.2008.07.013
http://doi.org/10.1016/j.jenvman.2018.01.083
http://www.ncbi.nlm.nih.gov/pubmed/29502020
http://doi.org/10.1016/j.gloenvcha.2014.08.005
http://doi.org/10.1016/j.uclim.2021.100792
http://doi.org/10.1016/j.jclepro.2015.08.080
http://doi.org/10.1016/j.apgeog.2018.12.011
http://doi.org/10.1007/s11356-021-15708-2
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1016/j.catena.2019.104223
http://doi.org/10.1016/j.ecolind.2018.07.057
http://doi.org/10.1007/s10113-013-0471-1
http://doi.org/10.1016/j.ijdrr.2018.07.015
http://doi.org/10.1007/s11069-015-1993-2
http://doi.org/10.1016/j.scitotenv.2021.145734
http://doi.org/10.1016/j.ssci.2022.105867
http://doi.org/10.1016/j.pdisas.2022.100218
http://doi.org/10.1007/s10113-011-0253-6
http://doi.org/10.14430/arctic4475
http://doi.org/10.1108/14777831111113356
http://doi.org/10.1016/j.ecss.2021.107290
http://doi.org/10.1016/S1464-2867(99)00002-9
http://doi.org/10.1016/j.ress.2021.107538
http://doi.org/10.1016/j.jclepro.2020.125197
http://doi.org/10.1016/j.ijdrr.2014.12.003

	Introduction 
	Methodology 
	Research Framework 
	The Research Area and the Identification of Urban and Rural Spatial Units 
	A Comparative Approach to Urban–Rural Resilience Differences 
	Principal Component Analysis (PCA) 
	Local Indicators of Spatial Association (LISA) 
	Binary Logistic Regression 


	Results Analysis 
	The Construction of the Indicator System and Principal Component Analysis 
	Spatial Autocorrelation Analysis of the Indicators of Resilience 
	Analysis of the Difference between Urban and Rural Resilience 

	Discussion 
	Conclusions 
	References

