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Abstract

Many <y-herpesviruses encode candidate oncogenes including homologues of host bcl-2 and
cyclin proteins (v-bel-2, v-cyclin), but the physiologic roles of these genes during infection are
not known. We show for the first time in any virus system the physiologic role of v-bcl-2. A
vy-herpesvirus v-bcl-2 was essential for efficient ex vivo reactivation from latent infection, and
for both persistent replication and virulence during chronic infection of immunocompromised
(interferon [[FN]-y~/7) mice. The v-cyclin was also critical for the same stages in pathogenesis.
Strikingly, while the v-bcl-2 and v-cyclin were important for chronic infection, these genes were
not essential for viral replication in cell culture, viral replication during acute infection in vivo,
establishment of latent infection, or virulence during acute infection. We conclude that v-bcl-2
and v-cyclin have important roles during latent and persistent y-herpesvirus infection and that
herpesviruses encode genes with specific roles during chronic infection and disease, but not
acute infection and disease. As y-herpesviruses primarily cause human disease during chronic

infection, these chronic disease genes may be important targets for therapeutic intervention.
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Introduction

Regulation of both cell cycle progression and apoptosis is
critical for many aspects of virus infection, particularly for
oncogenic DNA viruses such as adenoviruses, polyomavi-
ruses, papillomaviruses, and <y-herpesviruses. Adenovi-
ruses, polyomaviruses, and papillomaviruses target the
functions of pRb and p53 to regulate cellular functions
such as cell cycle and apoptosis with significant conse-
quences including oncogenesis (1—4). Oncogenic y-herpes-
viruses manipulate the same aspects of cell function via
expression of multiple genes including v-bel-2 and v-cyclin.
While these genes clearly regulate important aspects of
cellular physiology, the physiologic role of these genes
during infection is unknown.

v-bcl-2 genes are encoded by oncogenic y-herpesviruses
including the human vy-herpesviruses EBV and Kaposi’s
sarcoma herpesvirus (KSHV),* the primate y-herpesvirus
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herpesvirus saimiri (HVS), and the closely related murine
virus y-herpesvirus 68 (YHV68) (5-10). Adenovirus and
African swine fever virus also encode anti-apoptotic v-bcl-2
proteins (11-16). The in vivo role of v-bcd-2 genes has
never been defined. However, the capacity of these pro-
teins to inhibit apoptosis is clear since transient expression
of y-herpesvirus v-bcl-2 proteins is anti-apoptotic for cells
in culture (6-10). An EBV v-bcl-2 mutant has been con-
structed, but had no detectable phenotype in immortaliza-
tion of primary human B cells (17). This lack of phenotype
suggests that the v-bcl-2 gene may play a role in infection
that can only be detected by in vivo experimentation.
Consistent with a role for regulation of cell cycle pro-
gression in <y-herpesvirus infection and disease, KSHYV,
HVS, and YHV68 encode a v-cyclin, and EBV regulates the
expression of host cyclin molecules (5, 18-25). To deter-
mine the in vivo role for v-cyclin we characterized YHV68
v-cyclin mutants. We found that the YHV68 v-cyclin is onco-

pesvirus 68; HVS, herpesvirus saimiri; KSHV, Kaposi’s sarcoma herpesvi-
rus; MEF, mouse embryonic fibroblast; RAG, recombination activating
gene; wt, wild-type.
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genic when expressed in transgenic mice (26), and is re-
quired for efficient ex vivo reactivation from viral latency,
but not for viral replication in wild type mice during acute
infection (18, 27). The role of the v-cyclin in persistent rep-
lication and chronic disease has not been assessed.

In this study we use loss of function mutagenesis to
evaluate the role of the v-bcl-2 gene in YHV68 infection in
vivo. Because regulation of cell cycle and apoptosis is inti-
mately intertwined during infection with papillomaviruses,
polyomaviruses, and adenoviruses, we compared proper-
ties of v-bcl-2 and v-cyclin mutants. We found that neither
of these genes has an important role during acute infec-
tion, but that both are important for ex vivo reactivation
from latency, persistent replication, and disease during
chronic infection.

Materials and Methods

Viruses and Tissue Culture.  yHV68 clone WUMS (ATCC
VR 1465) was passaged, grown, and titered in NIH 3T12 cells or
BALB/c or C57Bl/6 murine embryonic fibroblasts (MEFs) as de-
scribed (18, 28). Viral stocks were generated from NIH 3T12
cells infected at multiplicity of infection (MOI) = 0.05 and har-
vested at 50% cytopathic eftect (CPE) (18).

Generation of Mutant yHV68 by Homologous Recombination.
The parental genomic subclone for the targeting plasmids con-
tains the 3,723 bp BamHI/BsrGI fragment of YHV68 from ge-
nomic coordinates 101,654 to 105,377 in Litmus 38 (pL3700;
references 5 and 18). The pL3700-v-bcl-2.Stop1 mutant target-
ing plasmid was generated using PCR and primers that excise 70
bp (from 103,641 to 103,711) and insert the 9 bp, 5’ CTCGAG-
TAG 3’', which includes an Xhol site (underlined) and an in
frame stop codon (bold). For pL3700-v-bcl-2.Stop2, the primers
insert 7 bp, 5" AGCTAGC 3', which includes an Nhel site (un-
derlined) and a stop codon (bold) at genomic coordinate 103,450.
The v-bc-2 mutant viruses were generated by transfection of NIH
3T12 cells with v-cyclin.LacZ virus genomic DNA (1.5 pg) and
pL3700-v-bcl-2 mutant plasmid (1.5 pg) (18, 29). Recombinant
virus was purified by white plaque morphology after staining
with X-Gal (5-bromo-4-chloro-3-indole-f3-D-galactoside) (18).
The v-cycin marker rescue virus (v-cyclin.MR) has been de-
scribed previously (18). Plaque purified (three rounds) viral stocks
were characterized by Southern blot and Western blot analyses
(18, 29).

Mice, Infections, and Organ Harvests. Recombination —activat-
ing gene (RAG)-17/" (The Jackson Laboratory; 002096) and
IFN-y~/~ mice (The Jackson Laboratory; 002287) on a C57Bl/6
background (B6) were bred and maintained at Washington Uni-
versity School of Medicine in accordance with all federal and
university policies. C57B1/6] (B6) mice were purchased
from The Jackson Laboratory. <y interferon receptor-deficient
(IFNYR /") mice on a 129 background were obtained from
Michel Aguet, Swiss Institute for Experimental Cancer Research,
Lausanne, Switzerland (30). Unless otherwise stated, mice were
age and sex matched, used between 7 to 10 wk of age, and in-
fected with 10, 103, or 10° PFU of yHV68 by intraperitoneal in-
jection in 0.5 ml of complete DMEM (18, 29). CD-1 outbred
lactating mice with pups (12 d old) were obtained from Charles
River Laboratories, and the pups were infected intracerebrally
with virus diluted in 10 wl of complete DMEM. Organs for titer
were frozen at —80°C in 1 ml DMEM before plaque assay (18,

29). Peritoneal cells were harvested by peritoneal lavage with 10
ml DMEM (31). To assess inflammatory disease in the great elas-
tic arteries, the heart and attached aortic base were harvested at
the time of death or sacrifice from IFNyR ™/~ mice and analyzed
for incidence and severity of arteritic lesions (32, 33).

Quantitation of Cells Harboring YHV 68 Genome. The fre-
quency of cells harboring the YHV68 genome was determined by
a limiting dilution nested PCR assay that amplifies YHV68 gene
50 sequences with single copy sensitivity (31, 34). Briefly, perito-
neal cells and splenocytes were frozen in 10% DMSO at —80°C,
thawed, counted, resuspended in isotonic buffer, and serially di-
luted into 96-well PCR plates. Uninfected NIH 3T12 cells were
added so that each well contained 10* cells. Cells were then lysed
in proteinase K and nested PCR performed (31, 34). 10 PCR re-
actions were analyzed for each cell dilution, with six dilutions per
sample per experiment. Control reactions in each experiment in-
cluded uninfected cells alone (6 reactions/plate) or cells with 10,
1, or 0.1 copies of plasmid DNA (pBam HIN) containing target
sequence (six reactions/plate each). There were no false-positive
PCR reactions in assays reported here, and all assays demon-
strated approximately one-copy sensitivity for plasmid DNA,
with reactions containing 10, 1, or 0.1 copies of plasmid DNA
positive in 89, 29, and 3% of all reactions.

Ex Vivo Reactivation from Latency. The frequency of cells re-
activating from latency ex vivo was determined using a limiting
dilution reactivation assay (28, 34). Briefly, peritoneal cells and
splenocytes were harvested 16, 28, or 42 d after infection, and
plated in serial twofold dilution (starting at 4 X 10* peritoneal
cells and 103 splenocytes per well) onto MEF monolayers in 96-
well plates. Wells were scored microscopically 21 d later for viral
CPE. When CPE was difficult to discern at high cell numbers,
wells were replated onto fresh MEFs and CPE assessed. 24 wells
were plated per dilution and 12 dilutions were plated per sample.
Preformed virus in tissues was detected by plating parallel cell
samples that had been subjected to mechanical disruption. Me-
chanical disruption does not inactivate virus but kills >99% of
cells, and thus samples treated in this way detect preformed virus
rather than virus reactivating from latency (28, 31, 34).

Statistical Methods. ~All data was analyzed using GraphPad
Prism software (GraphPad Software). Titer data were statistically
analyzed with the nonparametric, Mann-Whitney ¢ test. Fre-
quencies were obtained from the cell number at which 63% of
the wells scored positive for either reactivating virus or the pres-
ence of viral genome based on Poisson distribution. Data were
subjected to nonlinear regression analysis to obtain single-cell fre-
quency for each limiting dilution analysis. The frequencies of re-
activation and genome-positive cells were statistically analyzed by
paired ¢ test. Alterations in the incidence of arteritis were com-
pared using X-square test and Fisher’s exact test (which gave
comparable results).

Results

Generation of Viruses Containing Mutations in the yHV68
v-bcl-2 Gene. To determine the role of v-bcl-2 in viral in-
fection, we constructed four YHV68 v-bcl-2 mutants. The
YHV68 v-bcl-2 ORF (M11 original designation) spans 513
bp located between the v-cyclin gene (ORF72) and ORF73
(Fig. 1 A). Of the four recognized bcl-2 homology do-
mains (BH domains; BH1-BH4) that are conserved be-
tween different bcl-2 family members, the predicted
YHV68-v-bcl-2 protein has a recognizable BH1-like do-
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main, but lacks clear BH2, BH3, or BH4 domains (5-7). amino acids of the predicted 171 amino acid v-bcl-2 (Fig. 1
The YHV68 v-bcl-2 also shares with bcl-2 and v-bcl-2  B). v-bcl-2.Stop2 contains a mutation that inserts a stop

proteins a hydrophobic COOH-terminal domain (5-10). codon and frame shift mutation after 10 amino acids of the
Presuming the functional importance of conserved regions  v-bcl-2 (Fig. 1 B). We generated two independent clones
of the protein, we constructed two YHV68 mutants with of each construct, indicated as A and B. The genomic

stop codons and frame shift mutations in the v-bcl-2 ORF  structure of v-bcl-2.StoplA and 1B, and v-bcl-2.Stop2A
(v-bcl-2.Stop1, v-bcl-2.Stop2) in which neither the BH1 and 2B were confirmed by Southern blot analyses (Fig. 1
domain nor the COOH-terminal hydrophobic domain  C). Western blot analysis showed that v-bcl-2.Stop viruses
should be translated (Fig. 1). The Stopl mutation deletes  express v-cyclin normally in lytically infected 3T12 fibro-
the predicted BH1 domain and inserts a stop codon after 76 blasts (Fig. 1 D).
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Figure 1. Genomic structure of v-bcl-2.Stop mutant viruses. (A) Schematic representation of the region of the YHV68 genome encoding the v-bcl-2
gene (M11 ORF; genomic coordinates 103,418-103,930) (reference 5), the structure of v-bcl-2 mutant viruses and the v-bcl-2 region Southern blot probe
(genomic coordinates 101,654—105,377) (reference 5). The shaded region within ORF72 in the v-cyclin.LacZ virus represents a LacZ cassette insertion
between 102,704 bp and 103,179 bp (reference 18). The crosshatched region in the M11 ORF in v-cyclin.LacZ signifies the part of the M11 ORF de-
leted in v-bcl-2.Stopl. (B) Schematic representation of the v-bcl-2 ORF showing the position of the conserved BH1 domain and the sites of Stop1 and
Stop2 mutations in the v-bcl-2 ORF. Shaded regions are the portions of the ORF predicted to be translated. (C) Southern analysis of wt YHV68,
v-bcl-2.Stop1 and Stop2 mutants, v-cyclin.LacZ, and v-cyclin.MR viruses. Purified genomic viral DNA (1 pg) from the indicated viruses was digested
with Xhol and BamHI (lanes 1-5) or Nhel and BamHI (lanes 6—10) and Southern analysis performed with the v- bc-2 region probe (A; references 18 and
29). Expected fragment sizes for Xhol and BamHI digests: lane 1/wt YHV68, 5.2 kb; lane 2/v-cyclin.LacZ mutant, 3.8 kb and 1.1 kb; lane 3/v-bcl-2.Stop1A
mutant, 3.3 and 1.9 kb; lane 4/v-bcl-2.Stop1B mutant, 3.3 and 1.9 kb; lane 5/v-cyclin.MR, 5.2 kb. Expected fragment sizes for Nhel and BamHI di-
gests: lane 6/wt YHV68, 5.2 kb; lane 7/v-cyclin-LacZ mutant, 3.8 kb and 1.5 kb; lane 8/v-bcl-2.Stop2A mutant, 3.5 and 1.7 kb; lane 9/v-bcl-2.Stop2B
mutant, 3.5 and 1.7 kb; lane 10/v-cyclin.MR; 5.2 kb. (D) Immunoblot analysis of wt YHV68, v-bcl-2.Stop1 and Stop2 mutants, v-cyclin.LacZ, or
v-cyclin.MR virus infected NIH 3T12 cell lysates for v-cyclin and B-actin protein expression.
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As v-bcl-2.Stop viruses were derived from the YHV68
mutant v-cyclin.LacZ, we compared the mutant viruses to
both wild-type YHV68 (wt YHV68) and v-cyclin. MR, a
virus in which the v-cyclin.LacZ mutation has been res-
cued using wt viral sequences (18). To definitively map the
phenotypes we report to the v-bcl-2 gene, we character-
ized two independently generated viral mutants containing
each of two different mutations in the v-bcl-2 gene. The
use of two independent isolates to map a phenotype to a
herpesvirus gene is an accepted approach (35-37).

No Role for v-bcl-2 in Acute Replication. We first tested
whether the YHV68 v-bcl-2 was required for viral replica-
tion in cultured cells or in acutely infected wt B6 or immu-
nocompromised IFN-y~/~ mice on the B6 background. As
predicted from studies of an EBV v-bd-2 mutant (17),
YHV68 v-bcl-2.Stop1 and v-bcl-2.Stop2 grew normally in
cultured cells under both single step and multi-step growth
conditions (Fig. 2, A and B). v-bc-2 mutants also replicated
as well as wt YHV68 in the spleen and liver of wt B6 mice
4 or 9 d after infection as measured by plaque assay (Fig. 2
C, left panel). Similarly, growth of v-bcl-2 mutants during
acute infection of IFN-y™/~ was indistinguishable from
growth of wt YHV68 (Fig. 2 C, right panel). These data
show that v-bcl-2 is not essential for replication during acute
infection in either wt B6 or immunocompromised IFN-
v~/~ mice. We have previously demonstrated that the
v-cyclin 1s not required for replication during acute infec-
tion of wild type mice (18). We confirmed this finding and
additionally showed that the v-cyclin, similar to the v-bcl-2,
is not essential for replication in [FN-y~/~ mice (Fig. 2 C,
right panel). While a 1.8-fold difference in titer between
the wt YHV68 and v-cyclin. MR at day 9 in B6 mice, and a
2.4-told difference between v-cyclin. MR and v-cyclin.

A Single Step Growth, MOI=5.0

Stop at day 4 in IFN—y~/~ mice reached statistical differ-
ence for spleen, the biological significance of such small
differences in titer are unclear and do not influence our
conclusions regarding v-bcl-2 mutants.

v-bcl-2 Is Important for Ex Vivo Reactivation from Latency,
but Not Establishment of Latency. Given the lack of a role
tor v-bcl-2 during acute infection, we turned our attention
to parameters of chronic infection. We examined the role
of v-bcl-2 in establishment of latency (stable carriage of the
viral genome in a cell without active replication) and ex
vivo reactivation from latency. By 16 d after infection, in-
fectious YHV68 is cleared from the spleen and peritoneal
cells of wt B6 mice and latency is established (18, 28, 29,
32, 34). The YHV68 v-bcl-2 is not required for establish-
ment of latency since splenocytes (data not shown) and
peritoneal cells harvested 16 or 42 d after infection of B6
mice with wt YHV68, v-cyclin.MR,, or v-bcl-2.Stop mu-
tants contained equivalent frequencies of viral genome
bearing cells (Fig. 3 A). Despite normal establishment of
latency and absence of productive infection as shown by
the disrupted samples in Fig. 3 B, v-bcl-2.Stop mutants re-
activated 4-5-fold less efficiently than either wt YHV68 or
v-cyclin.MR virus in the peritoneal exudate cells (PECs)
but not in the spleen (data not shown) both day 16 and day
42 after infection (Fig. 3 B). This viral phenotype is similar
to v-cyclin mutants which also fail to efficiently reactivate
from latency (18, 27), suggesting that regulation of both
apoptosis and cell cycle is key to ex vivo reactivation from
the latent state.

The YHV68 v-bcl-2 and v-cyclin Are Necessary for Persistent
Replication of Virus in Immunocompromised Hosts.  Persis-
tent replication of vy-herpesviruses likely contributes to
both disease in immunocompromised hosts and spread of

B Multi-Step Growth, MOI=0.05
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A Establishment of latency- C57Bl/6 mice

Figure 3. v-bd-2 mutants es-
tablish latency normally but fail
to reactivate efficiently during ex

B
<€ 1001 Day 16 100 Day 42 vivo culture. B6 mice were in-
_E < g0- - wt YHVE8 (n=3) 80 fected with 10° PFU of virus and
z % - v-bek2.5top1 (n=3) peritoneal cells were harvested at
2 = 60 ~¥-v-bek2.5top2 (n=2) [ ¢o] T+ 16 or 42 d after infection for
» 8 -@- v-cyclin.MR (n=2) . £ the f f
2.5 40 40 quantitation of the frequency o
; > latently infected cells (A) and the
s 20 20 t;requelncy of cells reactivating
atency (B). Data represent
0 . . 0- . . rom latency ( p
10! 102 103 104 105 10! 102 10? 104 105 results of two to five separate ex-
Number of cells per well periments using two indepen-
dent mutant isolates (mean =*
B Ex vivo reactivation from latency- C57Bl/6 mice SEM), with each experiment
100 a0 containing cells pooled from five
Emzang,gi':ﬂpted Day 42 mice. The difference in fre-

=i v-bel-2.Stop1 (n=3)
=/~ v-bel-2.Stop1,disrupted|

== v-bel-2.Stop2 (n=4)
=/ v-bcl-2.Stop2,disrupted|
-@- v-cyclin.MR (n=5)

=O= v-cyclin.MR,disrupted

% wells positive for
CPE

04 10

801

quency of genome positive cells
at day 16 and day 42 were not sta-

60
40+

20+

0-
5
Number of cells per well 10

tistically significant between the
wt YHV68 versus v-bcl-2.Stopl
and v-cyclin.MR versus v-bcl-
2.Stop2. At 16 d (A and B, left
panels), the decreased frequen-
cies of ex vivo reactivation of
both v-bcl-2.Stop mutants com-
pared with wt yHV68 and

1

v-cyclin.MR were statistically significant as follows: v-bcl-2.Stop1 versus wt YHV68, P = 0.006; v-bcl-2.Stop2 versus wt YHV68, P = 0.005; v-bcl-
2.Stop1 versus v-cyclin. MR, P = 0.013; v-bcl-2.Stop2 versus v-cyclin. MR, P = 0.010. At 42 d (A and B, right panels), the decreased frequencies of ex
vivo reactivation of both v-bcl-2.Stop mutants compared with wt YHV68 and v-cyclin. MR were statistically significant as follows: v-bcl-2.Stop1
versus wt YHV68, P = 0.004; v-bcl-2.Stop2 versus wt YHV68, P = 0.005; v-bcl-2.Stop1 versus v-cyclin. MR, P = 0.006; v-bcl-2.Stop2 versus

v-cyclin. MR, P = 0.009.

the viruses between hosts. Consistent with prior reports
(18, 29), we did not detect persistent replication of either
wt YHV68 or v-bcl-2.Stop viruses in the spleen (data not
shown) or peritoneal cells of normal mice 16 and 42 d after
infection (Fig. 3 B, open symbols). However, wt YHV68
persistently replicates in peritoneal cells of IFN-y~/~ mice
for at least 6 wk after infection (unpublished data), provid-
ing a model for determining whether the v-bc/-2 has a role
in persistent replication. One scenario is that persistent rep-
lication is due to reactivation from latency. Because
YHV68 v-cyclin mutants share with v-bcl-2 mutants (above)
the phenotype of decreased reactivation from latency de-
spite normal establishment of latency (18), we analyzed
v-bcl-2 and v-cyclin mutants for their capacity to persistently
replicate in IFN-y~/~ mice.

Consistent with findings in immunocompetent B6 mice
(Fig. 3), v-bcl-2.Stop1 and v-bcl-2.Stop2 showed 4—5-fold
decreased frequency of reactivation from peritoneal cells of
[FN-y~/~ mice compared with wt YHV68 and v-cyclin. MR
virus (Fig. 4, left panels). This decrease in ex vivo reactiva-
tion was not due to a decrease in the number of cells carry-
ing the viral genome because PECs from IFN-y~™/~ mice
infected with v-cyclin. MR, v-bcl-2.Stop, or v-cyclin.Stop
mutant contained comparable frequency of genome posi-
tive cells (Fig. 4 D). The v-cyclin is also required for efficient
ex vivo reactivation from latency in cells from [FN-y~/~
mice (Fig. 4, A—C, left panels).

Interestingly, neither v-bcl-2.Stop nor v-cyclin.Stop
mutants showed significant persistent replication in IFN-
Y/~ mice (Fig. 4, A—C, right panels). Persistent replica-

935 Gangappa et al.

tion was detected for both wt YHV68 and control virus
v-cyclin.MR. These results demonstrated the requirement
for both v-bcl-2 and v-cyclin genes for persistent replication
in immunocompromised hosts. This is in striking contrast
to the lack of a role for these genes in acute replication in
either wt or IFN-y™/~ mice (Fig. 2). This demonstrates
that different viral genes are required for acute replication
and persistent replication, strongly arguing that acute and
persistent y-herpesvirus replication are genetically distinct
processes.

Requirement for v-bcl-2 and v-cyclin for Lethal Chronic Dis-
ease but Not Lethal Acute Disease. The data presented so
far argues for a specific role of v-bcl-2 and v-cyclin in chronic
but not acute infection. If this distinction is physiologically
important, these genes should be required for virulence in
models of chronic disease but not for virulence during
acute infection. Chronically infected IFN-y™/~ and
[FNYR ™/~ mice develop lethal persistent infection and se-
vere large vessel vasculitis (32). The vasculitis is due to per-
sistent replication in smooth muscle cells of the immuno-
privileged media of the great elastic arteries (33). Consistent
with the data above demonstrating a critical role for v-cyclin
and v-bcl-2 in persistent replication in [EN-y~/~ mice, v-bd-2
mutant and v-cycin mutant viruses killed IFNyYR ™/~ mice
less efficiently than wt virus during chronic infection (Fig.
5 A). Evaluation of pathology of arteritic lesions revealed
significant change in incidence of lesions (v-cyclin.MR
[14/19 = 74%)] versus v-bcl-2.Stop [10/35 = 28%], P =
0.0002; v-cyclin.MR versus v-cyclin.Stop [7/20 = 35%)],
P = 0.001) but not in the severity of aortic lesions between
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Figure 4. v-bd-2 and v-cydin
are critical for persistent replica-
tion of yYHV68 in IFN-y~/~
mice. IFN-y™/~ mice were in-
fected with 10° PFU of virus and
peritoneal cells were harvested at
16, 28, or 42 d after infection for
quantitation of frequency of cells
reactivating virus (A—C, left pan-
els), amount of persistent virus
(A-C, right panels), and fre-
quency of latently infected cells
(D). Data represent results of two
to three experiments (mean *
SEM), with each experiment
containing cells pooled from five
mice. Since at day 42 time point,
no significant difference be-
tween v-cyclin MR and wt
YHV68 was observed, only v-cy-
clin.MR was checked for day 16
and day 28 time points along
with two independent isolates of
v-bcl-2.Stop1 and v-cyclin.Stop.
For day 42 experiments, v-bcl-2
mutant infection included two
experiments with v-bcl-2.Stop1
and one experiment with v-bcl-
2.Stop2. Similarly, v-cydin mu-
tant infection included two ex-
periments with v-cyclin.Stop and
one experiment with v-cy-
clin.LacZ at day 42 time point.
The decreased frequencies of ex
vivo reactivation and persistent
productive replication of both
v-bel-2 mutant and v-cyclin mu-
tant compared with wt yYHV68
and v-cyclin.MR were statistically
significant as follows: day 16 ex
vivo reactivation, v-bcl-2.Stopl
versus v-cyclin MR, P = 0.007;
v-cyclin.Stop  versus  v-cy-
clin.MR, P = 0.003; for day 16
persistent productive replication,
v-bcl-2.Stopl  versus  v-cy-
cdinMR, P = 0.014; v-cy-
clin.Stop versus v-cyclin. MR,
P = 0.011, for day 28 ex vivo re-
activation, v-bcl-2.Stopl versus
v-cyclin MR, P = 0.0009, v-cy-
clin.Stop versus v-cyclin. MR,
P = 0.0001; for day 28 persistent
productive replication, v-bcl-
2.Stopl versus v-cyclin.MR,
P = 0.0326, v-cyclin.Stop versus
v-cyclin.MR, P = 0.028, and for
day 42 ex vivo reactivation, v-bcl-2

mutant versus wt YHV68, P = 0.0008, v-bcl-2 mutant versus v-cyclin. MR, P = 0.0003, v-cyclin mutant versus wt YHV68, P = 0.0001, v-cyclin mutant ver-
sus v-cyclin. MR, P = 0.0001; for day 42 persistent productive replication, v-bcl-2 mutant versus wt YHV68, P = 0.027, v-bc-2 mutant versus v-cy-
clin.MR, P = 0.008, v-cycin mutant versus wt YHV68, P = 0.032, v-cyclin mutant versus v-cyclin.MR, P = 0.011. The difference in frequency of genome
positive cells at day 16 and day 42 were not statistically significant between the v-cyclin.MR versus v-bcl-2.Stop1 and v-cyclin.MR versus v-cyclin.Stop.

the v-cyclin.MR,, v-bcl-2 mutant, and the v-cyclin mutant
virus infected mice (data not shown).

We noted that the phenotype of v-bcl-2 and v-cyclin
deficient viruses during chronic infection of IFN-y~/~ was
in contrast to the lack of a phenotype for these viruses in
growth during acute infection of normal and IFN-y~/~

phenotypes of IFN-y~/~
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mice (Fig. 2 C). We considered the hypothesis that data on
acute infection using IFN-y~
on chronic infection from IFNYR ™/~ mice. However, the
mice and [FNyR ™/~ are similar
using a number of different routes of infection and doses of
wt YHV68 (32, 38). To determine if decreased virulence of

is not comparable to data
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v-bcl-2 and v-cyclin mutant viruses was specific to chronic
disease, we tested mutant viruses in two additional models
of virulence during acute infection. The virulence of wt
YHV68 and v-bcl-2.Stopl was comparable in RAG-17"/~
mice infected with 10, 10°, or 10° PFU (Fig. 5 B). We pre-
viously showed that v-cyclin mutant YHV68 is not attenu-
ated in this same model (18). YHV68 also causes acute
lethal meningitis when administered intracerebrally into
weanling mice (39). The virulence of v-cyclin and v-bcl-2
mutants in this lethal meningitis model was indistinguish-
able from that of wt YHV68 (Fig. 5, C and D). Thus, the
lack of virulence of v-bcl-2 and v-cyclin mutant viruses dur-
ing chronic disease was not seen in two different models of
acute disease, further supporting our conclusion that v-bcl-2
and v-cyclin are viral genes with a physiologically important
and specific role during chronic infection.

Discussion

We show here for the first time that a y-herpesvirus
v-bcl-2, as previously shown for a v-cyclin, is necessary for
efficient ex vivo reactivation from latency. The impor-
tance of both anti-apoptotic and cell cycle regulatory pro-
teins in ex vivo reactivation from latency suggests that the
reactivation process requires cell cycle progression and
triggers host or cellular apoptotic pathways that serve to
prevent reactivation unless the virus counters with anti-
apoptotic molecules.
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tistical difference between the
indicated groups.

Of special importance for understanding how herpesvi-
ruses cause disease, we demonstrate for the first time that
herpesviruses have genes (v-bcl-2 and v-cyclin) that are im-
portant for persistent replication and chronic disease in an
immunocompromised host, but not acute replication and
acute disease. This identifies persistent replication as a pro-
cess that 1s genetically distinct from replication during acute
infection, and shows that genes important for persistent
replication are key virulence determinants.

v-bcl-2 Is Required for Efficient Ex Vivo Reactivation from
Latency. YHV68 establishes latency in a number of cells
types including macrophages, dendritic cells, and B cells
(28, 31, 40, 41). We found that establishment of latency
does not require v-bcl-2. In this respect, v-bcl-2 is similar
to other YHV68 genes we have analyzed including the
v-cyclin and M1 (18, 29). However, the v-bcl-2 mutation
resulted in inefficient ex vivo reactivation of virus from la-
tently infected cells. In this respect the v-bel-2 gene is simi-
lar to wv-cyclin, but distinct from the M1 locus since
mutations in the M1 locus enhance the efficiency of ex
vivo reactivation (18, 29). Thus, YHV68 contains genes
that both enhance and inhibit ex vivo reactivation, sug-
gesting that the balance between latency and ex vivo reac-
tivation is under tight regulation by multiple viral genes.
The importance of v-bcl-2 for ex vivo reactivation from la-
tency and persistent replication is consistent with our prior
demonstration that the v-bcl-2 gene is actively transcribed
in latently infected tissues (42). It is possible that additional



phenotypes of v-bcl-2 mutants may be identified using
different route of infection.

Why are both v-bcl-2 and v-cyclin important for efficient
ex vivo reactivation from latency? We speculate that la-
tently infected cells are in a resting G, state, and that the
process of ex vivo reactivation requires the v-cyclin for in-
duction of cell cycle progression. In this scenario, the v-bcl-2
would prevent apoptosis induced either by expression of vi-
ral genes critical for ex vivo reactivation or by proapoptotic
host genes that come into play during ex vivo reactivation.
It is interesting that the KSHV v-cyclin can induce apopto-
sis in cells when overexpressed, and that this is blocked by
coexpression of the KSHV v-bcl-2 (43). Similarly, the
YHV68 v-cyclin induces cell cycle progression in transgenic
thymocytes and is oncogenic, despite causing increased
apoptosis (26). Thus, the v-bcl-2 may be needed to prevent
an apoptotic response caused by v-cyclin expression.

It is also possible that the v-bcl-2 prevents apoptosis in-
duced by host proteins. For example, the YHV68 and HVS
v-bcl-2 can block both Fas and TNF-a mediated apoptosis
when over-expressed (6, 44), and the EBV v-bcl-2 can in-
hibit granzyme-mediated apoptosis (45). This latter is par-
ticularly significant since deficiency of perforin (which is
key for induction of apoptosis by host granzymes) results in
increased number of latently infected cells (unpublished
data). It will be important to determine the precise host and
viral pathways for apoptosis induction that are inhibited by
v-bcl-2 expression from the viral genome, as opposed to
overexpression in cultured cells. It is possible that the
v-bcl-2 is critical for blocking apoptosis induced by both
host and viral proteins. Identification of apoptotic pathways
inhibited by v-bcl-2 may lead to therapies for y-herpesvi-
rus associated diseases, as enhancement of such pathways,
for example by ablating v-bcl-2 function, may prevent viral
reactivation or inhibit persistent replication.

Different Genetic Requirements for Acute and Persistent Repli-
cation In Vivo. The demonstration that both the v-bd-2
and the v-cyclin are critical for persistent replication in an
immunocompromised host, but not for acute infection,
identifies persistent infection as a genetically distinct phase
of herpesvirus infection in vivo. Thus, y-herpesvirus infec-
tion in vivo has the following experimentally distinguish-
able components: acute replication, establishment of la-
tency, maintenance of latency, persistent replication, and
reactivation from latency. The presence of conserved genes
with a specialized function during persistent replication
rather than replication during acute infection suggests that
persistent replication is a physiologically important compo-
nent of herpesvirus infection.

It is likely that persistent replication contributes to spread
of the virus within the population. In addition, it has been
suggested that persistent replication may contribute to tum-
origenesis by y-herpesviruses (46). It is therefore possible
that genes of the virus that are necessary for persistent repli-
cation will also contribute to tumorigenesis even if they are
not independently oncogenic. This hypothesis predicts that
induction of tumors by y-herpesviruses could be prevented
by targeting the function of genes essential for persistent

replication, even when the genes have no role in replica-
tion in tissue culture, replication during acute infection, or
detectable transforming activity. It is important to note that
there is no direct evidence to date that persistent replication
occurs in normal hosts. However, intermittent reactivation
does occur in normal hosts, and considerable evidence
shows that T cells recognizing lytic YHV68 antigens are
continuously stimulated during latency, suggesting that
lytic viral gene expression, and perhaps persistent replica-
tion at a level undetectable by current assays, does occur in
normal hosts (47-53).

It is interesting that two genes that are important for effi-
cient reactivation ex vivo (v-cyclin and v-bcl-2) are also im-
portant for persistent replication in an immunocompro-
mised host. This strongly supports the hypothesis that
persistent virus is derived from reactivation events rather
than continued passage of infectious virus from one lyti-
cally infected cell to the next. In this model, persistent virus
would derive from reactivation events with expansion of
the reactivation-derived virus limited by components of
the immune system. One such host factor is IFN-y, which
controls latency, persistence, and chronic disease due to in-
fection with both the y-herpesvirus YHV68 (54; unpub-
lished data) and the y-herpesvirus murine cytomegalovirus
(32, 38, 55). It is possible that effective control of chronic
v-herpesvirus infection would best be accomplished by si-
multaneous blockade of the function of genes critical for
reactivation and persistent replication and enhancement of
immune functions such as IFN-y that are critical for con-
trolling reactivation from latency and persistence.
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