
RESEARCH ARTICLE Open Access

Comprehensive analysis of prognostic gene
signatures based on immune infiltration of
ovarian cancer
Shibai Yan1, Juntao Fang2, Yongcai Chen3, Yong Xie3, Siyou Zhang3, Xiaohui Zhu4* and Feng Fang3*

Abstract

Background: Ovarian cancer (OV) is one of the most common malignant tumors of gynecology oncology. The lack
of effective early diagnosis methods and treatment strategies result in a low five-year survival rate. Also,
immunotherapy plays an important auxiliary role in the treatment of advanced OV patient, so it is of great
significance to find out effective immune-related tumor markers for the diagnosis and treatment of OV.

Methods: Based on the consensus clustering analysis of single-sample gene set enrichment analysis (ssGSEA) score
transformed via The Cancer Genome Atlas (TCGA) mRNA profile, we obtained two groups with high and low levels
of immune infiltration. Multiple machine learning methods were conducted to explore prognostic genes associated
with immune infiltration. Simultaneously, the correlation between the expression of mark genes and immune cells
components was explored.

Results: A prognostic classifier including 5 genes (CXCL11, S1PR4, TNFRSF17, FPR1 and DHRS95) was established
and its robust efficacy for predicting overall survival was validated via 1129 OV samples. Some significant variations
of copy number on gene loci were found between two risk groups and it showed that patients with fine
chemosensitivity has lower risk score than patient with poor chemosensitivity (P = 0.013). The high and low-risk
groups showed significantly different distribution (P < 0.001) of five immune cells (Monocytes, Macrophages M1,
Macrophages M2, T cells CD4 menory and T cells CD8).

Conclusion: The present study identified five prognostic genes associated with immune infiltration of OV, which
may provide some potential clinical implications for OV treatment.
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Background
Ovarian cancer (OV), a highly malignant gynecologic
tumour, is the leading cause of cancer-related mortality
in women, and lack of specific symptoms at the early
stage. Despite aggressive frontline treated with surgery
and adjuvant chemotherapy, the overall survival rate of

5 years is still about 30% for most women diagnosed
with advanced stages III/IV disease [1–3]. Tumour
microenvironment (TME) is the primary or metastatic
niche, in which tumour cells cooperate with the host
stroma, such as various immune cells, endothelial cells,
fibroblasts and metabolites. Recently, TME is playing an
increasingly important role in the beginning and devel-
opment of OV as well as anti-tumour treatment [4]. Im-
mune system has also been reported as a critical factor
in the initiation and development of cancer. Actually,
many studies have confirmed that immune cells and
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immune-related genes (IRGs) are tempting targets for
regulating tumour progression [5, 6]. The extent of im-
mune cell infiltration is associated with clinical treat-
ments and prognostic outcomes in OV patients, finding
factors that drive infiltration will be the key to reveal
outcome heterogeneity in this cancer [7, 8]. Numerous
evidences support that OV is an immunogenic tumour
[9, 10] and immunotherapy is an efficient strategy due to
its highly targeted on the immune checkpoints [5, 11].
Besides, the prognostic assessment of immune system in
OV has already been verified by previous researches
[12–14]. Thus, it is pivotal to find out immune-related
prognostic features in the treatment of OV.
With the development of human gene sequencing

technology, high-throughput gene expression profiles
have been widely used to detect the biomarkers of hu-
man diseases, which provides a chance to explore effect-
ive indicators for guiding the diagnosis, treatment and
evaluating the prognosis of ovarian cancer [15, 16]. In
recent years, database-based bioinformatic analysis of ex-
pression profile has been widely applied to screen out
target biomarkers of diagnostic and prognostic value
[17]. For example, Li et al. performed a series of analyses
to identify four immune-related genes as biomarkers
correlated with breast cancer prognosis. Shen et al. de-
veloped a prognostic signature which could be used to
predict ovarian cancer survival [18, 19]. In addition, the
emergence of genetic biomarkers contributes to adjust-
ing treatment strategy and reducing unnecessary treat-
ments. The public databases with complete gene
expression profile and clinical information offer an op-
portunity for identifying immune-relevant prognostic
features in OV.
In this study, our aim was to establish and validate an

individualized prognostic gene signature for OV, which
would evaluate the association between immune infiltra-
tion and the prognosis of OV.

Methods
Data collection and preprocessing
In this study, gene expression profile and relevant clin-
ical information of 365 OV patients were downloaded
from The Cancer Genome Atlas (TCGA) data portal
(https://portal.gdc.cancer.gov/) and used as the research
object. The primary clinical information in this database
includes age, gender, race, smoking history, FIGO stage,
survival status and survival time. To further utilize the
large data sets of different genome libraries for verifica-
tion, the standardized expression profile of mRNA-seq
from International Cancer Genome Consortium (ICGC,
https://icgc.org) and microarray matrix transformed by
GPL96 and GPL14951 platform from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) was
acquired to conduct survival analysis as the validation

set 1 (ICGC-OV-AU), validation set 2 (GSE14764,
GSE23554 and GSE26712) [20–22] and validation set 3
(GSE140082; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi). Among them, validation set 2 combined three
independent datasets adjusted by ComBat method from
R package “sva” (version 3.38.0; https://bioconductor.
org/packages/release/bioc/html/sva.html) [23]. Accord-
ing to the clinical information of all the OV patients, the
patients with loss of survival time or less than 30 days
were deleted at the beginning of this study to eliminate
the interference of nonneoplastic factors. In the end, a
total of 1129 patients with OV were enrolled in this
study for further analysis.

Clustering based on single-sample gene set enrichment
analysis (ssGSEA)
The ssGSEA [24], an extension of Gene Set Enrichment
Analysis, calculates separate enrichment scores for each
pairing of a sample and gene set. Each ssGSEA enrich-
ment score represents the degree to which the genes in
a particular gene set are coordinately up or down-
regulated within a sample. The method was used to
quantify the activity or enrichment level of 29 immune-
related gene sets representing different immune cell
types, functions and pathways of each sample in TCGA-
OV cohort. Characterized by the ssGSEA score, R pack-
age ConsensusClusterPlus (version 1.54.0; http://www.
bioconductor.org/packages/release/bioc/html/Consensu-
sClusterPlus.html) [25] was applied to divide the samples
into two categories with different levels of immune infil-
trates. Considering the complex composition of tumour
microenvironment including stromal cells, inflammatory
cells, vascular system and extracellular matrix, R package
ESTIMATE (version 2.0.0; https://bioinformatics.mdan-
derson.org/estimate/rpackage.html) [26] was used to
evaluate the tumour purity and the number of stromal
cells and immune cells that make up the major non-
tumour components in tissues.

Differential analysis of gene expression and support
vector machine-recursive feature elimination (SVM-RFE)
To exclude genes not significantly related to immune
cells infiltration in the tumour microenvironment, an
analysis was performed via limma package (version
3.44.3; http://www.bioconductor.org/packages/release/
bioc/html/limma.html) to preserve significantly differen-
tial expression genes (DEGs) between tumour and non-
tumour components while |log2 foldchange| > 1 and
FDR < 0.05 were considered as significant. Support vec-
tor machine is a classifier that can maximize the interval
between categories. It can map the data to high dimen-
sional space and realize linear separability of the data
[27]. In this study, to get genes as the optimal feature to
distinguish two different standards of immune
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infiltration of tumour sample, SVM function in e1071
package (Version: 1.7–4; https://cran.r-project.org/web/
packages/e1071/index.html) of R was trained with a 5-
fold cross-validation method followed by establishing ac-
curacy and error [28].

Weighted gene co-expression network analysis (WGCNA)
WGCNA (version 1.69; https://cran.r-project.org/web/
packages/WGCNA/index.html) is a tool used to find out
the module of co-expression genes, and to explore the
relationship between gene network and phenotypes, as
well as the core genes in the network [29]. We combined
gene expression profiles with clinical information (over-
all survival time, overall survival status and FIGO stage)
to screen samples for the co-expression module. Meas-
urement of gene significance and module membership
was utilized to discern the gene modules which closely
connected with clinical characteristics. Ultimately, the
integrated outcome of DEGs, SVM-RFE and WGCNA
was embedded into next step analysis.

Survival analysis
To filter mRNA related to the prognosis of ovarian
cancer, univariate Cox regression analysis was per-
formed for the genes in prognosis-related modules via
the R package “survival” (version 2.41–3; https://cran.
r-project.org/web/packages/survival/index.html), and
P < 0.05 was considered statistically significant. Least
absolute shrinkage and selection operator (LASSO)
analysis (glmnet package, version 3.0–1; https://cran.r-
project.org/web/packages/glmnet/index.html) was used
to make further effort to screen out the key mRNA
affecting the prognosis of OV by adjusting the regres-
sion coefficient and avoid the risk of over-fitting. For
constructing a prognostic model, the key mRNA
screened by LASSO regression analysis was further
calculated by multivariate Cox regression analysis and
the risk score of each patient was calculated. The risk
score of each ovarian cancer sample in the prediction
model is based on the following formula: Risk score =
βgene (1) × exprgene (1) + βgene (2) × exprgene (2) +
··· + βgene(n) × exprgene(n). Among them, βgene refers
to the coefficient of each gene in the multivariate
Cox regression analysis, and exprgene represents the
expression level of each gene. The cut-off point of
risk value which is most related to survival is deter-
mined by the surv_cutpoint function in the survminer
R package (version 0.4.3; http://www.sthda.com/eng-
lish/wiki/survminer-r-package-survival-data-analysis-
and-visualization), which regarded as the standard to
separate the high- and low-risk groups in the OV
cohort.

Comparison of tumour mutation burden (TMB), DNA
damage repair (DDR) and copy number variation (CNV)
levels between the subgroups
TMB refers to the total number of mutations per mega-
byte of base sequence in the exon coding region of the
evaluated gene in a tumour sample [30], which is closely
related to the effect of immunotherapy [31, 32]. TCGA-
OV masked somatic mutation in MAF format was
downloaded and oncolot function in R package maptools
(version 1.0–2; https://cran.r-project.org/web/checks/
check_results_maptools.html) was applied to draw the
heatmap and sort out the TMB value of each sample of
high- and low-risk groups.
The failure of DDR may be an inducing factor of

tumorigenesis [33]. Meanwhile, the DDR caused by
radiotherapy and chemotherapy can also lead to the
chemoradiotherapy tolerance of tumor cells [34]. Pur-
posefully uniting inhibitor of DDR-related gene [35]
and chemotherapy drugs [36] has gradually become a
novel topic in tumor research, including ovarian can-
cer [37, 38]. The limma package was used to analysis
the different expression of 276 genes from cardinal
DDR and related pathways [39] to observe their ex-
pression pattern between high- and low-risk groups.
Simultaneously, the association between risk groups
and gene mutation of OV was more comprehensively
surveyed by comparing the MSIsensor Score (MSIS),
Fraction Genome Altered (FGA) and Aneuploidy
Score (AS).
CNV was defined as the variation of DNA fragment

between 1 KB and 3MB, which is widely distributed in
the human genome, and greatly enriches the diversity of
genetic variation [40]. To compare CNV levels between
high-risk and low-risk subtypes, masked copy number
segment of TCGA-OV project was applied to seek mu-
tated genes through Chi-square test.
Radical surgery combined with adjuvant chemotherapy

is the basic method for the treatment of ovarian cancer,
and therefore prediction of chemosensitivity of patients
will help to further optimize the clinical efficacy [41].
GSE30161 [42] contained chemotherapy information of
patients, and the difference of risk score between
chemotherapy complete response (CR) and partial re-
sponse patient (PR) was estimated via unpaired student’s
t-test.

Evaluation of immune cell infiltration
CIBERSORT algorithm (version 1.03; http://cibersort.
stanford.edu/) is a machine learning method based on
linear support vector regression (SVR) and highly robust
to noise [43]. This algorithm is superior to other
methods in terms of noise, unknown mixture content
and closely related to cell types. Thus, in our study,
CIBESORT algorithm was used to predict the
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proportion of different immune cells in TCGA-OV sam-
ples and to compare the difference between the high-
and low-risk groups.

Gene set variation analysis (GSVA) and connectivity map
(CMap)
GSVA (version 1.38.0; http://www.bioconductor.org/
packages/release/bioc/html/GSVA.html) is a nonpara-
metric and unsupervised method to evaluate the enrich-
ment of gene sets by transforming the differentially
expressed gene expression level into the change of path-
way level [44], and GSVA algorithm was used to assess
potential changes in biological functions between differ-
ent risk groups.
The CMap database is composed of drug-specific gen-

omic expression profiles, including data of 1309 human
cell lines that small biologically active molecules treated
with [45]. We transformed the gene symbol of differen-
tially expressed genes between high- and low-risk groups
into the corresponding probe via GPL96 platform as the
input, and negatively related small molecular com-
pounds or drugs were gained utilizing comparison with
gene expression profiles of reference in CMap.

Statistical analysis
The Shapiro-Wilk normality test was used to measure
the normality of the variables for comparisons of two
groups. The statistical significance of discrepancy be-
tween normally distributed variables was calculated via
unpaired Student’s t-test and the association was esti-
mated by Pearson’s correlation coefficient. Survival rates
were measured by the Kaplan-Meier method, and the
significance of disparity between survival curves judged
via the log-rank test. Survival predictive accuracy of
prognostic models was assessed based on a time-
dependent receiver operating characteristic curve (ROC)
analysis. Chi-square test was applied to evaluate the dif-
ference of CNV level between high and low-risk groups
in the genome. All statistical analyses were performed
via R software (version 3.6.2) and two-tailed P < 0.05 was
set at statistical significance.

Results
Determination of trait genes of immune infiltration for OV
A total of 1129 OV samples obtained from training set
(n = 365), validation set 1 (n = 93), validation set 2 (n =

291) and validation set 3 (n = 380) were extracted for
further analysis (Table 1). The workflow is showed in
Fig. 1. Based on the ssGSEA scores of 29 gene sets, the
heatmap of unsupervised cluster analysis clearly revealed
two opposite clusters: high and low immune infiltration
groups (Fig. 2a). Meanwhile, the analysis of ESTIMATE
package showed that there were significant differences in
immune activity, stromal cell score and tumour purity score
between two groups (Fig. 2b). High immune group had
higher immune activity and stromal cell score, while low
immune group showed higher tumor purity (Fig. 2c-f).
There are 1398 differentially expressed genes obtained via
limma package between high and low immune infiltration
groups (Fig. 3a). In a feature set consisted of 200 genes that
engender the greatest effect on classification potency, a list
contains 72 features was determined as the optimal subsets
by SVM method, and the classification accuracy reaches
0.934 (Fig. 3b, c).

Identification of the survival-related module
Based on the clinical information of patients of TCGA-
OV, the correlation analysis of module characters was
carried out to find the modules significantly related to
clinical features (Additional file 1: Figure S1 a-c). Three
modules (green-yellow, pink, and blue) were found cor-
related with the prognosis of OV and relevance between
GS and MM were analyzed displaying by scatter diagram
(Additional file 1: Figure S1 d-f). Lastly, the union of 501
genes, containing optimal subsets (72 genes) of SVM-
RFE method and 429 genes of three modules intersected
with different genes expression, were included in the
next procedure.

Construction and verification of prognostic classifier
Combined with the clinical information of TCGA-OV,
87 mRNA related to prognosis of OV were preliminarily
screened out by univariate COX regression analysis, and
top 30 mRNA sorted by P-value were displayed using
forest plots (Additional file 2: Figure S2 a). Also, 14 key
mRNA were determined significantly with prognosis by
LASSO regression analysis (Additional file 2: Figure S2
c, d). Ultimately, multivariate COX regression analysis
was performed to establish a prediction model with
CXCL11, S1PR4, TNFRSF17, FPR1 and DHRS95 as the
signature (Additional file 3: Figure S3). The formula of
risk score was shown as following: risk score = 0.22135 ×

Table 1 Summary of the four datasets contained in the study

Dataset Platform Sample size Included cohorts

Training set Illumina 365 TCGA-OV

Validation set 1 Illumina 93 ICGC-OV-AU

Validation set 2 Affymetrix Human Genome U133A Array 291 GSE14764, GSE23554, GSE26712

Validation set 3 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 380 GSE140082
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CXCL11 + 0.179351 × S1PR4 + 0.141478 × TNFRSF17 +
0.515099 × DHRS95. The cut-off value was identified as
− 0.15 by the surv_cutpoint function in the survminer R
package, and patients were divided into high-risk and
low-risk groups. In TCGA training set, KM survival
curve showed that the low-risk group had significantly
better survival than high-risk group (P < 0.01, Fig. 4a).
ROC curve demonstrated that the model had a great
prediction ability for the prognosis of ovarian cancer pa-
tients (AUC 5-year = 0.704, Fig. 5a). Besides, in order to
verify the stability of our model, the same risk scoring
formula and cut off value were applied to calculate the
survival of patients with ovarian cancer from ICGC and
GEO database. The KM curve (P < 0.01, Fig. 4b, c) and
5-year survival ROC curve (Fig. 5b, c) from the valid-
ation set 1 and validation set 2 confirmed the reliability
of our risk prognostic models. In GSE140082 (validation
set 3), since the follow-up time of all patients were less
than 5 years, we have merely conducted KM survival
analysis and the results of log-rank test (P < 0.05) to sup-
port the efficiency of our model (Fig. 4d). To develop a
quantitative method associated with clinical for predict-
ing the survival rate of patient, a nomogram was con-
structed to integrate both risk score and clinical features
(Additional file 4: Figure S4).

The difference of TMB, DDR and CNV levels between
high- and low-risk groups
In the cohort of OV patients bring into the construction
of survival model, 265 samples were detected for gene
mutation (Fig. 6a). In brief, these mutations are sorted
according to different classification categories, among
which missense mutations account for the majority, and
C > T is the most frequent single nucleotide variation
(SNV) in ovarian cancer (Fig. 6b). In addition, we com-
pared the TMB between the high- and low-risk groups.
Although no significant difference was found between
the two groups (P = 0.091, Fig. 6c), further study based
on large samples to examine the association between the
progression of OV and TMB is still needed. Through the
analysis of limma package, it was found that DDR-
related genes had no significantly different expression
between high- and low-risk groups, and the range of
logFC was − 0.25-0.14. Heatmap was conducted to show
the expression of genes with the top quarter variance of
TCGA-OV cohort (Additional file 5: Figure S5 a). Mean-
while, there were no significantly different distribution
of three OV mutation-related parameters (MSIS, FGA
and AS) between high- and low-risk groups
(Additional file 5: Figure S5 b-d). By chi-square test, it
was found that the location of genome CNV level

Fig. 1 Flow chart of the study
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difference between high- and low-risk groups. Among
them, copy number deletion mainly occurs on the fourth
chromosome, while copy number duplication was inves-
tigated on the 12 chromosomes (Fig. 7). The risk score
of 55 patients recorded in response to chemotherapy
was summarized, and it was observed that the risk score
of CR patient was significantly lower than PR patient
(Fig. 6d).

The difference of fraction of immune cells between high
and low-risk groups
The distribution of immune cells in 365 OV samples
was evaluated by CIBERSORT package. There are sig-
nificant differences in the composition of immune cells
in OV patients with different risk groups (Fig. 8a). With

the increase of risk score, the proportion of Monocyte
cells and M2 macrophages increases gradually with the
decrease of CD8 T cells and M1 macrophages. Cluster
analysis showed that the proportion of immune cells in
TCGA-OV patients was divided into four categories
(Fig. 8b). Simultaneously, fraction of M1 macrophages, T
cells CD8, plasma cells were highly correlated with the
expression of mark genes (Fig. 9a-e), especially CXCL11,
S1PR4 and TNFRSF17 (Fig. 9f-h).

Biological mechanism and potential small molecule drugs
for deteriorating ovarian cancer
GSVA was used to analyze the difference between the
two risk groups in biological phenotypes. There was a
significant difference in the level of interferon (IFN)

Fig. 2 Identification of two immune infiltration subtypes in ovarian cancer (OV) cohort from The Cancer Genome Atlas (TCGA). a The consensus
score matrix of all samples when k = 2. b Comparison immune profile of high and low immune infiltration groups for TCGA-OV cohort. c-f The
distribution of tumor purity, stromal score, immune score and ESTIMATE score in high and low immune infiltration groups. a was generated by
Consensusclusterplus (version 1.54.0); b was generated by ComplexHeatmap (version 2.6.2); c-f were generated by ggplot2 (version 3.2.1)

Yan et al. BMC Cancer         (2020) 20:1205 Page 6 of 17



response between the two groups, which may be an im-
portant factor lead to poor prognosis in the high-risk
group (Additional file 6: Figure S6). To further find out
the effective drug molecules for the advanced treatment
of ovarian cancer, the different genes expression between
high- and low-risk groups were put into the quick query
of CMap website and matching drug pathway molecules
with the highest degree of compliance were found. Ac-
cording to the score size and P-value, we sort the top 50
comprehensive descending list of the drug molecules
with the most significant negative correlation (Add-
itional file 7: Figure S7). Notably, adrenergic receptor an-
tagonists and cyclooxygenase inhibitors are the most
frequent drug mechanisms.

Discussion
The prognosis of patients with OV is poor and have
great individual differences [46–48], so it is necessary to
understand the complicated pathogenesis of OV from
the perspective of genomics, to explore the molecular
mechanism of prognosis differences among OV sub-
types. Tumour microenvironment not only creates vari-
ous favorable conditions for tumour growth, invasion
and metastasis [49–51], but also plays a vital role in in-
ducing drug resistance of tumour cells [52, 53]. There-
fore, it is vital to investigate the microenvironment of
OV and the influence of related factors on the biological
process of OV. Meanwhile, many evidences show that

biomarkers, especially genes, help boost diagnosis and
treatment of cancer [54, 55]. In this study, we used
ssGSEA to estimate the enrichment degree of 29 gene
sets in each sample of TCGA-OV, including infiltration
degree of immune cells and activity of immune-related
function, and the most valuable characteristic variables
of immune infiltration were worked out utilizing SVM-
RFE. Then LASSO-Cox analysis was conducted to iden-
tify the five most valuable genes related to immune infil-
tration that significantly influenced prognosis. The
stability and efficiency of the prediction model are veri-
fied in independent datasets from ICGC and GEO. The
survival model established in this study spans multiple
platforms. Although the reliability of the model is infer-
ior to clinical model research based on single batch and
large sample, our research method also has some advan-
tages. According to the analysis of the experimental data
conducted by Eukirchen GM [56], it found that the sen-
sitivity of the data information obtained by microarray
technology is high while the test specificity is relatively
low, leading to the high true negative and false positive
rate. Compared with microarray, high-throughput DNA
sequencing has higher test specificity but lower test sen-
sitivity, therefore it has higher true positive and false
negative rate. So it is clear that the two technology inte-
grated have great potential to obtain results more reli-
able [57]. The prediction efficiency of our model can be
verified through gene expression matrixes of multiple

Fig. 3 Differentially expressed genes and feature selection of genes between high and low immune infiltration groups. a Volcano plot of
differentially expressed genes: the red dots represent significantly up-regulated genes and green dots represent significantly down-regulated
genes between high and low immune infiltration groups. b, c The point highlighted indicates the lowest error rate, the highest accuracy rate and
the 72 corresponding genes at both points are the best signature selected by support vector machine-recursive feature elimination (SVM-RFE)
algorithm. a was generated by ggplot2 (version 3.2.1); b-c were generated by E1071 package (version 1.7–4)
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platforms, which confirms the reliability and feasibility
of our research.
Among five gene markers bring into targets of the clas-

sifier, CXCL11 is located in human chromosome 4q21.2
belonging to the ELRCXC chemokine family [58, 59],
whose receptors are CXCR3 and CXCR7 [60]. Cancer
cells can produce CXCL11 by autocrine or release
CXCL11 via regulating tumour stromal cells in the micro-
environment [61]. Dehydrogenase/family member 9
(DHRS9) is a member of the short chain dehydrogenase/
reductase family [62]. Studies have shown that DHRS9 is
involved in the biosynthesis of all trans-retinoic acid and
exerts an anti-tumour role by inhibiting the proliferation
of tumour cells, including acute promyelocytic leukemia,
squamous cell carcinoma, neurocytoma and hepatocellu-
lar carcinoma [63–65]. The formyl peptide receptor 1
(FPR1), a G-protein-coupled receptor expressed by bone
marrow-derived cells [66], participates in activation of

immune cell induced by N-formyl peptide [67, 68]. S1PRs
is the ligand of lipid second messenger S1P, exerts an im-
portant role in the physiological process of cell prolifera-
tion, differentiation, migration and immune response [69].
Among them, S1PR4 triggers the activation and
polarization of immune cells, rather than the migration of
immune cells, affecting the adaptive immunity [70]. The
tumour necrosis factor receptor superfamily 17 (TNFR
SF17) is regarded as a member of TNFRSF, preferentially
expressed in mature B lymphocytes and has a positive ef-
fect on the development of B cells and autoimmune re-
sponse [71]. Researches from Chae SC suggested that
TNFRSF17 may be a candidate gene associated with the
pathogenesis of colon cancer and haplotype of TNFRSF17
polymorphism appears to be a marker of susceptibility to
colon cancer [72]. To sum up, the five gene markers are
rarely discussed in the previous study of ovarian cancer
and should be put more emphasis on.

Fig. 4 The distribution of Kaplan-Meier survival curves for overall survival (OS) in the training and validation set. a Kaplan-Meier survival curves for
OS in the training set. b-d Kaplan-Meier survival curves for OS in the validation set. a-d were generated by survival package (version 2.41-3).
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TMB is an important index to reflect the somatic mu-
tation accumulation, and it was viewed as a biomarker
to select patients who benefit from immune-checkpoint
treatment [73]. In the checkmate 032 clinical trial, 401
patients with end stage lung cancer were divided into
three groups according to the level of TMB, and the re-
sults showed that patients with high TMB patients are
superior to other patients both in treatment efficiency
and median survival [74]. In our research, no significant

difference was found in the level of TMB between high
and low-risk patients. Therefore, more research should
be focused on the screening of OV patients who might
benefit from immunotherapy via TMB level. In addition,
previous confirmed that aneuploidy is the dynamic of
tumour development, and tumour recurrence is associ-
ated with the distribution and effect of protooncogene
occurring somatic copy number variation [75, 76].
Through chi-square test, we gained a group of genes

Fig. 5 The distribution of time-dependent receiver operator characteristic (ROC) curves for overall survival in the training and validation set. a
ROC curve of training set with area under the curve (AUC) at 5 year. c ROC curve of validation set with AUC at 5 year. a-c were generated by
survivalROC (version 1.0.3)
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Fig. 6 (See legend on next page.)
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(See figure on previous page.)
Fig. 6 a Landscape of mutation profile in TCGA-OV samples. Mutation information of each gene in each sample was shown in the waterfall plot,
in which various colors with annotations at the bottom represented the different mutation types. The barplot above the legend exhibited the
mutation burden. b Summary of single nucleotide variants (SNV) with statistical calculations. c Tumor mutation burden (TMB) level in high-risk
and low-risk groups. d The difference of risk score of TCGA-OV patient with complete and partial response for chemotherapy. a-b were generated
by Maptools (version 1.0-2); c-d were generated by ggplot2 (version 3.2.1)

Fig. 7 Circus plots shows the difference of copy number variations (CNV) level among low-risk, high-risk patient of TCGA-OV and normal group.
The graph reflects location of variant genes on chromosome, Red genes represent exerting amplification of copy number (> 0.1) while blue
genes mean deletion (< -0.1), and black genes reflect -0.1~0.1 CNV level between high- and low-risk group. Figure was generated by OmicCircos
(version 1.28.0)
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with significant CNV difference between high and low-
risk groups. Furthermore, compared with low-risk group,
high-risk group contained deletion of copy number on
the 4th chromosome and duplication of copy number on
the 12th chromosome.
Tumour-associated macrophages (TAMs) are macro-

phages infiltrated in tumour tissue, which mainly comes
from circulating blood monocytes released from bone
marrow [77]. M1 TAMs, characterized by high expression
of IL-12 and low expression of IL-10, can present tumour-
specific antigen and inhibit tumour development [78]. On

the contrary, M2 TAMs, with high expression of IL-10
and low expression of IL-12, is a vital subtype which can
promote tumor growth and chemoresistance [79]. Many
studies have revealed that there is a significant correlation
between the polarization of TAMs and prognosis of ovar-
ian cancer [80, 81]. Reinartz et al. indicated that high-
density CD163 +M2 TAMs was associated with advanced
and poor prognosis of epithelial ovarian cancer [82].
Zhang et al. demonstrated that the density of TAMs in ad-
vanced ovarian cancer increased while the ratio of M1/M2
decreased significantly, and the survival period of TAMs

Fig. 8 The landscape of immune infiltration in the TCGA cohort. a The Violin plot shows the significant difference (P < 0.001) of immune cell
fractions between high-risk and low-risk subgroup. b The interaction between 22 immune cells in TCGA-OV samples. The size of circle indicated
the effect of each immune cell on the prognosis, and P value was operated by Log-rank test. a was generated by ggplot2 (version 3.2.1); b was
generated by Igraph (version 1.2.4.2)
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patients with high M1/M2 was prolonged [83]. The pri-
mary CD8+ T cells were stimulated by the antigen-
specific antigen of cancer cells presented by APC, and dif-
ferentiated into cytotoxic CD8+ T cells with specific kill-
ing effect on tumour under the stimulation of multiple
cytokines [84]. Eiichi Sato performed a detailed immuno-
histochemical evaluation of TILs in epithelial ovarian can-
cer and found that intraepithelial CD8 TIL was the only

subtype associated with improved survival [85]. Jon
Røikjaer Henriksena discovered that among all pa-
tients diagnosed with high-grade serous carcinoma
(HGSC) in Denmark, the median OS was 37 and 25
months in patients with high and low-level of CD8 T
cells (P = 0.0008). In multivariate analysis, high quan-
tity of CD8 T cells was an independent marker for fa-
vorable OS (HR = 0.72, P = 0.020) [86].

Fig. 9 a-e Correlation between expression of 5 genes bring into classifier (CXCL11, S1PR4, TNFRSF 17, FPR1 and DHRS95) and immune cells in
samples from TCGA-OV cohort (P < 0.05). f-h Dot plot of Pearson correlation analysis reflecting the relevance betweenthe expression of CXCL11
and Macrophages M1, S1PR4 and T cells CD8, TNFRSF17 and Plasma cells. a-e were generated by Ggstatsplot (version 0.6.5); f-h were generated
by R base graphics
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Besides, GSVA analysis displays the evidence that the
poor prognosis of high-risk OV patient is associated with
low-level interferon response. Interferon participates in
multiple life activities, such as antiviral infection, cell
proliferation and immune response [87]. Also, IFN plays
a crucial role in tumor immunity. On the one hand, IFN
exerts an anti-tumour effect, suppresses tumour prolifer-
ation, and perform immune elimination by activating
cytotoxic lymphocytes (CTLs), dendritic cells (DCS) and
other immune cells [88]; On the other hand, IFN-γ
upregulates PD-L1 and cause programmed death of im-
mune cells, which enables tumour cells to escape the de-
structive effect of the immune system, resulting in anti-
tumour treatment tolerance [89]. Therefore, it is neces-
sary to ensure that patients can benefit from immuno-
therapy while assuring the stable antitumor effect of
IFN.
The value of immunotherapy in OV is still in the re-

search stage. Food and Drug Administration approved
monoclonal antibodies against programmed death-1
(PD-1) for the treatment of solid tumors including OV
with high microsatellite instability and mismatch repair
defects [90]. Preliminary studies have shown that the
current immunotherapy has limited efficacy in OV,
which may be due to the heterogeneity of the tumor, the
lack of antigen targets and expression of human lymph-
oid antigen, the high expression of immunosuppressive
molecules and the low infiltration of immune cells in the
ovarian tumor microenvironment [91–93]. Immune
checkpoint blockade (ICB) therapy is still the most
promising and most popular immunotherapy for OV
[94]. However, the objective response rate of ICB is not
optimistic, which may be changed by combination with
other tumor therapies [95]. Further investigation to ex-
plore the molecular markers which can predict the effi-
cacy of immunotherapy in OV to screen the appropriate
immunotherapy population is needed.
Our research has presented some advantages. Firstly,

the samples of OV patient comes from multiple data-
bases, and the sample size is large enough which can
better ensure the stable efficacy of the model. Secondly,
the procedure of screening and analysis is clear and or-
derly via various machine learning methods, and finally
obtain genes with feature of immune infiltration and
value of survival prediction to ensure that the final
screened genes for modeling have a strong biological
background and can guide clinical treatment, especially
the sensitivity of patients to chemotherapy. However,
there are also some limitations. First of all, although we
are committed to elucidate the correlation between
genes for modeling and immune infiltration, there is no
relevant dataset about immunotherapy of ovarian cancer
to verify the efficacy of our model and to screen OV pa-
tient who may benefit from immunotherapy. More

importantly, we lack our own cohort of OV patient co-
hort to further prove the function of our model.

Conclusions
In conclusion, we focused on prognostic genes associ-
ated with immune infiltration, and picked five potential
targets verified via 1129 OV samples which may provide
some clues and landscape for clinical treatment of OV.
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Additional file 1: Figure S1. Identification of survival-related modules
associated with the clinical information of ovarian cancer by weighted
gene co-expression network analysis (WGCNA). (a) Analysis of the scale-
free fit index and the mean connectivity for various soft-thresholding
powers. (b) Clustering dendrogram of all differentially expressed genes,
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plot of gene significance for OS status vs. module membership in the
green-yellow module. (e) A scatterplot of gene significance for Stage vs.
module membership in the blue module. (f) A scatter plot of gene signifi-
cance for OS status vs. module membership in the pink module. (d)-(f)
showing a highly significant correlation between gene significance and
module membership in modules. (a)-(f) were generated by WGCNA (ver-
sion 1.69).

Additional file 2: Figure S2. Constructing the prognostic gene
classifier by the univariate cox regression and the Lasso regression
analysis. (a) The top 30 most significant prognostic genes of the training
set calculated by univariate cox regression. (b), (c) Determination of the
number of factors through the Least absolute shrinkage and selection
operator analysis (LASSO) analysis. (a) was generated by survival package
(version 2.41–3); (b)-(c) were generated by glmnet package (version 3.0–
1).

Additional file 3: Figure S3. Forest plot illustrating the multivariate
regression analysis results of each gene in five mRNA risk signature. The
figure was generated by survminer package (version 0.4.3).

Additional file 4: Figure S4. Survival nomogram of TCGA-OV samples.
An individual patient’s value is located on each variable axis, and a line is
drawn upward to determine the number of points received for each vari-
able value. The sum of these numbers is located on the Total Points axis,
and a line is drawn downward to the survival axes to determine the likeli-
hood of 5-year survival. The figure was generated by Regression Model-
ing Strategies (version 6.0–1).

Additional file 5: Figure S5. Visualization of expression of DDR-related
genes and aspects of mutation status between high- and low-risk groups.
(a) Heatmap showing that the expression levels of DDR-related genes
were comparatively symmetrical between two subgroups. (b)-(d) The vio-
lin plots present the distribution of three features of mutation between
two subgroups. (a) was generated by Pheatmap (version 1.0.12); (b)-(d)
were generated by ggplot2 (version 3.2.1).

Additional file 6: Figure S6. Heatmap of each compound of
Connectivity Map (CMap) that shares the targeted mechanism of action.
The figure was generated by ComplexHeatmap (version 2.6.2).

Additional file 7: Figure S7. Differences in pathway activities estimated
per TCGA-OV sample via gene set variation analysis (GSVA) between
high-risk and low-risk subgroup. The figure was generated by ggplot2
(version 3.2.1).

Abbreviations
OV: Ovarian cancer; TME: Tumour microenvironment; IRGs: Immune-related
genes; TCGA: The Cancer Genome Atlas; ICGC: International Cancer Genome
Consortium; GEO: Gene Expression Omnibus; ssGSEA: Single-sample Gene

Yan et al. BMC Cancer         (2020) 20:1205 Page 14 of 17

https://doi.org/10.1186/s12885-020-07695-3
https://doi.org/10.1186/s12885-020-07695-3


Set Enrichment Analysis; SVM-RFE: Support vector machine-recursive feature
elimination; DEGs: Differential expression genes; WGCNA: Weighted gene co-
expression network analysis; LASSO: Least absolute shrinkage and selection
operator analysis; OS: Over survival; TMB: Tumour mutation burden;
DDR: DNA damage repair; CNV: Copy number variation; GSVA: Gene set
variation analysis; CMap: Connectivity map; ROC: Receiver operating
characteristic curve; DHRS9: Dehydrogenase/family member 9; FPR1: The
formyl peptide receptor 1; TNFRSF17: The tumour necrosis factor receptor
superfamily 17; TAMs: Tumour-associated macrophages

Acknowledgements
Not applicable.

Authors’ contributions
All authors made contributions to the study concept and design, as well as
the interpretation of the data. SY, JF and FF acquired and analyzed the data;
YC, YX and SZ helped to draft the manuscript; SY and FF wrote the
manuscript; XZ and FF proofread and revised the manuscript. FF was
responsible for the integrity of the work as a whole. All authors read and
approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (Nos. 81603147, funder by XZ, proofread and revised the manuscript).

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request. The data analyzed in this
study are openly available and can be found here: The Cancer Genome Atlas
(TCGA, https://tcga-data.nci.nih.gov/tcga/), International Cancer Genome
Consortium (ICGC, https://dcc.icgc.org/releases/current/Projects/OV-AU) and
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/
query/).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interests.

Author details
1Department of Medical Oncology, the First Affiliated Hospital of Guangxi
Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region,
China. 2Laboratory of Experimental Cardiology, Department of Cardiology,
University Medical Center Utrecht, Utrecht 3584, CX, The Netherlands.
3Department of Obstetrics and Gynecology, The First People’s Hospital of
Foshan, 81 Lingnan North Avenue, Foshan 528000, Guangdong, China.
4Department of Pharmacology, College of Pharmacy, Shenzhen Technology
University, Shenzhen 518118, Guangdong, China.

Received: 12 July 2020 Accepted: 26 November 2020

References
1. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY.

Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;
70(1):7–30.

4. Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian
cancer: premise and promise. Biochim Biophys Acta Rev Cancer. 1873;
2020(2):188361.

5. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer
microenvironment and their relevance in cancer immunotherapy. Nat Rev
Immunol. 2017;17(9):559–72.

6. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced
cancer: crosstalk between tumours, immune cells and microorganisms. Nat
Rev Cancer. 2013;13(11):759–71.

7. Ovarian Tumor Tissue Analysis C, Goode EL, Block MS, Kalli KR, Vierkant RA,
Chen W, et al. Dose-response association of CD8+ tumor-infiltrating
lymphocytes and survival time in high-grade serous ovarian cancer. JAMA
Oncol. 2017;3(12):e173290.

8. Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol. 2017;28(Suppl 8):
viii1–7.

9. Goodell V, Salazar LG, Urban N, Drescher CW, Gray H, Swensen RE, et al.
Antibody immunity to the p53 oncogenic protein is a prognostic indicator
in ovarian cancer. J Clin Oncol. 2006;24(5):762–8.

10. Kandalaft LE, Powell DJ Jr, Singh N, Coukos G. Immunotherapy for ovarian
cancer: what's next? J Clin Oncol. 2011;29(7):925–33.

11. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a
common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):
450–61.

12. Farkkila A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B,
et al. Immunogenomic profiling determines responses to combined PARP
and PD-1 inhibition in ovarian cancer. Nat Commun. 2020;11(1):1459.

13. Borella F, Ghisoni E, Giannone G, Cosma S, Benedetto C, Valabrega G, et al.
Immune checkpoint inhibitors in epithelial ovarian cancer: an overview on
efficacy and future perspectives. Diagnostics (Basel). 2020;10(3):146.

14. Alcaraz-Sanabria A, Baliu-Pique M, Saiz-Ladera C, Rojas K, Manzano A,
Marquina G, et al. Genomic signatures of immune activation predict
outcome in advanced stages of ovarian Cancer and basal-like breast
tumors. Front Oncol. 2019;9:1486.

15. Liu Y, Jing R, Xu J, Liu K, Xue J, Wen Z, et al. Comparative analysis of
oncogenes identified by microarray and RNA-sequencing as biomarkers for
clinical prognosis. Biomark Med. 2015;9(11):1067–78.

16. Servant N, Romejon J, Gestraud P, La Rosa P, Lucotte G, Lair S, et al.
Bioinformatics for precision medicine in oncology: principles and
application to the SHIVA clinical trial. Front Genet. 2014;5:152.

17. Yin L, Cai Z, Zhu B, Xu C. Identification of key pathways and genes in the
dynamic progression of HCC based on WGCNA. Genes (Basel). 2018;9(2):92.

18. Li J, Liu C, Chen Y, Gao C, Wang M, Ma X, et al. Tumor characterization in
breast Cancer identifies immune-relevant gene signatures associated with
prognosis. Front Genet. 2019;10:1119.

19. Shen S, Wang G, Zhang R, Zhao Y, Yu H, Wei Y, et al. Development and
validation of an immune gene-set based prognostic signature in ovarian
cancer. EBioMedicine. 2019;40:318–26.

20. Vathipadiekal V, Wang V, Wei W, Waldron L, Drapkin R, Gillette M, et al.
Creation of a human Secretome: a novel composite library of human
secreted proteins: validation using ovarian Cancer gene expression data and
a virtual Secretome Array. Clin Cancer Res. 2015;21(21):4960–9.

21. Marchion DC, Cottrill HM, Xiong Y, Chen N, Bicaku E, Fulp WJ, et al. BAD
phosphorylation determines ovarian cancer chemosensitivity and patient
survival. Clin Cancer Res. 2011;17(19):6356–66.

22. Denkert C, Budczies J, Darb-Esfahani S, Gyorffy B, Sehouli J, Konsgen D, et al.
A prognostic gene expression index in ovarian cancer - validation across
different independent data sets. J Pathol. 2009;218(2):273–80.

23. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28(6):882–3.

24. Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample
scoring of molecular phenotypes. BMC Bioinformatics. 2018;19(1):404.

25. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.

26. Chakraborty H, Hossain A. R package to estimate intracluster correlation
coefficient with confidence interval for binary data. Comput Methods Prog
Biomed. 2018;155:85–92.

27. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
support vector machine (SVM) learning in Cancer genomics. Cancer
Genomics Proteomics. 2018;15(1):41–51.

28. Wang Q, Liu X. Screening of feature genes in distinguishing different types
of breast cancer using support vector machine. Onco Targets Ther. 2015;8:
2311–7.

29. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559.

30. Allgauer M, Budczies J, Christopoulos P, Endris V, Lier A, Rempel E, et al.
Implementing tumor mutational burden (TMB) analysis in routine

Yan et al. BMC Cancer         (2020) 20:1205 Page 15 of 17

https://tcga-data.nci.nih.gov/tcga/
https://dcc.icgc.org/releases/current/Projects/OV-AU
https://www.ncbi.nlm.nih.gov/geo/query/
https://www.ncbi.nlm.nih.gov/geo/query/


diagnostics-a primer for molecular pathologists and clinicians. Transl Lung
Cancer Res. 2018;7(6):703–15.

31. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.
Development of tumor mutation burden as an immunotherapy biomarker:
utility for the oncology clinic. Ann Oncol. 2019;30(1):44–56.

32. High TMB. Predicts immunotherapy benefit. Cancer Discovery. 2018;8(6):668.
33. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with

targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.
34. Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-

mutant cancers. Nat Med. 2013;19(11):1381–8.
35. Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE, et al.

Advances in using PARP inhibitors to treat cancer. BMC Med. 2012;10:25.
36. Mittica G, Ghisoni E, Giannone G, Genta S, Aglietta M, Sapino A, et al. PARP

inhibitors in ovarian Cancer. Recent Pat Anticancer Drug Discov. 2018;13(4):
392–410.

37. Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM,
et al. Olaparib tablets as maintenance therapy in patients with platinum-
sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-
Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet
Oncol. 2017;18(9):1274–84.

38. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al.
Olaparib maintenance therapy in platinum-sensitive relapsed ovarian
cancer. N Engl J Med. 2012;366(15):1382–92.

39. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack
AD, et al. Genomic and molecular landscape of DNA damage repair
deficiency across the Cancer genome atlas. Cell Rep. 2018;23(1):239–54 e6.

40. Haraksingh RR, Abyzov A, Urban AE. Comprehensive performance
comparison of high-resolution array platforms for genome-wide copy
number variation (CNV) analysis in humans. BMC Genomics. 2017;18(1):321.

41. Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann
Oncol. 2017;28(suppl_8):viii61–viii5.

42. Ferriss JS, Kim Y, Duska L, Birrer M, Levine DA, Moskaluk C, et al. Multi-gene
expression predictors of single drug responses to adjuvant chemotherapy in
ovarian carcinoma: predicting platinum resistance. PLoS One. 2012;7(2):e30550.

43. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods.
2015;12(5):453–7.

44. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

45. Liu H, Zhou Q, Wei W, Qi B, Zeng F, Bao N, et al. The potential drug for
treatment in pancreatic adenocarcinoma: a bioinformatical study based on
distinct drug databases. Chin Med. 2020;15:26.

46. Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol.
2016;13(4):255–61.

47. Scaletta G, Plotti F, Luvero D, Capriglione S, Montera R, Miranda A, et al. The role
of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian
cancer: a systematic review. Expert Rev Anticancer Ther. 2017;17(9):827–39.

48. Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian Cancer: a heterogeneous
disease. Pathobiology. 2018;85(1–2):41–9.

49. Gasser S, Lim LHK, Cheung FSG. The role of the tumour microenvironment
in immunotherapy. Endocr Relat Cancer. 2017;24(12):T283–T95.

50. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment
after radiotherapy: mechanisms of resistance and recurrence. Nat Rev
Cancer. 2015;15(7):409–25.

51. Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour
microenvironment. Int J Cancer. 2019;145(10):2611–8.

52. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of
cancer-acquired drug resistance and immune evasion. Nat Rev Cancer.
2019;19(7):405–14.

53. Yousefzadeh Y, Hallaj S, Baghi Moornani M, Asghary A, Azizi G, Hojjat-
Farsangi M, et al. Tumor associated macrophages in the molecular
pathogenesis of ovarian cancer. Int Immunopharmacol. 2020;84:106471.

54. Lu Y, Yang G, Xiao Y, Zhang T, Su F, Chang R, et al. Upregulated cyclins may
be novel genes for triple-negative breast cancer based on bioinformatic
analysis. Breast Cancer. 2020;27(5):903.

55. Shang H, Liu ZP. Network-based prioritization of cancer genes by
integrative ranks from multi-omics data. Comput Biol Med. 2020;119:103692.

56. Euskirchen GM, Rozowsky JS, Wei CL, Lee WH, Zhang ZD, Hartman S, et al.
Mapping of transcription factor binding regions in mammalian cells by
ChIP: comparison of array- and sequencing-based technologies. Genome
Res. 2007;17(6):898–909.

57. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, et al.
Genome-wide profiles of STAT1 DNA association using chromatin
immunoprecipitation and massively parallel sequencing. Nat Methods. 2007;
4(8):651–7.

58. Nazari A, Ahmadi Z, Hassanshahi G, Abbasifard M, Taghipour Z, Falahati-
Pour SK, et al. Effective treatments for bladder Cancer affecting CXCL9/
CXCL10/CXCL11/CXCR3 Axis: a review. Oman Med J. 2020;35(2):e103.

59. Chen X, Chen R, Jin R, Huang Z. The role of CXCL chemokine family in the
development and progression of gastric cancer. Int J Clin Exp Pathol. 2020;
13(3):484–92.

60. Puchert M, Obst J, Koch C, Zieger K, Engele J. CXCL11 promotes tumor
progression by the biased use of the chemokine receptors CXCR3 and
CXCR7. Cytokine. 2020;125:154809.

61. Benhadjeba S, Edjekouane L, Sauve K, Carmona E, Tremblay A. Feedback
control of the CXCR7/CXCL11 chemokine axis by estrogen receptor alpha in
ovarian cancer. Mol Oncol. 2018;12(10):1689–705.

62. Shimomura H, Sasahira T, Nakashima C, Shimomura-Kurihara M, Kirita T.
Downregulation of DHRS9 is associated with poor prognosis in oral
squamous cell carcinoma. Pathology. 2018;50(6):642–7.

63. Kropotova ES, Zinovieva OL, Zyryanova AF, Dybovaya VI, Prasolov VS,
Beresten SF, et al. Altered expression of multiple genes involved in retinoic
acid biosynthesis in human colorectal cancer. Pathol Oncol Res. 2014;20(3):
707–17.

64. Kuznetsova ES, Zinovieva OL, Oparina NY, Prokofjeva MM, Spirin PV,
Favorskaya IA, et al. Abnormal expression of genes that regulate retinoid
metabolism and signaling in non-small-cell lung cancer. Mol Biol (Mosk).
2016;50(2):255–65.

65. Kim EW, De Leon A, Jiang Z, Radu RA, Martineau AR, Chan ED, et al. Vitamin
A metabolism by dendritic cells triggers an antimicrobial response against
Mycobacterium tuberculosis. mSphere. 2019;4(3):e00327.

66. D'Amico R, Fusco R, Cordaro M, Siracusa R, Peritore AF, Gugliandolo E, et al.
Modulation of NLRP3 inflammasome through formyl peptide receptor 1
(Fpr-1) pathway as a new therapeutic target in bronchiolitis obliterans
syndrome. Int J Mol Sci. 2020;21(6):2144.

67. Minopoli M, Polo A, Ragone C, Ingangi V, Ciliberto G, Pessi A, et al.
Structure-function relationship of an Urokinase receptor-derived peptide
which inhibits the Formyl peptide receptor type 1 activity. Sci Rep. 2019;
9(1):12169.

68. Cao G, Zhang Z. FPR1 mediates the tumorigenicity of human cervical
cancer cells. Cancer Manag Res. 2018;10:5855–65.

69. Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate
in cardiovascular physiology and pathology. Pharmacol Res. 2020;156:
104793.

70. Olesch C, Ringel C, Brune B, Weigert A. Beyond immune cell migration: the
emerging role of the Sphingosine-1-phosphate receptor S1PR4 as a
modulator of innate immune cell activation. Mediat Inflamm. 2017;2017:
6059203.

71. Lee L, Bounds D, Paterson J, Herledan G, Sully K, Seestaller-Wehr LM, et al.
Evaluation of B cell maturation antigen as a target for antibody drug
conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;
174(6):911–22.

72. Chae SC, Yu JI, Uhm TB, Lee SY, Kang DB, Lee JK, et al. The haplotypes of
TNFRSF17 polymorphisms are associated with colon cancer in a Korean
population. Int J Color Dis. 2012;27(6):701–7.

73. Shim JH, Kim HS, Cha H, Kim S, Kim TM, Anagnostou V, et al. HLA-corrected
tumor mutation burden and homologous recombination deficiency for the
prediction of response to PD-(L)1 blockade in advanced non-small-cell lung
cancer patients. Ann Oncol. 2020;31(7):902.

74. Ready NE, Ott PA, Hellmann MD, Zugazagoitia J, Hann CL, de Braud F, et al.
Nivolumab Monotherapy and Nivolumab plus Ipilimumab in recurrent small
cell lung Cancer: results from the CheckMate 032 randomized cohort. J
Thorac Oncol. 2020;15(3):426–35.

75. Ahmed W, Malik MFA, Saeed M, Haq F. Copy number profiling of Oncotype
DX genes reveals association with survival of breast cancer patients. Mol
Biol Rep. 2018;45(6):2185–92.

76. Fatima A, Tariq F, Malik MFA, Qasim M, Haq F. Copy number profiling of
MammaPrint genes reveals association with the prognosis of breast Cancer
patients. J Breast Cancer. 2017;20(3):246–53.

77. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively
activated (M2) macrophages promote tumour growth and invasiveness in
hepatocellular carcinoma. J Hepatol. 2015;62(3):607–16.

Yan et al. BMC Cancer         (2020) 20:1205 Page 16 of 17



78. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated
macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;
14(7):399–416.

79. Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, et al. Targeting of M2-like
tumor-associated macrophages with a melittin-based pro-apoptotic
peptide. J Immunother Cancer. 2019;7(1):147.

80. Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, et al. Tumor-associated
macrophages (TAMs): a critical activator in ovarian Cancer metastasis. Onco
Targets Ther. 2019;12:8687–99.

81. Maccio A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C. Role of
M1-polarized tumor-associated macrophages in the prognosis of advanced
ovarian cancer patients. Sci Rep. 2020;10(1):6096.

82. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W,
et al. Mixed-polarization phenotype of ascites-associated macrophages in
human ovarian carcinoma: correlation of CD163 expression, cytokine levels
and early relapse. Int J Cancer. 2014;134(1):32–42.

83. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of
tumor-associated macrophages is associated with extended survival in
ovarian cancer patients. J Ovarian Res. 2014;7:19.

84. Overgaard NH, Jung JW, Steptoe RJ, Wells JW. CD4+/CD8+ double-
positive T cells: more than just a developmental stage? J Leukoc Biol.
2015;97(1):31–8.

85. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial
CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell
ratio are associated with favorable prognosis in ovarian cancer. Proc Natl
Acad Sci U S A. 2005;102(51):18538–43.

86. Henriksen JR, Donskov F, Waldstrom M, Jakobsen A, Hjortkjaer M,
Petersen CB, et al. Favorable prognostic impact of natural killer cells
and T cells in high-grade serous ovarian carcinoma. Acta Oncol. 2020;
59(6):652–9.

87. Negishi H, Taniguchi T, Yanai H. The interferon (IFN) class of cytokines and
the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb
Perspect Biol. 2018;10(11):a028423.

88. Schmid H, Dobrovolny HM. An approximate solution of the interferon-
dependent viral kinetics model of influenza. J Theor Biol. 2020;110266:498.

89. Yang PM, Hsieh YY, Du JL, Yen SC, Hung CF. Sequential interferon beta-
Cisplatin treatment enhances the surface exposure of calreticulin in cancer
cells via an interferon regulatory factor 1-dependent manner. Biomolecules.
2020;10(4):643.

90. Asaoka Y, Ijichi H, Koike K. PD-1 blockade in tumors with mismatch-repair
deficiency. N Engl J Med. 2015;373(20):1979.

91. Galon J, Bruni D. Approaches to treat immune hot, altered and cold
tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;
18(3):197–218.

92. Cai DL, Jin LP. Immune cell population in ovarian tumor microenvironment.
J Cancer. 2017;8(15):2915–23.

93. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (TIME) for effective
therapy. Nat Med. 2018;24(5):541–50.

94. Gaillard SL, Secord AA, Monk B. The role of immune checkpoint inhibition in
the treatment of ovarian cancer. Gynecol Oncol Res Pract. 2016;3:11.

95. Zamarin D, Jazaeri AA. Leveraging immunotherapy for the treatment of
gynecologic cancers in the era of precision medicine. Gynecol Oncol. 2016;
141(1):86–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Yan et al. BMC Cancer         (2020) 20:1205 Page 17 of 17


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data collection and preprocessing
	Clustering based on single-sample gene set enrichment analysis (ssGSEA)
	Differential analysis of gene expression and support vector machine-recursive feature elimination (SVM-RFE)
	Weighted gene co-expression network analysis (WGCNA)
	Survival analysis
	Comparison of tumour mutation burden (TMB), DNA damage repair (DDR) and copy number variation (CNV) levels between the subgroups
	Evaluation of immune cell infiltration
	Gene set variation analysis (GSVA) and connectivity map (CMap)
	Statistical analysis

	Results
	Determination of trait genes of immune infiltration for OV
	Identification of the survival-related module
	Construction and verification of prognostic classifier
	The difference of TMB, DDR and CNV levels between high- and low-risk groups
	The difference of fraction of immune cells between high and low-risk groups
	Biological mechanism and potential small molecule drugs for deteriorating ovarian cancer

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

