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Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were shown to

have potential for immunoregulation and tissue repair. The objective of this study

was to investigate the effects of hUC-MSCs on emphysema in chronic obstructive

pulmonary disease (COPD). The C57BL/6JNarl mice were exposed to cigarette smoke

(CS) for 4 months followed by administration of hUC-MSCs at 3 × 106 (low dose),

1 × 107 (medium dose), and 3 × 107 cells/kg body weight (high dose). The hUC-MSCs

caused significant decreases in emphysema severity by measuring the mean linear

intercept (MLI) and destructive index (DI). A decrease in neutrophils (%) and an

increase in lymphocytes (%) in bronchoalveolar lavage fluid (BALF) were observed

in emphysematous mice after hUC-MSC treatment. Lung levels of interleukin (IL)-1β,

C-X-C motif chemokine ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and matrix

metalloproteinase (MMP)-12 significantly decreased after hUC-MSC administration.

Significant reductions in tumor necrosis factor (TNF)-α, IL-1β, and IL-17A in serum

occurred after hUC-MSC administration. Notably, the cell viability of lung fibroblasts

improved with hUC-MSCs after being treated with CS extract (CSE). Furthermore, the

hUC-MSCs-conditioned medium (hUC-MSCs-CM) restored the contractile force, and

increased messenger RNA expressions of elastin and fibronectin by lung fibroblasts. In

conclusion, hUC-MSCs reduced inflammatory responses and emphysema severity in

CS-induced emphysematous mice.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is currently
one of the world’s highest causes of mortality and ranks fifth
worldwide in terms of disease burden (1–3). About 80–90% of
COPD patients are related to cigarette smoking (4). A previous
study found that exposure to cigarette smoke (CS) for 12
weeks induced emphysematous lung lesions in rats (5). This
irreversible alveolar destruction and emphysematous changes
due to CS exposure resulted in higher mortality and difficulties
in treating COPD.

Mesenchymal stem cells (SCs; MSCs), multipotent SCs,
have high self-renewal and differentiation capacities (6). Recent
studies demonstrated immunoregulatory functions of MSCs in
treating graft vs. host disease (7, 8). Also, tissue-repair actions
of MSCs through a paracrine mechanism were explored (9,
10). Notably, most intravenously (i.v.) administered MSCs were
localized in the lungs (11). Recruitment of MSCs to the lungs
provides new insights that MSCs may have greater paracrine
effects in the lungs. Therefore, the effects of MSCs on lung disease
treatment were recently noted (12, 13).

Human umbilical cord-derived (hUC)-MSCs have a higher
differential capacity, lower immunogenicity, and less age-related
dysfunction compared to adult SCs (14). Other advantages of
hUC-MSCs are that there are fewer ethical issues associated
with them and they can be non-invasively collected (15). Anti-
inflammatory effects of hUC-MSCs were found in an acute
lung injury mouse model (16). Moreover, it was demonstrated
that hUC-MSCs prevented bleomycin-induced lung fibrosis in
vivo (17).

Lung fibroblasts were shown to have an important role
in repairing damaged lung tissues after CS exposure (18).
However, a previous study found a decrease in the proliferation
of lung fibroblasts in COPD (19). Recently, the senescence-
associated secretory phenotype of lung fibroblasts was found
in CS-induced emphysema (20). Consequently, the loss of the
ability to repair alveoli due to CS was mainly because of lung
fibroblast dysfunction (21, 22). MSCs were shown to mediate
the proliferation and increase the pro-collagen expression of lung
fibroblasts (23).

Despite the efficacy of MSCs in ameliorating acute lung
damage, few studies have investigated the effects of hUC-
MSCs on chronic CS-induced emphysema. The objective of this
study was to investigate the therapeutic efficacy of hUC-MSCs
in emphysema.

MATERIALS AND METHODS

Animals
The animal study was approved by the Animal and Ethics
Review Committee of the Laboratory Animal Center at Taipei
Medical University, Taipei, Taiwan (IACUC: LAC-2017-0231).
Male C57BL/6JNarl mice (8 weeks, 20–25 g, n= 8–10 per group)
were obtained from the National Laboratory Animal Center
(Taipei, Taiwan). Mice were housed in plastic cages and supplied
with Lab Diet 5001 (PMI Nutrition International, St. Louis, MO,
USA) and water ad libitum. A light/dark cycle of 12 h/12 h was

maintained. The room temperature was set to 22 ± 2◦C, and
relative humidity to 55± 10%.

CS-Induced Emphysema
An emphysema mouse model was established by whole-body
exposure to CS for 4 months. Details of the CS exposure system
were previously reported (24). Briefly, the system consisted of a
CS generator, a whole-body exposure chamber (TECNIPLAST,
VA, Italy), and a particulate matter (PM) monitor. A side-stream
was introduced into the whole-body exposure chamber at a flow
rate of 15 L/min. There were 16 commercial cigarettes (Longlife,
Taipei, Taiwan; 11mg of tar and 0.9mg of nicotine) combusted
for 8 h/day and 5 days/week for 4 months (Figure 1A). The
mass concentration of PM of <2.5µm in aerodynamic diameter
(PM2.5) was monitored using a DustTrak monitor (8530, TSI,
Shoreview, MN, USA). Figure 1B shows the distribution of the
PM2.5 mass concentration during CS exposure. The average
PM2.5 mass concentration was 90.5 ± 40.6 mg/m3 during
the first 15min. It reached a maximum level of about 154.3
± 58.2 mg/m3 after 4min of cigarette combustion, and then
the mass concentration declined to the baseline level after
16min. Simultaneously, mice exposed to CS-free high-efficiency
particulate air (HEPA)-filtered room air (RA) served as the
control group.

hUC-MSC Preparation and
Characterization
Details of hUC-MSC preparation were previously reported
(24). Briefly, umbilical cords were aseptically harvested and
digested with collagenase (SERVA, Heidelberg, Germany) at
37◦C. The cell pellets were expanded in α-minimal essential
medium (α-MEM, Invitrogen, Carlsbad, CA, USA), and cultured
in an incubator with 5% CO2 at 37◦C for 3 days. hUC-
MSCs were characterized using flow cytometry (BD StemflowTM

hMSC Analysis Kit; BD Biosciences, San Jose, CA, USA) to
detect expressions of cluster of differentiation (CD) markers
(CD11b, CD19, CD34, CD44, CD45, CD73, CD90, and CD105)
and human leukocyte antigen–antigen D related (HLA-DR).
As presented in Supplementary Table 1, hUC-MSCs exhibited
positive expressions of SC-specific surfacemarkers (CD44, CD73,
CD90, and CD105) and negative expressions of CD11b, CD19,
CD34, CD45, andHLA-DR, which followed International Society
for Cellular Therapy Guidelines (25). hUC-MSCs were prepared
in clinical-grade normal saline supplemented with 2% clinical-
grade human serum albumin and 16.7% clinical grade CS10. This
study was approved by the Ethics Committee of the National
Cheng Kung University Hospital Institutional Review Board
(Tainan, Taiwan; IRB no.: A-BR-104-045). All subjects received
written and oral informed consent before inclusion. All study
processes were conducted following the approved study protocol.

hUC-MSC Administration and Sample
Collection
The experimental design is shown in Figure 1A. After 4 months
of CS exposure, emphysematous mice were randomly divided
into four groups: sham control (CS), low-dose group (CS+MSC-
L), medium-dose group (CS + MSC-M), and high-dose group
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FIGURE 1 | (A) Schematic mice model of cigarette smoke (CS)-induced emphysema. (B) The distribution of particulate matter with an aerodynamic diameter of

<2.5µm (PM2.5) mass concentration in the whole-body exposure system (mean ± SD). Mice (8 weeks old, 20–25 g, n = 8–10 per group) were exposed to CS for 4

months and received (i.v.) a single dose of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) after CS exposure (CS + MSC-L: hUC-MSCs at 3 ×

106 cells/kg body weight (BW) for low-dose, CS + MSC-M: 1 × 107 cells/kg BW for medium-dose, and CS + MSC-H: 3 × 107 cells/kg BW for high-dose).

(CS + MSC-H). Mice were intravenously (i.v.) administrated a
single-dose of hUC-MSCs at 3 × 106 cells/kg body weight (BW)
for CS + MSC-L, 1 × 107 cells/kg BW for CS + MSC-M, and
3 × 107 cells/kg BW for CS + MSC-H. The administered dose
of hUC-MSCs was referenced to our previous reports (24, 26).
The control and CS sham groups were i.v. administrated the
same volume of vehicle. BW was measured once a week before
and after hUC-MSC administration. Mice were euthanized 4
weeks after hUC-MSC administration. Bronchoalveolar lavage
fluid (BALF), lung tissues, and serum were collected. For
histological analyses, lung samples were inflated with 10%
(m/v) paraformaldehyde in phosphate-buffered saline (PBS) at a
pressure of 21 cm H2O.

Emphysema Evaluation
Lung tissues were embedded in paraffin and sectioned into slices
for staining with hematoxylin and eosin (H&E). The mean linear
intercept (MLI) and destructive index (DI) were used to evaluate
the presence of emphysema. The MLI was assessed by counting
the number of the alveolar walls intercepted in the grid lines,
according to previously described methods (27, 28). The DI
for microscopic lung lesions was previously reported (27, 28).
Emphysematous defects or intramural parenchyma in at least two
intersections of alveoli were considered alveolar destruction.

Hematology
BALF was centrifuged at 1,500 rpm for 10min at 4◦C. Cell pellets
were resuspended in PBS. Numbers of neutrophils, lymphocytes,

monocytes, and eosinophils were quantified by a hematology
analyzer (ProCyte Dx, IDEXX Laboratories, Westbrook, ME,
USA). Data are expressed as percentages (%) of total cell counts.

Proteins Extracted From Lung Tissues
Lysis buffer was prepared from 490 µL of lysis reagent
(Sigma-Aldrich, St. Louis, MO, USA) containing 5 µL of a
protease inhibitor (Geno Technology, St. Louis, MO, USA)
and 5 µL of ethylenediaminetetraacetic acid. Lung tissues were
homogenized in lysis buffer using a homogenizer (Minilys R©

personal homogenizer, Bertin, Rockville, MD, USA).

Cytometric Bead Array (CBA) and
Enzyme-Linked Immunosorbent Assay
(ELISA)
A CBA (BD Biosciences, San Jose, CA, USA) was used to
quantify levels of tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, chemokine (C-X-C motif) ligand 1/keratinocyte
chemoattractant (CXCL1/KC), and IL-17A in BALF, lung,
and serum samples. Matrix metalloproteinase (MMP)-12 was
determined in lung samples by an ELISA (Cloud-Clone, Katy,
TX, USA). Quantification of these markers in lung samples
was normalized to the total protein. All measurements were
undertaken in accordance with the manufacturers’ instructions.

Human Lung Fibroblasts
Human lung fibroblasts (MRC-5 cells) were obtained from the
Food Industry Research and Development Institute (FIRDI,
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Hsinchu, Taiwan) and cultured in T75 flasks with Eagle’s
minimum essential medium (EMEM, Lonza Group, Basel,
Switzerland) supplemented with 10% fetal bovine serum (FBS),
2mML-glutamine, 0.1mMnon-essential amino acids, and 1mM
sodium pyruvate.

hUC-MSCs-Conditioned Medium (CM)
Preparation
To collect hUC-MSCs-CM, hUC-MSCs (1.2 × 106 cells)
were cultured in T75 flasks with 15mL of hUC-MSC culture
medium for 24 h. After being washed with PBS, the culture
medium was replaced with 10mL of α-MEM basal medium
(Invitrogen, Carlsbad, CA, USA) and incubated for 48 h. The
subsequent serum-free culture medium was collected and served
as hUC-MSCs-CM.

CS Extract (CSE)
CSE was prepared from the combustion of three cigarettes
(Marlboro, Philip Morris, VA, USA) by impinging onto 30mL
of α-MEM (Invitrogen) with a firm filter. The cigarette contained
10mg of tar and 0.8mg of nicotine. Fresh CSE was collected to
serve as 100% CSE and immediately used for cell experiments.

Cell Viability of Human Lung Fibroblasts by
hUC-MSCs After CSE Exposure
MRC-5 cells were treated with 8% CSE for 24 h and then
indirectly cocultured with hUC-MSCs for another 48 h. Cell
viability of MRC-5 cells was determined by a cell counting kit-8
(Merck, Darmstadt, Germany).

Cell Contractile Force and Elastin and
Fibronectin of Human Lung Fibroblasts by
hUC-MSCs-CM After CSE Exposure
MRC-5 cells (2× 105/cells) seeded in six-well plates were treated
with 8% CSE for 24 h. After CSE exposure, cells were cultured in
hUC-MSCs-CM for 24 h. The cell contractile force was measured
using a collagen-based cell contraction assay kit (CellBiolabs, San
Diego, CA, USA). Messenger (m)RNA expressions of elastin and
fibronectin were analyzed by a quantitative polymerase chain
reaction (qPCR), according to the manufacturer’s instructions.

Statistical Analysis
Data are presented as the mean ± standard deviation (SD).
Multiple groups were compared by an analysis of variance
(ANOVA) with Tukey’s post-hoc test. An unpaired t-test was
used for comparisons between continuous variables. All analyses
were performed using GraphPad vers. 6 (San Diego, CA, USA).
p < 0.05 was considered statistically significant.

RESULTS

hUC-MSCs Mitigated Emphysema Severity
Results of the histological analysis are shown in Figure 2. A
significant decrease in the MLI by hUC-MSCs was observed
compared to the CS group (low-dose: 87.08 ± 14.20, medium-
dose: 82.34 ± 7.50, and high-dose MSCs: 79.32 ± 7.14 vs. the CS
group: 103.10 ± 11.52µm, p < 0.001). Furthermore, the DI (%)

significantly decreased after hUC-MSC administration (medium-
dose: 15.67 ± 3.30% and high-dose MSCs: 12.05 ± 2.65% vs. the
CS group: 24.30± 2.85%, p < 0.001).

Reduction of Lung Infiltration by
hUC-MSCs
As shown in Figure 3A, a significant decrease in the percentage
of neutrophils was observed in the hUC-MSC group compared
to the CS group (low-dose: 35.83 ± 9.50%, medium-dose: 20.64
± 12.44%, and high-dose MSCs: 23.05 ± 12.54% vs. the CS
group: 57.29± 27.45%, p < 0.001). In contrast, lymphocytes (%)
significantly increased after hUC-MSC administration compared
to the CS group (low-dose: 44.47± 13.17%, medium-dose: 65.44
± 13.29%, and high-doseMSCs: 63.73± 13.08% vs. the CS group:
24.77± 18.41%, p < 0.001). There was no statistical difference in
monocytes (%) or eosinophils (%) among the groups. Also, we
observed no statistical difference in TNF-α, IL-1β, CXCL1/KC,
or IL-17A in BALF after hUC-MSC administration (Figure 3B).

hUC-MSCs Decreased Levels of IL-1β,
CXCL1/KC, and MMP-12 in the Lungs
Levels of IL-1β (low-dose: 0.70 ± 0.42 and medium-dose MSCs:
0.76 ± 0.42 vs. the CS group: 1.28 ± 0.47 pg/mg, p < 0.05) and
CXCL1/KC (medium-dose: 8.20 ± 4.14 and high-dose MSCs:
9.92± 9.47 vs. CS group: 41.61± 21.56 pg/mg, p< 0.001) in lung
lysates significantly decreased after hUC-MSC administration
compared to the CS group (Figure 4A). Also, we found that
MMP-12 in lungs of mice was significantly reduced by hUC-
MSCs (low-dose: 3.83 ± 0.92, medium-dose: 3.14 ± 0.89, and
high-doseMSCs: 3.13± 1.03 vs. the CS group: 6.40± 2.20 pg/mg,
p < 0.001). There was no significant change in TNF-α or IL-17A
levels among all groups.

hUC-MSCs Reduced Levels of TNF-α,
IL-1β, and IL-17A in Serum
TNF-α, IL-1β, CXCL1/KC, and IL-17A levels in serum of mice
were examined (Figure 4B). hUC-MSCs significantly reduced
levels of TNF-α (low-dose MSCs: 6.49 ± 2.48 vs. the CS group:
14.71 ± 9.34 pg/mL, p < 0.01), IL-1β (low-dose: 14.16 ± 22.48,
medium-dose: 17.69± 10.86, and high-dose MSCs: 21.4± 15.27
vs. the CS group: 56.31 ± 47.24 pg/mL, p < 0.05), and IL-17A
(low-dose: 0.75 ± 0.59 and high-dose MSCs: 0.90 ± 0.44 vs. the
CS group: 2.02 ± 1.34 pg/mL, p < 0.05) compared to the CS
group. No significant reduction in CXCL1/KC was found when
compared among all groups.

Proliferation of Lung Fibroblasts by
hUC-MSCs
As shown in Figure 5A, the cell viability of MRC-5 cells
significantly increased by hUC-MSCs after CSE treatment
compared to the CSE group (p < 0.05). The contractile force of
MRC-5 cells as determined by the collagen gel surface area was
significantly reduced by hUC-MSCs-CM treatment compared
to the CSE group (p < 0.05; Figure 5B). A significant increase
in mRNA expressions of elastin and fibronectin were observed
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FIGURE 2 | Repair of alveolar structures by human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in a mice model of cigarette smoke (CS)-induced

emphysema. Lung tissue sections were stained with hematoxylin and eosin (H&E). Lung lesions were quantified by measuring the mean linear intercept (MLI) and

destructive index (DI). Significant reductions of the MLI and DI (%) were observed by hUC-MSC administration after CS exposure for 4 months. Results were

determined by a one-way ANOVA with Tukey’s test. n = 8–10 per group. ***p < 0.001.

FIGURE 3 | (A) The human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) reduced neutrophils and increased lymphocytes in bronchoalveolar lavage

fluid (BALF) of mice. (B) Regulation of cytokine production (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1)/keratinocyte

chemoattractant (KC), and IL-17A) by hUC-MSCs in BALF. A significant decrease in neutrophils (%) was observed by hUC-MSC administration, whereas lymphocytes

(%) increased after hUC-MSC administration. There was no significant difference in cytokine production in BALF after hUC-MSC administration. The results were

determined by a one-way ANOVA with Tukey’s test. n = 8–10 per group. ***p < 0.001.
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FIGURE 4 | (A) Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) downregulated interleukin (IL)-1β, C-X-C chemokine ligand 1 (CXCL1)/

keratinocyte chemoattractant (KC), and matrix metalloproteinase (MMP)-12 in lung lysates. (B) hUC-MSCs decreased systemic cytokine production (tumor

(Continued)
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FIGURE 4 | necrosis factor (TNF)-α, IL-1β, and IL-17A) in serum. Mice lungs were homogenized, and then lung lysates and facial blood of mice were measured by a

CBA or ELISA. IL-1β, CXCL1/KC, and MMP-12 in the lungs of mice were significantly reduced by hUC-MSCs. Significant decreases in TNF-α, IL-1β, and IL-17A in the

serum of mice by hUC-MSCs were seen, and data were determined by a one-way ANOVA with Tukey’s test. n = 8–10 per group. *p < 0.05, **p < 0.01, ***p < 0.001.

by hUC-MSCs-CM treatment compared to the CSE group
(p < 0.001; Figure 5C).

DISCUSSION

MSCs were shown to have the potential for immunomodulation
and tissue regeneration in different diseases (29–31). We
observed that hUC-MSCs decreased the emphysema severity
and reduced lung and systemic inflammatory infiltration in
mice with CS-induced emphysema. Moreover, we observed that
hUC-MSCs increased the proliferation of lung fibroblasts after
CSE exposure. hUC-MSCs may ameliorate emphysematous lung
lesions in COPD.

Mice were exposed to CS for 4 months at an average
mass concentration of 90.5 ± 40.6 mg/m3 PM2.5 to induce
development of emphysema in the present study. The CS-
exposure system in this study was described previously (24).
Previous reports also showed that CS exposure for 12–14 weeks
was able to induce an emphysema model (32–35). During the
CS exposure, the mice were significantly decreased in body
weight and a significant increase in the serum level of TNF-
α as compared to the control before hUC-MSC administration
(Supplementary Figures 1A,B). After 4 months of exposure to
CS, we observed significantly increased emphysema severity
(MLI and DI) and elevation of pro-inflammatory factors
(TNF-α and IL-1β) in serum without a significant change in
BW (Supplementary Figure 2). The observation suggests that
a mouse model of CS-induced emphysema was successfully
established in the present study. However, it is worth to note that
themice were euthanized 4 weeks after the CS exposure. Thismay
result in the decrease of inflammatory responses in the CS group.

The lungs are an important organ for accumulation of hUC-
MSCs after their administration (36–38). Lung inflammatory
infiltration was mitigated by hUC-MSCs in emphysematous
mice. First, neutrophils were significantly reduced in BALF
by hUC-MSCs. Previous studies showed that neutrophils
or polymorphonuclear cells decreased in BALF by MSC
administration after CS exposure for 7∼16 weeks in vivo (35,
39). Pulmonary neutrophil activation by CS is reported to
be associated with pro-inflammatory activation and alveolar
destruction by releasing neutrophil elastase in COPD (40–42).
Therefore, hUC-MSC administration is able to reduce increasing
levels of neutrophilic inflammation. Next, we observed that
lymphocytes significantly increased in BALF after hUC-MSC
administration. Another study showed that intranasal delivery of
MSCs slightly increased lymphocytes in BALF of mice compared
to the intraperitoneal route in mice with CS-induced emphysema
(43). Those results pointed out that different routes and timing
of MSC administration could have distinct effects on regulating
immune cell populations. MSCs transiently activate T cells to
preserve the antiapoptotic function (44). For example, higher

lymphocyte counts were more efficient in activating MSCs
in the treatment of graft vs. host disease (45). A previous
study showed that that hUC-MSCs recruited the regulatory T
cells in the damaged lung (46). Together, hUC-MSCs could
regulate lung neutrophil infiltration and lymphocyte activation
in emphysematous mice. However, more experiments should be
conducted in the future to support this.

We observed that inflammatory responses of the lungs,
including IL-1β, CXCL1/KC, and MMP-12, by CS decreased
after administration of hUC-MSCs. Consistent with a previous
study, pro-inflammatory cytokines (TNF-α, IL-1β, andmonocyte
chemoattractant protein-1) and proteases (MMP-9 and−12)
in the lungs of rats decreased by MSC administration after
CS exposure for 11 weeks (47). In addition, we found
that serum levels of TNF-α, IL-1β, and IL-17A significantly
decreased by hUC-MSC administration after CS exposure. TNF-
α, IL-1β, and IL-17A were shown to be key mediators in
recruiting neutrophils to the lungs after CS exposure (48–53).
Previous studies have found that the MMP-12 liberated the
neutrophil chemoattractants (e.g., TNF-α) from the macrophage,
which recruited the neutrophils and released the elastase that
contributes to the lung damage (41, 54–56). It was hypothesized
that MSCs may protect the pulmonary matrix structure by
reducingMMP and elastase productions in alveolar macrophages
and neutrophils, respectively (41, 57–59). Our results showed
that decreases in serum levels of neutrophil chemotactic factors,
including TNF-α, IL-1β, and IL-17A by hUC-MSCs may possibly
be associated with the reduction in neutrophils in the BALF of
mice after CS exposure.

The emphysema severity was significantly decreased by hUC-
MSCs in emphysematous mice based on the MLI and DI
results. Previous studies showed a decrease in emphysematous
lesions in the lungs of mice due to bone marrow (BM)-MSCs
(60, 61). Other studies found that MSCs induced neutrophil
apoptosis and decreased protease secretions resulting in reduced
severity of COPD (62–64). In our study, one explanation
for the mitigation of the emphysema was decreased levels of
pro-inflammatory factors in the lungs (IL-1β and CXCL1/KC)
and circulation (TNF-α, IL-1β, and IL-17A) by hUC-MSCs
which may associate with the reduction of the neutrophil
infiltration in emphysematous mice. In addition, the decrease
in protease secretion (MMP-12) by hUC-MSCs contributed to
reducing alveolar destruction. Our results suggest that hUC-
MSCs may ameliorate alveolar destruction in mice after CS-
induced emphysema. However, the underlying mechanisms
should be investigated in the future.

Fibroblasts play an important role in regulating COPD
severity. We observed that the cell viability of lung fibroblasts
increased by hUC-MSC administration after CSE exposure.
In addition, hUC-MSCs-CM restored collagen’s contractile
force in lung fibroblasts after treatment with the CSE.
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FIGURE 5 | (A) Increased cell viability of human lung fibroblasts by human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) after cigarette smoke extract

(CSE) exposure. (B) Restoration of the contractile force of lung fibroblasts by hUC-MSCs-conditioned medium (hUC-MSCs-CM). (C) hUC-MSCs-CM increased

mRNA expressions of elastin and fibronectin in lung fibroblasts after CSE treatment. A transwell coculture system was used to determine cell viability of human lung

fibroblasts (MRC5 cell line). A significant increase in cell viability (%) of MRC5 cells by hUC-MSCs was observed after CSE treatment for 24 h. MRC-5 cells were

treated by CSE for 24 h and then received hUC-MSCs-CM for 24 h afterward. The contractile force was evaluated by a collagen-based cell contraction assay. The

mRNA expressions of elastin and fibronectin were quantified by a qPCR. Results were examined by an unpaired t-test. Four independent experiments in each group.

*p < 0.05, ***p < 0.001.

MSCs-conditioned medium (MSCs-CM) was compatible with
MSCs in attenuating inflammation in bronchopulmonary
dysplasia (65). A previous study showed that MSCs-CM induced

lung fibroblast proliferation and restored their repair function
after CSE exposure (66). Consistent with previous findings, our
results showed that mRNA expressions of elastin and fibronectin
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by lung fibroblasts significantly increased after treatment with
hUC-MSCs-CM compared to the group treated with CSE
alone. Collectively, these results suggested that paracrine factors
secreted by hUC-MSCs to lung fibroblasts may be partly involved
in the alveolar repair process after CS exposure.

There are a few limitations in this study. We observed
an increase in lymphocytes in BALF of mice due to hUC-
MSC administration. The different subgroups of lymphocytes,
including regulatory T cells, were not determined in our study.
In addition, interactions of hUC-MSCs with lymphocytes are not
fully understood. The pulmonary function and the underlying
mechanism of the hUC-MSCs in COPDwill be determined in the
future. Moreover, the adverse effects of fibroblasts by hUC-MSCs
in vivo are still unclear, which should be evaluated in future work.

CONCLUSIONS

In conclusion, hUC-MSCs reduced the emphysema severity and
inflammatory responses in mice with CS-induced emphysema.
hUC-MSCs increased the proliferation of fibroblasts after
CSE exposure. hUC-MSCs may mitigate COPD in mice
after CS exposure.
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