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� Abstract
Flow cytometry (FCM) is a fluorescence-based single-cell experimental technology that
is routinely applied in biomedical research for identifying cellular biomarkers of nor-
mal physiological responses and abnormal disease states. While many computational
methods have been developed that focus on identifying cell populations in individual
FCM samples, very few have addressed how the identified cell populations can be
matched across samples for comparative analysis. This article presents FlowMap-FR, a
novel method for cell population mapping across FCM samples. FlowMap-FR is based
on the Friedman–Rafsky nonparametric test statistic (FR statistic), which quantifies the
equivalence of multivariate distributions. As applied to FCM data by FlowMap-FR,
the FR statistic objectively quantifies the similarity between cell populations based on
the shapes, sizes, and positions of fluorescence data distributions in the multidimen-
sional feature space. To test and evaluate the performance of FlowMap-FR, we simu-
lated the kinds of biological and technical sample variations that are commonly
observed in FCM data. The results show that FlowMap-FR is able to effectively identify
equivalent cell populations between samples under scenarios of proportion differences
and modest position shifts. As a statistical test, FlowMap-FR can be used to determine
whether the expression of a cellular marker is statistically different between two cell
populations, suggesting candidates for new cellular phenotypes by providing an objec-
tive statistical measure. In addition, FlowMap-FR can indicate situations in which inap-
propriate splitting or merging of cell populations has occurred during gating
procedures. We compared the FR statistic with the symmetric version of Kullback–
Leibler divergence measure used in a previous population matching method with both
simulated and real data. The FR statistic outperforms the symmetric version of
KL-distance in distinguishing equivalent from nonequivalent cell populations.
FlowMap-FR was also employed as a distance metric to match cell populations
delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data
set. An F-measure of 0.88 was obtained, indicating high precision and recall of the FR-
based population matching results. FlowMap-FR has been implemented as a standalone
R/Bioconductor package so that it can be easily incorporated into current FCM data
analytical workflows. VC 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC.
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AS the most mature single-cell analysis technology, flow

cytometry (FCM) has been widely applied in the diagnosis

and characterization of cancers, infectious diseases, neurologi-

cal disorders, immune system diseases, and hematological dis-

orders (1). In a typical FCM study, tens to thousands of blood

or tissue samples are processed to quantify cellular character-

istics (e.g., protein expression levels) in individual cells. A

modern polychromatic flow cytometer can measure up to 27

cellular characteristics for millions of cells in each sample (2).

To characterize and differentiate FCM samples from different

experimental conditions/perturbations, cell populations need

to be identified and their variations across samples need to be

quantified and assessed. For example, regulatory T cells are

known to suppress a variety of pathological and physiological

immune responses. In peripheral blood of individuals with

autoimmune disease, regulatory T cells tend to exist in smaller

proportions than in healthy controls (3). Cell populations

may also differ because of an individual’s inherited biological

traits. For example, immunoglobulin E (IgE) is an antibody

that is elevated when the immune system overreacts to envi-

ronmental allergens, such as pollen. In individuals that are

predisposed to allergic responses, elevated numbers of circu-

lating B cells expressing the high-affinity IgE receptor (CD23)

can be found (4).

Historically, manual gating has been used as the method-

ology of choice to delineate cell populations sharing common

characteristics in FCM data. This graphically driven approach

relies on the sequential application of manually drawn boun-

daries (i.e., gates) to distinguish cells on uni- or bi-axial data

plots. The placement of manual gating boundaries is subjec-

tive and depends on the experience of the data analyst. In

recent years, computational gating methods have made signif-

icant advances in identifying cell populations at the individual

sample level (5). Model-based computational gating

approaches, such as Gaussian and multivariate skew-t mixture

model fitting (6–9), employ statistical assumptions on the

shape and location of cell population distributions. Non-

model-based methods, such as grid-based density clustering

(10) and spectral clustering (11) algorithms, group cells into

homogeneous populations based on unsupervised data

clustering.

After cell populations are identified in individual sam-

ples, the next step is to map cell populations between samples

so that cell population characteristics, such as marker expres-

sion levels and proportions, can be compared across the sam-

ple set. In manual gating approaches, the gating boundaries

drawn on one sample are often directly applied to another

sample. However, marker expression levels of equivalent cell

populations can shift between different samples due to techni-

cal artifacts and natural biological variability. Technical arti-

facts can be unintentionally introduced during data

acquisition, especially in multicenter clinical studies where

samples are prepared at several sites, with slight differences in

sample preparation procedures, staining protocols, and

instrument settings. Biological variability in marker expres-

sion can occur due to the complex interplay of genome

sequence polymorphisms, especially in outbred human popu-

lations. Indeed, the effects of technical artifacts and biological

variation can be difficult to distinguish. These inherent sour-

ces of variability in marker expression make the cell popula-

tion mapping step using direct application of manual gating

boundaries problematic for cross-sample comparisons.

To our knowledge, there is no standalone method imple-

mentation focused solely on cell population matching. Proba-

bility binning (12) is able to compare multivariate

distributions between FCM samples but it remains unclear

how it can be adapted to compare population-level data as

cell populations frequently shift expression distributions

across samples. Finak et al. (13) compared sample-level vari-

ability in cell population marker expression among fluores-

cent channel transformation methods (e.g., bi-exponential or

generalized Box-Cox). Variation between cell population loca-

tions is defined as the sum of squared deviations of the cell pop-

ulation locations from the mean cell population location across

FCM samples. Small intersample variations in cell population

locations are associated with low population misclassification

rates. Other existing approaches, including FLAME (7),

HDPGMM (6), JCM (9), and flowMatch (14), bundle the cell

population identification method and cross-sample mapping

function together, with the mapping component operating

under the principle of global template finding. In FLAME (7),

mapping cell populations across samples is the last step of

their computational gating method. Each sample is modeled

as a mixture of cell populations, each with a multivariate

skew-t distribution. The modes of cell population distribu-

tions are pooled together across samples to establish a global

template of cell populations, marked by their mode locations.

The sample cell populations are then matched to the global

populations based on the respective mode locations. In both

HDPGMM (6) and JCM (9), a multilevel modeling approach

is applied to simultaneously identify cell populations and map

populations across samples. A global template is generated

based on shared location and shape characteristics among cell

populations across samples in the same cohort. JCM ascribes

multivariate skew-t distributions to the cell populations as in

FLAME, while the HDPGMM assumes Gaussian distributions

for the cell populations. Both methods perform the mapping

step automatically while the population is being identified,

which precludes their implementation with other data cluster-

ing methods. When a new sample is added to the data set,

HDPGMM needs to be rerun on all samples to generate a new

hierarchy that could be different from the original one even

for the same sample. JCM directly compares the new sample

with the population location and shape parameters at the

cohort level using the Kullback–Leibler divergence measure

(KL distance). In flowMatch (14), samples are organized into

a hierarchy based on overall shape similarity between sample

cell populations. The KL distance is also used to quantify the

multivariate similarity between cell populations. Two samples

are merged together under the hierarchy when the total

between-sample KL distance is minimized. The root of the

hierarchy is the global template of cell populations. These

existing methods all require the composition of a global
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template, which can be error-prone without careful selections

of mapping thresholds at each comparison. The construction

of the template is also very sensitive to the clustering or gating

procedures. Some of these methods do not calculate the

degree of similarity between cell populations, limiting the

ability to map heterogeneous cell populations across samples.

Here we describe a novel method, FlowMap-FR, that uses

a data-driven approach for cell population mapping.

FlowMap-FR directly compares the cell populations between

samples using the Friedman–Rafsky (FR) test statistic (FR sta-

tistic, (15))—a nonparametric multivariate statistical measure

utilizing a minimum spanning tree approach to describe the

“ordering” of values in multidimensional space. The FR statis-

tic has been used as a similarity measure in statistical pattern

recognition (16), image retrieval (17), and image registration

(18). The basic principle is to “sort” the events from any two

merged cell populations (e.g., cell populations in different

samples being tested to determine if they are equivalent) based

on edge connections in a minimum spanning tree constructed

from the marker expression levels of each cell. The cell popu-

lations being compared are considered to be equivalent if their

respective member events are randomly dispersed in the tree,

and are different if the events of the same membership tend to

congregate in different branches of the tree. Thus, FlowMap-

FR evaluates cell population similarity by computing a statisti-

cal distance measure for every possible population pair in a

cross-sample mapping problem. FlowMap-FR is a standalone

method that can be applied to mapping cell populations

delineated by manual gating or computational clustering pro-

cedures. We evaluated the performance of FlowMap-FR in

simulation experiments designed to mimic commonly

observed scenarios of sample variability for mapping cell pop-

ulations in which differences in cell population proportions

occur between samples, slight differences in marker expression

levels in equivalent populations occur between samples, and a

cell population in one sample is inappropriately divided into

two by overpartitioning in comparison with another sample.

We also compared the performance of FlowMap-FR with the

symmetric version of KL distance used in flowMatch (14)

using both simulated and real data, and applied it to match

gated populations from a FlowCAP benchmark data set (5).

METHODS

Terminology

In a given FCM experiment, the levels of a number of dif-

ferent quantitative markers (features) are measured in indi-

vidual cells. Each cell can then be represented as a feature

vector of marker levels in d-dimensional space. A cell popula-

tion is defined as a homogenous group of cells sharing similar

quantitative levels for all markers measured, and can be

delineated by manual or computational gating methods as a

feature vector cluster in multidimensional space. The number

of features evaluated in the FCM experiment is equivalent to

the number of dimensions of the multivariate vector. When

comparing two cell populations, the events from the different

populations can be combined to form pooled data. A graph

can be constructed on the pooled data, where the nodes repre-

sent the cell events and the edges represent the Euclidean dis-

tance between the multivariate feature vectors.

Overview of FlowMap-FR

Figure 1 shows the hypothetical FCM assay of 4 expres-

sion markers (CD4, CD45RA, SLP76, ZAP70) for two differ-

ent biological samples. The goal of cross-sample comparison

is to determine if either Cell Population (CP)red or CPgreen

in sample B is equivalent to the CPblue reference cell popula-

tion in sample A. The bi-axial plots indicate similarity

between CPblue and CPgreen in all expression marker levels

except for CD4, while CPblue and CPred are similar in all

markers and would therefore be considered to be equivalent.

The goal of any quantitative method for cross-sample compar-

ison would be to accomplish cell population mapping by

objectively making this distinction using cell populations

delineated by any data transformation procedure or gating

method, including manual gating or algorithmic clustering.

The FlowMap-FR method for cross-sample mapping

described here utilizes the Friedman–Rafsky multivariate gen-

eralization of the Wald–Wolfowitz run statistic for comparing

two data distributions to determine if they have been sampled

from the same global data population. Wald and Wolfowitz

(19) described a statistical procedure to compare univariate

nonparametric distributions by merging the values from two

different data sets into an ordered list and quantifying the

number of runs that connect values derived from the same

data set. The number of runs is thus associated with the tend-

ency of the values to cluster together according to their

respective membership in the data sets. A small number of

runs connecting values from the same data set suggest that the

values have been sampled from more than one distribution.

Friedman and Rafsky (15) proposed a generalization of this

approach for multivariate data, in which value order is deter-

mined based on proximity in a minimum spanning tree con-

structed in multivariate space.

The basic idea is to connect the events across the two cell

populations to be compared according to their similarity in

expression of all d markers using a minimum spanning tree.

The individual cell events are represented as nodes on the tree.

The distance between two nodes is calculated as the Euclidean

distance in d-dimensional space. The FR statistic quantifies

the multivariate similarity of nodes from any two underlying

distributions in the minimum spanning tree (MST). The FR

statistic also controls for the size of the MST across compari-

sons and the topological structure of the MST. We calculate

the FR statistic comparing each pair of cell populations. For

example, a comparison of two biological samples with n1 and

n2 cell populations would involve n1 3 n2 total comparisons.

FlowMap-FR estimates the FR statistic based on con-

trolled statistical sampling of the events in data pooled from

the two cell populations being compared. Each controlled sta-

tistical sample taken from this pool comprised events sampled

to be proportional to those in the original cell population pair

(above some minimum number of events). This controlled

statistical sampling approach is employed because the
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Figure 1. Multivariate run calculation. This figure illustrates the general problem of mapping cell populations between samples using

FCM data with four marker channels (CD4, CD45RA, ZAP70, and SLP76). In this example, we want to determine if Cell Population (CP)red

in or CPgreen in Sample B corresponds to CPblue in Sample A. (A) Marker level distributions of CPblue in comparison with CPred and

CPgreen. Note that the marker level distributions for CPblue and CPgreen are similar for ZAP70 and SLP76, but differ for CD4. Based on

this difference, we would infer that CPgreen in Sample B is different from CPblue in Sample A. On the other hand, the marker expression

distributions for CPblue and CPred are similar for all four markers. Based on these similarities, we would infer that CPred in Sample B is

equivalent to CPblue in Sample A. (B) Multivariate run calculation for the CPblue/CPred and CPblue/CPgreen comparisons. The FlowMap-

FR application of the Friedman–Rafsky test proceeds through the following steps separately for CPblue/CPred and CPblue/CPgreen com-

parisons: merge the cell event data from the reference (CPblue) and test (CPred or CPgreen) populations, calculate the pairwise Euclidean

distances between all events (nodes) to form a complete Euclidean graph, find the minimum spanning tree that connects all nodes in the

Euclidean graph, remove the edges that connect nodes derived from different cell populations, and determine the number of subgraphs

remaining (which equals the number of edges connecting nodes between the two different cell populations plus 1). In the case of the

CPblue versus CPgreen comparison, the number of runs would equal 2. For the CPblue versus CPgreen comparison, the number of runs

would equal 25. Relatively small run values indicate that the cell populations being compared are distinct because their events are segre-

gated in multivariate space. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


computing time for calculating a minimum spanning tree is

dependent on the number of nodes, that is, total number of

events involved in a cell population comparison pair.

Finding the Minimum Spanning Tree

We begin by mixing events from two cell populations

under comparison while keeping track of their population

membership. The mixture of events is henceforth referred to

as the pooled data. We then take S controlled statistical sam-

ples of N events randomly selected from the pooled data,

without replacement. Each controlled sample maintains a

constant ratio of events from the two cell populations, calcu-

lated from the pooled data before any event selection. For

every controlled statistical sample, we compute the Euclidean

distance between every pair of events based on the expression

level of all markers. A complete weighted undirected graph is

constructed based on the N-by-N distance matrix. We then

use Prim’s algorithm (20–22) to find the minimum spanning

tree (MST) on the graph (see Supporting Information Meth-

ods for more details). The distance between events on the

minimum spanning tree corresponds to the dissimilarity of

their marker expressions in d-dimensional space. Therefore,

events with similar marker expression levels are placed near

each other on the MST branches. Figure 1 depicts the sche-

matic illustration of the MST construction steps.

Friedman–Rafsky Statistic Computation

Central to the Friedman–Rafsky (FR) statistic are the

multivariate “runs” in the Euclidean MST. The multivariate

runs are the set of subtrees in the MST consisting of con-

nected events from a single cell population (see Supporting

Information Methods for more background of the FR statis-

tic). For each controlled sample MST based on N events, we

remove the edges connecting events derived from different

cell populations. Because any removal of an edge in an MST

breaks the tree into two disjoint subtrees, the number of sub-

trees in an MST is equal to the number of removed edges (G)

plus 1. Thus, the number of multivariate “runs” R is equal to

G 1 1.

The FR statistic compares the observed with the expected

number of multivariate runs in a given MST from two equiva-

lent population distributions, and then standardizes the dif-

ference by the variance of the multivariate runs. Given two

cell populations X and Y of event sizes m and n, respectively,

with N total events, the expected number of multivariate runs

E[R] is equal to one plus the expected number of edges. For

the N 2 1 edges of the given MST, the probability that an arbi-

trarily selected edge connecting X and Y (or Y and X) is the

proportion of events in N belonging to X, m/N (or n/N if con-

sidering edges connecting Y and X) multiplied by the proba-

bility that the edge connects to a node in Y, n/(N 2 1) (or m/

(N 2 1) if considering Y–X edges). Hence, the expected num-

ber of edges is

l 5 E Rð Þ 5
2mn

N
11

The variance of the number of runs in a given MST is

dependent on the corresponding topological feature—the

total number of edge pairs sharing common nodes (C), which

is N21
2

� �
in a graph of N nodes. Hence, the variance reflects

the range of runs possible given the composition of member-

ship events in a cell population pair comparison, and

r2 5
2mn

N21

2mn2N

N
1

C2N12ð Þ m1N N21ð Þ24mn12ð Þ
N22ð Þ N23ð Þ

� �

Details of the derivation can be found in Friedman and

Rafsky (15). The FR statistic (w) is then defined as

w 5
R2l

r

The median FR statistic from the S controlled statistical

samples of the pooled data is taken as the estimated measure

for similarity between the two cell populations. The estimated

FR statistic is multiplied by 21 to compute an FR-based dis-

tance measure, where a small value indicates high degree of

similarity and a large value indicates high degree of dissimilar-

ity. This FR-based distance measure can then be used with var-

ious clustering methods to group cell populations across

samples (e.g., by hierarchical clustering).

Hypothesis Testing Using the FR Statistic

We can also use the estimated FR statistic to perform a

statistical test where the null hypothesis is that the two cell

populations follow the same distribution. The P values of the

FR statistical test are computed under the assumption that the

standardized FR statistic follows a normal distribution (15). A

large P-value is evidence that the cell populations in the com-

parison are probably similar in their distributions, while a

small P-value is evidence that the cell populations are prob-

ably different in their distributions. In addition to cell popula-

tion similarity, the P-value of the FR statistic also depends on

the number of controlled statistical samples of the pooled data

(S) and the size of each controlled sample (N). For the analy-

ses in this study, we chose a value of 1027 for the P-value

threshold of the FR statistic where the number of true-

positive matched cell population pairs is maximized and the

number of false-positive cell population pairs is minimized.

The threshold was chosen based on sampling parameters

N 5 200 and S 5 200. Details of choosing the sampling

parameters are described in the following section.

Sampling Parameters

In order to both reduce runtime and provide for consist-

ent statistics, data sampling is necessary before the FR statistic

is applied. With the controlled sampling approach, the FR sta-

tistic value in a pairwise comparison between two cell popula-

tions depends on the number of controlled samples (S), and

the number of events in the pooled controlled sample (N). We

assessed the precision (reflecting the extent of reproducibility

of the controlled sampling procedure) and accuracy (indicat-

ing the biasedness of the estimated statistic as a function of

the sampling procedure) of the FR statistic under N 5 100,

200, and 400 and S 5 100, 200, and 400. While increasing S

results in a larger range of the FR statistics, the ranks of the

population pairs remain the same, and the FR statistic value

increases as N increases. Nonetheless, when mapping cell
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populations across two samples, the ranks of the population

comparisons remain the same across varying N and S (Sup-

porting Information Figs. S8A,B). The time complexity of the

controlled sampling approach is assessed under N 5 50, 100,

200, 400, 600, 800, and 1000 and S 5 100, 200, and 400. The

time complexity increased quadratically in the number of the

events, but did not change across the number of controlled

samples (Supporting Information Fig. S7A). FlowMap-FR

computes an adjacency matrix of similarity between N events

based on Euclidean distance between the d-dimensional mea-

surement vectors. Prim’s algorithm is then employed to find

the MST of each controlled sample. The computing time of

MST finding is known to increase quadratically in N in the

Prim’s algorithm when the similarity between the events is

represented in an adjacency matrix (Supporting Information

Figs. S7A,B). In summary, N and S are chosen to preserve the

ranks of the FR statistics with balanced precision and accuracy

as well as minimized computing time of MST.

Data Preprocessing

FlowMap-FR is designed as a stand-alone algorithm that

can be applied to mapping cell populations derived from any

gating procedures or any normalization methods. The input

data contains ASCII files with each cell population’s labels and

marker expression levels derived from manual gating or auto-

mated gating method. Before applying FlowMap-FR, the user

needs to choose a transformation method to transform the

raw data into equivalent quantitative ranges based on their

data formats and use cases. We employed FCSTrans (22) for

all the analyses in this article.

Data Simulation

In order to assess the performance of FlowMap-FR under

a variety of different population mapping scenarios, a simu-

lated data set was constructed to closely mimic real FCM data.

Data from FCM experimental samples vary in distributional

shape depending on the sample’s biological characteristics. In

order to conduct a fair performance evaluation of our cell

population mapping method, we sought to mimic possible

sources of experimental sample variability in cell population

characteristics. We selected a real data set that includes cell

populations possessing features inherent to FCM data: sparse-

ness of some populations but not others, skewness in the dis-

tribution of some cell population markers, high correlation

between expression levels for a subset of markers, and flat

density distributions for some markers. The real data were

derived from an FCM experiment in which human peripheral

blood was assayed with a four marker panel: CD14, CD23,

CD3, and CD19 (23). The FLOCK clustering algorithm (10)

was used to identify nine distinct cell populations (CP1–CP9)

in an FCS data file from one sample totaling 20,000 events.

Multivariate skew-t distributions were employed to

extract location, variance, and skewness parameters of each

cell population in the real data. The estimated parameters of

the fitted skew-t distribution were then used to simulate a

new data set that mimics the marker distributions observed

for each reference cell population. A list of parameter settings

can be found in Supporting Information Table S1. Figure 2A

and 2B shows the cell population distributions for selected

markers in the real sample and in the simulated sample,

respectively. Complete bi-axial distribution plots of the cell

populations are shown in Supporting Information Figure

S1A,B. An important FCM data feature is that some cell popu-

lations may overlap in some marker channels while being well

separated in other dimensions. This can be illustrated by CP3

and CP9. Their marker expression levels are overlapping and

correlated in the two-dimensional scatter of CD23 and CD14

and also between CD3 and CD14. However, they are well sep-

arated based on CD19 marker expression levels.

Evaluation Scenarios

In FCM data, cell populations may exhibit slight shifts in

marker levels between biological samples or vary in the per-

cent composition per sample between individuals or cohorts

(i.e., varying proportions). The simulated data set was used to

construct a series of test samples designed to mimic these real

scenarios in cross-sample comparison challenges to test the

cell population mapping performance of FlowMap-FR, as

follows:

Scenario 1. Differences in cell population proportions

between biological samples (Fig. 2C). Test samples were

constructed in which cell proportions were changed to 1%,

10%, 25%, 50%, 75%, 125%, and 150% of the original simu-

lated cell population. Location and shape of the changed cell

populations was maintained as in the original simulated cell

populations. Each changed cell population was a statistical

sample of events randomly generated with the same location

and shape parameters as the original simulated cell

population.

Scenario 2. Differences in cell population numbers between

biological samples. Test samples were constructed in which

one of the simulated cell populations from one biological

sample was removed. The resulting test sample containing

eight cell populations was compared with the original simu-

lated sample containing nine cell populations.

Scenario 3. Shifts in marker expression levels between bio-

logical samples (Fig. 2D). Test samples were constructed in

which the simulated cell population from one biological sample

is shifted along each marker channel one at a time. The unit of

location shift is standardized for each cell population and

defined as the interquartile range (IQRo;iÞ of the original simu-

lated cell population along channel i, where IQRo;i 5 75th

percentile 2 25th percentile of the original simulated cell popu-

lation in channel i. For each of the nine cell populations, we

simulated 1, 2, 3, 4, and 5 IQRo;i shifts along each marker chan-

nel. Denote lo;i as the original location of a cell population

along channel i and l2;i as the shifted location after 2 units of

interquartile range shift. Then, l2;i 5 lo;i 1 2 3 IQRo;i .

Scenario 4. A discrete cell population in the reference sam-

ple inappropriately divided into two in the test sample by

over-partitioning (Fig. 2E). Test samples were constructed
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Figure 2. Data simulations and test scenarios. (A) Selected bi-axial plots of the nine cell populations from an experimentally measured

data set in four marker channels (CD14, CD23, CD3, and CD19). For each population, multivariate skew-t distributions were fitted and the

corresponding distribution parameters were determined. See Supporting Information Table 1 for the list of parameters. (B) Selected bi-

axial plots of the nine cell populations in the simulated data set. The skew-t distribution parameters derived from fitting the original data

were used to simulate the nine populations shown. The simulated cell populations mimic the original cell population in the correlation

between markers and also the marker distributions. These parameters were employed to simulate cell populations throughout this study.

The complete set of two-dimensional plots is shown in Supporting Information Figure 1. (C) Scenario 1—Differences in cell populations

between samples. Overlap between CP4 changed in proportion to 1%, 10%, 25%, and 50% (colored in green) and the original 2363 events

in population CP4 in the reference population (colored in cyan). Scenario 2, in which the test cell population was deleted, is not shown but

would essentially correspond to the first plot without the green events. (D) Scenario 3—Shifts in marker expression levels between sam-

ples. CP1 (colored in blue) shifted along CD19 to 2, 3, 4, and 5 units of interquartile range (IQR) of the CD19 distribution. (E) Scenario 4—A

discrete cell population in one sample inappropriately divided into two by over-partitioning in another sample. The original CP4 (colored

in cyan) overlaid with the CP4 partitions below CD23 10, 30, 70, and 90th percentile (colored in grey). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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in which the single simulated cell populations from the refer-

ence sample were divided into two partitions along the CD23

channel. Two sets of partition samples were simulated accord-

ingly that include the upper and lower partitions above and

below the 90th, 80th, 70th, 60th, 50th, 40th, 30th, 20th, and 10th

percentile of the corresponding CD23 levels.

Comparison with the Kullback–Leibler Divergence

Measure

The results using the simulated scenarios was also eval-

uated using the symmetric version of Kullback–Leibler

(referred to be SKL distance to distinguish from the original

KL distance) divergence measure used in flowMatch to com-

pare cell populations across multiple samples (14). The KL

distance is known as an asymmetric distance measure between

two distributions such that the values comparing CP1 to CP2

and CP2 to CP1 can differ. In flowMatch, a symmetric version

of the KL distance (SKL) is employed under which the cell

populations are assumed to follow multivariate normal distri-

butions. Using this version, the KL distance is a function of

means and variances of the cell populations. The SKL distance is

achieved by averaging the two possible KL values in a single

comparison. Given two cell populations i and j in d-dimensional

feature space, the KL value of comparing i against j is

1

2
log
jRj j
jRij

1tr R21
j Ri

� �
1 lj2li

� �T

R21
j lj2li

� �
2d

� �

where liand lj are d-dimensional mean vectors of the expres-

sion markers of cell populations i and j, respectively, and Ri

and Rj are d-dimensional variance–covariance matrices of the

markers for cell populations i and j, respectively. We com-

puted sample means and variances to approximate ls and

Rs to calculate the SKL distance values of the simulated cell

populations as in the flowMatch implementation.

Mapping Cell Populations Across Multiple Real FCM

Samples

FlowMap-FR was applied to two real flow cytometry data

sets to evaluate its performance in mapping cell populations

across multiple real flow cytometry samples. The first evalua-

tion investigated the ability of FlowMap-FR to map cell popu-

lations that are known to be biological replicates across FCM

samples. The second evaluation applied FlowMap-FR to FCM

samples collected from 30 different healthy individuals. In this

data set, the individual cell populations within each sample

and their equivalence between samples were delineated by

expert manual gating as part of the FlowCAP challenges (5).

Real FCM data set #1. The first real data set evaluation

included four FCM samples of peripheral blood mononuclear

cells (PBMC) collected from two healthy individuals (24); the

blood sample from each individual was divided into two bio-

logical replicates. Each sample was stained with four

fluorophore-labeled antibodies (marker panel: CD3, CD4,

CD8, and CD19). Four cell populations were identified in

each of the FCM samples using K-means clustering (parame-

ter setting: minimum 4 and maximum 20 clusters). The K-

means convergence criteria were set to minimize within-

cluster sum of squares while maximizing between-cluster sum

of squares. In order to perform cell population mapping

across multiple samples, we computed the estimated FR statis-

tics and FR-based distance metric (FR multiplied by minus

one) for all population pairs across the four FCM samples.

The FR-based distances were used as a similarity measure to

group and map equivalent cell populations across samples.

Hierarchical clustering with complete linkage was employed

as the clustering method of choice. The cell populations were

arranged in a hierarchy according to the FR distance to the

other cell populations.

The FR-based mapping approach was compared to flow-

Match (14). flowMatch performs agglomerative clustering

that repeatedly merges samples to form a template sample until

there are no more samples to be added (meta-clustering). First,

a template sample is created from merging the two most similar

samples, and the matched cell populations are combined to

form a cell population. Then, a template sample is compared to

all the other samples and merged with the sample that is most

similar. This step continues until there are no more samples to

be compared with. At each step, cell populations are mapped

across samples when the two samples are merged into one tem-

plate sample. A bipartite graph algorithm is employed to match

two samples or to match a sample with a template sample

when the sum of distances between cell populations is mini-

mized. The performance of the FR statistic was compared with

the SKL divergence metric within the flowMatch algorithm.

Details of the bipartite algorithm underlying flowMatch are

described in Supporting Information Methods.

Real FCM data set #2. This normal donor data set was one

of the benchmark data sets included as part of the FlowCAP-I

challenge (5) and contained manually gated cell populations

that can be used as a benchmark for evaluating the perform-

ance of FlowMap-FR. A total of 30 FCM samples from normal

healthy donors are included in the data set. Each sample was

stained with a cocktail of 10 fluorochrome reagents, interrog-

ating both cell surface and intracellular proteins. Expert man-

ual gating by the data providers delineated 8 cell populations

in each sample. To perform cell population mapping across

multiple samples, we computed the estimated FR statistics for

all population pairs across the 30 FCM samples (28,680 com-

parisons). Similar to real data set #1, hierarchical clustering

with complete linkage was employed in order to organize the

cell populations in a hierarchy according to FR distance. Based

on the FR similarity hierarchy, cell populations were classified

into eight sets of equivalent cell populations. The F-measure

approach was then used to evaluate the combined precision

and recall performance of the new cell population labels in

comparison with the cross-sample equivalence determined by

the original data providers.

Software Availability and Data Sharing

FlowMap-FR is available in the R/Bioconductor flowMap

package (http://bioconductor.org/packages/release/bioc/html/

flowMap.html) and on Github (https://github.com/JoyceH-

siao/flowMap). The simulated data file has been converted to
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FCS format and made publicly available through flowreposi-

tory.org under the access code FR-FCM-ZZKA. The R code

used to reproduce the simulated data sets for all use cases are

available on (https://github.com/JoyceHsiao/simulateFlow).

The real data set #1 is publicly accessible through R/Bion-

conductor (http://bioconductor.org/packages/release/data/

experiment/html/healthyFlowData.html (24)). The real datset

#2 is publicly available through flowrepository.org under the

access code FR-FCM-ZZYZ.

RESULTS

Simulation Study

Matching with differences in cell population proportions

between samples. The goal of cross-sample comparison is

to match equivalent cell populations across multiple samples.

In some circumstances, a given cell population can exhibit

dramatic differences in proportions in different biological

samples, especially cell populations that have been observed to

be predictive cellular biomarkers of immunological responses,

disease states, or therapeutic responses. In order to determine

how robust the FR statistic would be to matching cell popula-

tions in scenarios in which the proportions of the population

differ between biological samples, a total of eight test samples

were generated to contain from 1% to 150% of the popula-

tion’s cell count in the original simulated reference sample for

each of the nine cell populations separately. The original cell

counts ranged from 324 events in CP9 to 7,380 events in CP7.

Thus, in the case of CP9, the 1% proportion simulation con-

tained as few as 3 events to be matched to the original cell

population’s 324 events. For CP7, the 150% proportion simu-

lation contained over 11,000 events to be matched.

Figure 3A–3I shows the estimated FR statistics for each

population comparison. (Distributions of the cell populations

can be found in Supporting Information Fig. S2A–C.) An FR

value closer to zero indicates a higher degree of similarity

between the cell populations being compared. Figure 3A

shows the comparison across changing proportions of CP1.

The changed CP1 in the test sample is consistently rated as

more similar to the equivalent CP1 population in the refer-

ence sample than to the other cell populations, even when the

proportion of CP1 in the test sample is 1% of the equivalent

cell population in the reference sample. The results are similar

for all cell populations. Given a selected cell population com-

parison, the FR statistics are fairly stable across changed pro-

portions. The situations in which the differences in the FR

statistics between correctly matched and incorrectly matched

populations are the smallest appear to occur when comparing

the most rare populations (CP3 and CP9) with the most

abundant population (CP7) (Fig. 3C and 3I, respectively). But

even in these situations, differences of approximately 3 FR

units are observed between correct and incorrect matching,

with the correct mapping still rated as most similar based on

the FR statistic. We also computed the P-values of the FR sta-

tistics for each population comparison, as shown in Support-

ing Information Figure S2D. A small P-value of the FR

statistic indicates a potential mismatched pair of cell popula-

tions, while a large P-value of the FR statistic suggests a poten-

tial matched pair of cell populations. The cutoff for P-value

was fixed across all three simulation scenarios to be 1027.

Similar to the results using the FR statistics, the P-values also

distinguish between correctly matched and incorrectly

matched populations. At P-value cutoff of 1027, the FR test

correctly matches the changed cell populations to their equiv-

alent parent cell populations in the reference sample.

We also compared cell populations across the test sam-

ples of CP5 changed proportions to demonstrate the utility of

FR statistic in a multiple-sample comparison scenario. In Fig-

ure 3J, a total of 72 3 72 FR statistics are displayed in a heat

map (comparing 8 test samples of 9 cell populations) and

listed in order of population proportions within each cell pop-

ulation block (e.g., CP5 block consists of 1% (#1.5), 10%

(#2.5), 25% (#3.5), 50% (#4.5), 75% (#5.5), 100% (#6.5),

125% (#7.5), and 150% (#8.5)). The cell populations that

were not changed in proportions are mapped to each other

(i.e., FR statistics closer to zero) as expected. Although the 1%

CP5 (#1.5) is slightly more similar to the other cell popula-

tions compared to the other changed CP5s, the 1% CP5 is still

ranked as more similar to other CP5s under changed propor-

tions than to any other cell population.

Matching with differences in cell population numbers

between samples. In some cross-sample comparison scenar-

ios, differences in the numbers of cell populations detected in

different samples might be expected. This could occur when

comparing samples from normal healthy subjects with sam-

ples from diseased subjects in which a new abnormal cell pop-

ulation might be present (e.g., in leukemia or lymphoma

patients, or in situations where stimulated and unstimulated

samples are compared). Figure 3A–3I shows the estimated FR

statistics for each population comparison. In this scenario,

there would be no comparison for one of the cell populations

(e.g., CP1) in the reference sample since that population has

been removed from the test sample. Because the comparison

performed by FlowMap-FR occurs on a population-by-

population basis, the FR statistic values for comparisons

between the incorrect cell populations in the test sample and

the extra population in the reference sample is essentially the

same as if the extra population was still present in the test

sample. Thus, for a missing CP1 population, all FR statistics

values would correspond to a run value of 1 and the curves

would be located at the bottom of the graph in the compari-

son depicted in Figure 3A. While all the correct pairwise com-

parisons would give FR statistic values close to 0 for eight out

of eight comparisons, the extra population would only give

low FR values (e.g., <210 in most cases), similar to what is

observed for incorrect comparisons. Thus, establishing a lower

threshold of �25 would indicate that any population without

a value above 25 would indicate a unique population in one

of the samples.

Matching with shifts in marker expression levels between

samples. Shifts in marker expression between cell
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Figure 3. Matching cell populations that differ in proportions between samples. FR statistics comparing each simulated cell population

CP1–CP9 (A–I, respectively) under varied proportions (1%, 10%, 25%, 50%, 75%, 100%, 125%, and 150% of the original cell count) with

all cell populations in the reference sample containing 100% of all cell events. In all nine sets of analyses, the FR statistic is larger when

comparing a changed cell population to the original cell population than when comparing it to the other cell populations across varying

proportions of original cell counts. In other words, the changed cell population in the test sample can be determined to be most similar

to the corresponding population in the reference sample based on the largest FR statistic value in a comparison against all nine popula-

tions in the reference sample. (J) Heat map for comparing all cell populations between the test samples (Sample Set A) and the refer-

ence samples (Sample Set B). We CP5 and changed its proportions in different test samples. The rows and columns are ordered by cell

population IDs (CP1–CP9) and then by population proportion ID (1–8, with 1 being 1% and 8 being 150%). Squares colored in blue are

the highly similar cell population pairs with an FR statistic close to 0, while yellow, orange, and red squares are more dissimilar pairs

with negative FR statistics. The regions of the heat map that correspond to the comparisons displayed in parts A–I are indicated with

rectangles. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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populations across a set of experimental samples can occur

due to natural biological variability in genetically diverse pop-

ulations, cell differentiation response to some perturbation, or

technical variability associated with differences in staining

procedures or reagent lots. In order to determine how the FR

statistic would respond to shifts in marker expression, the

nine cell populations were mapped to themselves and other

cell populations in simulated scenarios in which one popula-

tion (CP4) was shifted in position along each of the four

dimensions. Shifting was standardized with respect to the

range (IQR) of the cell populations’ distributions along the

selected dimension (see Supporting Information Figure S3 for

distributions of each CP). A total of 6 test samples were gener-

ated with shifting positions along each dimension. The results

of CP4 mapping are shown in Figure 4; other results are

shown in Supporting Information Figure S4A. The distribu-

tion of CP4 is narrow along CD19 and is wide along the other

three dimensions. As the position shift increases along CD19

(with the distribution in all three other dimensions kept the

same), the FR statistic for matching with the original CP4 ini-

tially drops linearly with the degree of shifting and then pla-

teaus (Fig. 4A). Thus, FlowMap-FR could be used to

determine statistically meaningful shifts in marker expression

within a cell population.

In some cases, the shifted cell populations can also

become more similar to other cell populations than to the cor-

responding population in the reference sample depending on

the marker expression characteristics of the other populations.

When CP4 is at a 2-IQR unit shift away from the original

position in the CD19 dimension, the FR value in comparison

with itself in the reference sample is about 210 (Fig. 4A) and

with CP5 is about 26 (Fig. 4B). This indicates that CP4 in the

test sample has become more similar to CP5 in the reference

sample at a 2-unit shift. Indeed, the distribution of CP4 in the

CD19 and CD23 dimensions overlaps closely with CP5 at a 2-

unit shift (see the scatter plots in Fig. 4B). However, even

when substantial overlap was achieved between the shifted

CP4 and the original CP5 at a 2-unit shift along the CD19

dimension, the FR statistic was still below 25 due to differen-

ces in distributions between CP4 and CP5 in other dimen-

sions. Similar observations were made for CP8 (Fig. 4C),

which also overlaps with CP4 at 2-unit shifts in the scatter

plots. However, the comparison of CP8 with the shifted CP4

produced only a modest increase in the FR statistics to 211

since CP8 and CP4 are still quite different in shape and cover-

age of the feature space. Complete pairwise comparison

results of the 6 CP4-shifted samples are shown in Figure 4F.

With respect to relative shifts of 0 or 1 IQR units, CP4s are

more similar to themselves than to the other cell populations.

The 3-unit shift CP4 is more similar to the 2-unit shift CP4,

and the 4-unit shift CP4 is more similar to the 3-unit shift

and 5-unit shift CP4, and so on. We computed the P-values of

the FR statistic for the mapping of each cell population to its

original parent cell population under shifts in marker expres-

sion levels. The results are shown in Supporting Information

Figure S4B. The cutoff for P-value was fixed at 1027 across all

three simulation cases. Similar to the FR statistics results

shown in Supporting Information Figure S4A, 2log 10

P-values of the FR statistics increase linearly as the shift in

marker position increases. Based on these results, using a

P-value threshold of 1027 would generally provide robust

mapping of populations with slight shifts (<1 IQR) in the

expression of one of the cell surface markers between samples.

Matching with over-partitioning of cell populations in

some samples. During cell population identification, certain

cell populations might be inappropriately divided into two

(over-partitioning) depending on the method and configura-

tion parameters used, even though there is no real evidence

that the two partitions correspond to distinct cell populations.

In order to determine how FlowMap-FR would handle over-

and under-partitioning, we artificially partitioned each of the

nine cell populations above and below a range of selected per-

centiles along the CD23 expression level axis. A total of 18 test

samples were generated for each cell population, consisting of

its corresponding partitions (9 samples each for partitions

above and below the percentile cutoffs, from 10% to 90%; see

Methods for details); the other cell populations remained

unchanged.

Figure 5A–5I shows the mapping results of the nine cell

populations. (Corresponding bi-axial distributions are shown

in Supporting Information Fig. S5A–C.) In Figure 5A, the two

sets of estimated FR statistics computed when mapping the

two partitioned CP1s in the test sample to the unchanged CP1

in the reference sample are significantly larger than those

obtained in comparison with the other cell populations. The

test correctly mapped both partitioned cell populations to the

unchanged reference cell population across varying partitions.

Results also show that FR statistics increases when the parti-

tion size increases, so the two lines of FR statistics representing

the two partitions cross as one partition increases size and the

other decreases size. That the two lines are not completely

symmetric is due to the nonsymmetric distribution of skew-t

data simulation. The same pattern is found for the other eight

cell populations in Figure 5B–5I. Therefore, FlowMap-FR is

able to quantify similarity of inappropriately partitioned sub-

populations with the original cell population in the reference

sample and could therefore be used to detect and correct

over-partitioning that could arise from manual gating or algo-

rithmic clustering. We also computed the P-values of the FR

statistics for each cell population comparison (Supporting

Information Fig. S5D). Similar to the results of FR statistics,

selecting a P-value threshold of �1027 distinguishes between

correctly matched and incorrectly matched population parti-

tions. Figure 5J displays the complete pairwise comparisons of

CP5 partitions above cutoffs along CD23 expression levels

with itself and other cell populations. From this heat map, it is

clear that all 10 partitions of CP5 are more similar to the

unpartitioned CP5 in the reference sample based on the FR

statistic since all of the squares in the central CP5 vs CP5 box

have a higher FR statistic (more blue) than any other compari-

sons of cell populations against CP5.
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Figure 4. Matching cell populations with shifted marker distributions between samples. Shifted CP4 populations compared to the original

(A) CP4 and (B–E) other unchanged cell populations. The amount of shifting is quantified as units of the calculated interquartile range (IQR)

in each of the respective marker distributions (CD3, CD14, CD19, and CD23). The left-most column displays the FR statistics for the five sets

of population comparisons with CP4 shifts of 0, 1, 2, 3, 4, and 5 IQR units of the corresponding original marker distribution in the indicated

dimension. In (A), the shifted CP4 is compared to itself. As the amount of shifting increases, the dissimilarity grows between the changed

CP4 and the original CP4 as indicated by the increasingly negative FR statistic in the left-hand graph. The FR statistics are similar along the

four marker distributions. The red line highlights the comparisons with the most pronounced FR statistics change over IQR shifts. For exam-

ple, in (E), the red line corresponds to the FR statistics for comparing shifted CP4 along the CD3 axis against CP7, and the three black lines

correspond to the comparisons of CP4 against CP7 along the CD23, CD19, and CD14 axis. The dot plots shown to the right illustrate loca-

tions of CP7 and the shifted CP4 along the CD3 axis. (F) Heat map for comparing all cell populations between the test samples (Sample Set

A) and the reference samples (Sample Set B). We chose CP4 and shifted it along the CD19 axis in the test samples. The rows and columns

are ordered by cell population IDs (CP1–9) and then by population shift ID (1–6, with 1 being no shift and 6 being a 53IQR shift). Squares col-

ored in blue are the highly similar cell population pairs with an FR statistic close to 0, while yellow, orange, and red squares are more dis-

similar pairs with negative FR statistics. The regions of the heat map that correspond to the comparisons displayed in parts A–C are

indicated with rectangles. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5. Matching cell populations inappropriately divided into two populations in one sample. (A–I) FR statistics comparing the two par-

titioned cell populations in the test sample to all (intact) cell populations in the reference sample. The two partitioned populations are gen-

erated by dividing the indicated cell population with a discrete value for CD23 marker expression so that the two partitioned populations

are above and below the 10, 20, 30, 40, 50, 60, 70, 80, and 90th percentile in the CD23 marker distribution. Across the analyses, the two

intersecting lines seen at the top of each graph show that the FR statistics are always the largest when the two partitioned populations in

the test sample are compared to the intact parent cell population in the reference sample. (J) Heat map for comparing all cell populations

between the test samples (Sample Set A) and the reference samples (Sample Set B). We chose CP5 to partition and compared the 10 test-

ing samples with different CP5 upper partitions along the CD23 axis with the intact CP5 in the reference samples. The rows and columns

are ordered by cell population IDs (CP1–9) and then by partition ID (1–10, with 1 being 10th percentile and 10 being no partition). Squares

colored in blue are the highly similar cell population pairs with an FR statistic close to 0, while yellow, orange, and red squares are more

dissimilar pairs with negative FR statistics. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Matching populations using the symmetric KL divergence

(SKL) measure. Figure 6A–6I shows the results of match-

ing CP1, CP2, and CP3 with all other cell populations using

the SKL distance under scenarios in which differences in cell

proportions occur between biological samples (A–C) and

under scenarios in which a discrete cell population in one

biological sample was inappropriately divided into two by

over-partitioning of the data from another biological sample

(D–I). Corresponding results of CP4–CP9 are presented in

Supporting Information Figure S6A–C. Under the scenario

in which differences in cell proportions occur between bio-

logical samples, the SKL distance value is always close to

zero when matching cell populations of varying proportions

in the test sample to corresponding cell populations in the

reference sample. However, the differences between the SKL

distance values of equivalent and nonequivalent cell popula-

tions are not as large as those between the FR statistics

(compare Fig. 6A–6C with Fig. 3). Thus, it could be difficult

to use the SKL distance value to distinguish mapping from

nonmapping cases. In theory, the SKL distance could be

used for population mapping by choosing the best-matched

cell population. But if the cell population to be mapped does

not occur in the test sample, mapping to the best-matched

population without considering the similarity value would

give an incorrect result. Similar phenomena were found

under scenarios in which a cell population is inappropriately

divided into two by over-partitioning (Fig. 6D–6I and Sup-

porting Information Fig. S6B,C). The SKL distance performs

poorly when comparing CP1 partitions below 10th, 20th,

and 30th percentiles in the test sample with CP1 in the refer-

ence sample (Fig. 6D and 6G). In fact, the SKL distance val-

ues are smaller when comparing these CP1 partitions to CP4

in the reference sample than when comparing to the refer-

ence CP1.

Figure 6. Matching cell populations using SKL divergence measure. (A–C) SKL distance values (y-axis) from comparing CP1, CP2, and CP3 to

all reference cell populations under varied proportions (x-axis showing 1, 10, 25, 50, 75, 100, 125, and 150% of the original cell counts of CP1–3,

compared against reference cell populations with 100% of their cell events). CP4–CP9 matching results can be found in Supporting Information

Figure S6A. For example, in (A), each line records the eight SKL distance values generated from comparing eight different proportions of CP1

to each of the original cell populations, including itself. (D–I) The SKL distance of comparing two partitions of a cell population (CP1–3) to all ref-

erence cell populations, including itself. D–F display the SKL results in complete value ranges. G–I zoom in and show the top region of the D–F

graphs with SKL values 0–50 so that the pattern of the lines can be seen. Results for CP4–CP9 have similar pattern and can be found in Support-

ing Information Figure S6B,C. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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For scenarios in which cell populations are shifted in

marker expression levels, the SKL distance performs in a simi-

lar way to the FR statistics, i.e., linearly changing values with

increasing shifts. (The complete results can be found in Sup-

porting Information Fig. S6D.)

Mapping Cell Populations Across Multiple Samples in

Real Data

Real FCM data set #1. Figure 7A and 7B shows the results

of matching cell populations across four real FCM samples

using the FR-based distance measure. Samples 1 and 2 are the

biological replicates of the blood sample from the first subject,

and Samples 3 and 4 are that of the second subject. In Figure

7A, the FR-based distance measure (213FR statistic) was

computed for each cell population pairwise comparison and

displayed in a heat map. The blocks colored in blue suggest

matched population pairs, and the blocks colored in red sug-

gest mismatched population pairs. We employed hierarchical

clustering method with complete linkage to match cell popula-

tions across samples, using the FR-based dissimilarity measure

as the distance metric. The cell populations were grouped into

four sets of equivalent cell populations. For example, in the first

set of matched cell populations, CP1.2 (Sample 1, CP 2), CP2.4

(Sample 2, CP4), CP4.3 (Sample 4, CP3), and CP3.4 (Sample 3,

CP4) were grouped and matched to each other. CP1.2 and

CP2.4 belong to biological replicates of one blood sample, while

CP4.3 and CP3.4 belong to biological replicates of the other

blood sample. In the hierarchical relationship of the cell popu-

lations across samples, CP1.2 is more similar to CP2.4 than to

CP4.3 or to CP3.4. We observed the same relationship in each

set of equivalent cell populations, namely that cell populations

belonging to the biological replicates of the same sample are

more similar to each other. Similar to the results of FR statis-

tics, selecting a P-value threshold of �1027 also distinguishes

between correctly matched and incorrectly matched popula-

tions. We also performed cell population mapping using flow-

Match with the FR-based distance measure and using

flowMatch with symmetric KL divergence (SKL) as the distance

measure. Both versions of flowMatch generated the same cell

population mapping results as shown in Figure 7A. In Figure

7B, the hierarchical relationship between the samples was com-

puted using flowMatch with the FR-based distance measure.

Supporting Information Figure S9 shows the flowMatch sample

mapping results with both the SKL and FR distance measures.

In both versions of flowMatch, biological replicates of the same

blood sample are matched and more similar to each other than

the FCM samples that come from different subjects.

Real FCM data set #2. Figure 8 shows the results of match-

ing cell populations across 30 real FCM samples using the FR-

based distance measure. The FR-based distance measure was

computed for each cell population pair comparison and dis-

played in a heat map. The blue blocks with large FR-based dis-

tance (low FR statistic values) suggest matched population

pairs, and the red blocks with small FR-based distance (high

FR statistic values) suggest mismatched population pairs. The

cell populations are arranged in a hierarchy based on the FR

similarity to all other cell populations. The cell populations

were then grouped according to their FR distance as reflected

in the structure of the hierarchical clustering tree to generate

eight sets of equivalent cell populations. F-measures were

computed to evaluate the combined precision and recall of

the FlowMap-FR classification method. We obtained an over-

all F-measure of 0.88, which indicates high agreement between

Figure 7. Matching cell populations across the real FCM data set #1. (A) Heat map of the FR distances (213FR statistics) for comparing all

cell populations across four real flow cytometry samples. The cell populations in the samples were identified using K-means clustering with

possible number of cell populations ranging from 4 to 20. The FR statistics were computed for all possible pairwise comparison of the cell

populations. We computed a dissimilarity measure based on the FR statistic (213FR) and employed the FR-based distance measure to

organize the cell populations using hierarchical clustering with complete linkage. (B) flowMatch results of matching FCM samples using the

FR distance as the dissimilarity metric between cell populations across samples. The distance between FCM samples was computed based

on the weighted sum of distance between cell populations across samples. y-axis represents the FR-based metric (213FR) between individ-

ual FCM samples. These results are the same as Figure 7A, where distance measure was only computed at the population level, and also the

same as when applying the default flowMatch method with symmetric KL divergence measure as the distance metric (see Supporting Infor-

mation Figure S9 and S10). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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manual gating/mapping and the cell population mapping

derived from the FR-based similarity matrix.

DISCUSSION

Mapping of equivalent cell populations across differ-

ent samples is an essential component of comparative anal-

ysis pipelines for cell-based immunoprofiling and

biomarker discovery in biomedical research to monitor dis-

ease progression and treatment responses. However, the

ability to precisely match cell populations is complicated

by natural and technical contributions to variation in

marker expression values and their distributions.

FlowMap-FR directly addresses the cell population map-

ping challenges that may arise during the FCM data proc-

essing workflow without a priori assumptions about the

marker expression distributions in the different cell popu-

lations analyzed, and thus can be readily employed in

Figure 8. Matching cell populations across the real FCM data set #2. Heat map of the FR distance (213FR) for clustering all cell popula-

tions across 30 real flow cytometry samples in the real FCM data set #2. The FR statistics were computed for all 28,680 possible pairwise

cell population comparisons. We multiplied the FR statistics by 21 to obtain a dissimilarity measure. Blue boxes in the dissimilarity heat

map correspond to similar population pairs with small FR distance (large FR statistic); red box corresponds to population pairs that are

not similar to each other with large FR distance (small FR statistic). Each sample had 8 cell populations delineated by expert manual gating

as part of the FlowCAP-I challenge. Cell populations are organized according to the value of the FR distance using hierarchical clustering

with complete linkage. The green boxes on the plot delineate the eight cell populations deemed equivalent to each other across the 30

FCM samples in the experiment based on FR distance as reflected in the structure of the hierarchical clustering tree. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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comparison of skewed, nonparametric, and multimodal

distributions. The method is highly robust, as illustrated in

matching cell populations of varying shapes, locations, and

correlations between marker features under scenarios of

differences in population proportions between samples and

modest shifts in marker distributions. Because FlowMap-

FR is a stand-alone cell population mapping method, it

can be incorporated into any FCM analytical workflow

that requires a cell population-matching step.

The mapping approach in FlowMap-FR provides a simi-

larity measure of cell populations under various sample varia-

tion scenarios. This similarity measure can be converted into

a probability measure assuming that the statistic follows a

normal distribution (15). The statistic is an objective measure

of similarity between data distributions, with values closer to

zero reflecting similar data distributions (more precisely, that

the two “samples” are derived from a single underlying global

data distribution) and values approaching large negative val-

ues reflecting different data distributions (that the two

“samples” are derived from different underlying global data

distributions). However, the choice of whether two cell popu-

lations are “equivalent” is somewhat subjective and specific to

the experiment in question. To deal with this experiment-

specific decision, it is possible to choose a threshold for the

statistical value across the comparison pairs to distinguish

equivalent (matched) versus distinct (mismatched) cell popu-

lations. We have observed larger gaps in the FR statistic values

for threshold selection compared with other existing methods,

such as the SKL distance. When cell population marker distri-

butions were similar between samples, there was an obvious

gap in the FR statistic values between matched versus mis-

matched cell population pairs such that the threshold was rel-

atively easy to identify. Alternatively, an agglomerative

clustering method, such as hierarchical clustering, could be

applied to identify groupings of cell populations with similar

expression profiles.

One challenging population mapping scenario occurs

when one sample contains a cell population that is absent

from another sample, as might occur when a novel abnormal

cell population arises in a particular disease setting. We found

that when there were different numbers of cell populations

between the test and reference samples, judicious selection of

an FR statistic threshold could reveal the presence of a distinct

cell population in one sample that was absent from the other.

However, the selection of this threshold could be challenging

in some cases. In this scenario, the ideal reference sample for

comparison would be one that contains the union of all cell

populations found in each of the individual test samples. This

composite sample could be generated by concatenating the

data from multiple FCS files and running the population

identification methods on the concatenated file to identify all

cell populations present in each of the individual samples.

This composite sample could then be used as a reference for

comparison and mapping.

While FlowMap-FR was relatively robust to moderate

shifts in marker expression (<1 IQR) that could result from

natural biological variability or differences in staining proto-

cols/reagents and instrument configuration settings between

experiments and labs, we expect that its performance could be

enhanced further by applying a sample alignment procedure

to the data before the population mapping step in the FCM

data processing workflow. Cell populations observed can be

similar in shape and relative location in each sample but dif-

ferent in absolute marker expression levels across samples.

Marker expression levels can be normalized across samples on

a per-channel basis (25) before cell population mapping to

further improve the results. Many software and computer pro-

grams are available for this data transformation purpose, such

as flowTrans (13), FCSTrans (the method used in this article

(22)), FCS2CSV (26), and so on, before mapping cell popula-

tions in FlowMap-FR.

However, in some experimental scenarios, marker expres-

sion shifts reflect important phenotypic changes in the cell

population of interest, for example, when activation marker

expression increases in response to cell stimulation. As a sta-

tistical test, FlowMap-FR can be used to determine when the

expression of a cellular marker has become significantly differ-

ent from a comparison population (e.g., using FR values from

known different cell types in control samples to determine

thresholds). Although the FR statistic cannot determine

whether one cell population is functionally different from the

other, it provides an objective measure for scientists to iden-

tify candidate phenotypes for biological interpretation and

validation.

FlowMap-FR was also found to be able to map cell popu-

lations that are inappropriately partitioned in a subset of sam-

ples. We observed that across varying partitions of cell

populations in different samples, FlowMap-FR correctly

mapped the partitions to the original cell populations in the

reference sample and ranked the partitions by degree of over-

lap with respect to the original cell population. The over- or

under-partitioning of cell populations is a common artifact in

many automatic gating methods. Thus, the FR statistic can

also serve as a tuning metric for parameter adjustment during

the automated gating process to prevent artificial population

splitting or simply as a quality control metric on the gated

samples.

Computational efficiency is a major consideration in the

analytical workflow of FCM data processing because of the

increasingly large quantities of samples, events, and markers

being evaluated. The bottleneck of FlowMap-FR computa-

tions lies in finding the minimum spanning tree (MST) in

order to compute the FR statistic. We used Prim’s algorithm

to compute the MST, in which the computational complexity

increases quadratically in the number of nodes, i.e., the num-

ber of events in the graph (see Supporting Information Fig.

S7A,B). To circumvent the runtime limitation, we imple-

mented a controlled random sampling procedure to estimate

the FR statistic for each cell population pair comparison. The

random sample procedure achieved good precision and accu-

racy in estimating the true FR statistic (see Supporting Infor-

mation Fig. S8A,B). Moreover, we parallelized the estimation

procedure so that the users may choose to perform the analy-

sis on as many cores as their computing environment allows.
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For a single-cell population comparison in FCM samples with

four feature markers, the runtime on a 10 core system is �10

times faster than the run time on a single core system (see

Supporting Information Methods for more details). In the

future, the runtime can be further improved by parallelizing

the sequential computations of multiple sample comparison

of cell populations.

We have implemented FlowMap-FR in R as a Bioconduc-

tor package (http://www.bioconductor.org/packages/devel/

bioc/html/flowMap.html). We are also in the process of imple-

menting and incorporating FlowMap-FR into the GenePattern

FCM suite (27) and the bioKepler workflow platform (28), so

that it can be used along with other FCM data processing and

analytical methods that have been deployed in these platforms.

A common FCM computational workflow consists of four

steps: data transformation and preprocessing, computational

identification of cell populations, sample alignment, and cross-

sample comparison of cell populations. While there have been a

large number of methods developed for the transformation and

identification steps, only a few methods are available for the

sample alignment and cross-sample comparison steps.

FlowMap-FR provides a robust nonparametric probability-

based solution to these workflows, facilitating the move toward

the next paradigm for result interpretation across samples and

objective performance evaluation of workflows.

ACKNOWLEDGMENT

We thank Drs Jing Cao, Ryan Brinkman, Raphael Got-

tardo, and Greg Finak for helpful advice during the course of

this project.

LITERATURE CITED

1. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature
2011;480(7378):480–489.

2. Chattopadhyay P, Perfetto S, Gaylord B, Stall A, Duckett L, Hill J, Nguyen R,
Ambrozak D, Balderas R, Roederer M. “Toward 401 Parameter Flow Cytometry,” in
CYTO Conference Plenary Presentation and Abstract 388, 2014.

3. Akdis CA, Akdis M. Mechanisms and treatment of allergic disease in the big picture
of regulatory T cells. J Allergy Clin Immunol 2009;123(4):735–746; quiz 747–748.

4. Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG, Mokhtarani M,
Seyfert-Margolis V, Asare A, Bateman K, Deniz Y. Omalizumab pretreatment
decreases acute reactions after rush immunotherapy for ragweed-induced seasonal
allergic rhinitis. J Allergy Clin Immunol 2006;117(1):134–140.

5. Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R,
Scheuermann RH. Critical assessment of automated flow cytometry data analysis
techniques. Nat Methods 2013;10(3):228–238.

6. Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, Welters MJP, van
der Burg SH, West M, Chan C. Hierarchical modeling for rare event detection and

cell subset alignment across flow cytometry samples. PLoS Comput Biol 2013;9(7):
e1003130.

7. Pyne S, Hu X, Wang K, Rossin E, Lin T-I, Maier LM, Baecher-Allan C, McLachlan
GJ, Tamayo P, Hafler DA , De Jager PL, Mesirov JP. Automated high-dimensional
flow cytometric data analysis. Proc Natl Acad Sci USA 2009;106(21):8519–8524.

8. Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via
robust model-based clustering. Cytometry Part A 2008;73A(4):321–332.

9. Pyne S, Lee SX, Wang K, Irish J, Tamayo P, Nazaire M-D, Duong T, Ng S-K, Hafler
D, Levy R, Nolan GP, Mesirov J, McLachlan GJ. Joint modeling and registration of
cell populations in cohorts of high-dimensional flow cytometric data. PLoS One
2014;9(7):e100334.

10. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, Cai J, Kong YM,
Sadat E, Thomson E, Dunn P, Seegmiller AC, Karandikar NJ, Tipton CM, Mosmann
T, Sanz I, Scheuermann RH. Elucidation of seventeen human peripheral blood B-cell
subsets and quantification of the tetanus response using a density-based method for
the automated identification of cell populations in multidimensional flow cytometry
data. Cytometry Part B Clin Cytom 2010;78B(Suppl 1):S69–S82.

11. Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering
to analyze high throughput flow cytometry data. BMC Bioinformatics 2010;11:403.

12. Roederer M, Moore W, Treister A, Hardy RR, Herzenberg LA. Probability binning
comparison: A metric for quantitating multivariate distribution differences. Cytome-
try 2001;45:47–55.

13. Finak G, Perez J-M, Weng A, Gottardo R. Optimizing transformations for auto-
mated, high throughput analysis of flow cytometry data. BMC Bioinformatics 2010;
11(1):546.

14. Azad A, Pyne S, Pothen A. Matching phosphorylation response patterns of antigen-
receptor-stimulated T cells via flow cytometry. BMC Bioinformatics 2012;13(Suppl
2):S10.

15. Friedman JH, Rafsky LC. Multivariate generalizations of the Wald–Wolfowitz and
Smirnov two-sample tests. Ann Stat 1979;7(4):697–717.

16. Zhao Ti, Soto S, Murphy RF. Improved comparison of protein subcellar location pat-
terns. In 3rd IEEE international Symposium on Biomedical Imaging: Nano to
Marco; 2006:562–565.

17. Theoharatos C, Laskaris N, Economou G, Fotopoulos S. A generic scheme for color
image retrieval based on the multivariate Wald–Wolfowitz test. IEEE Trans Knowl-
edge Data Eng 2005;17(6):808–819.

18. Neemuchwala H, Zabuawala HAS, Carson P. Image registration methods in high
dimensional space. Int J Imaging Syst Technol 2007;16(5):130–145.

19. Wald A. Wolfowitz J. An exact test for randomness in the non-parametric case based
on serial correlation. Ann Math Stat 1943;14(4):378–388.

20. Moret BME, Shapiro HD. An empirical analysis of algorithms tree,” in Algorithms
and Data Structure, Lecture Notes in Computer Science Volume 519, 1991:400–411.

21. Prim R. Shortest connection networks and some generalizations. Bell Syst Tech J
1957;36(6):1398–1401.

22. Qian Y, Liu Y, Campbell J, Thomson E, Kong YM, Scheuermann RH. FCSTrans: An
open source software system for FCS file conversion and data transformation.
Cytometry Part A 2012;81A(5):353–356.

23. Klunker S, Saggar LR, Seyfert-Margolis V, Asare AL, Casale TB, Durham SR, Francis
JN. Combination treatment with omalizumab and rush immunotherapy for
ragweed-induced allergic rhinitis: Inhibition of IgE-facilitated allergen binding.
J Allergy Clin Immunol 2007;120(3):688–695.

24. Azad A. healthyFlowData : Healthy dataset used by the flowMatch package. R pack-
age version 1.3.1; 2013.

25. Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: A bioconductor package for
automated gating of flow cytometry data. BMC Bioinformatics 2009;10:145.

26. http://sourceforge.net/projects/flowcyt/files/GenePattern Flow Cytometry Suite/FCS2
CSV/. Accessed February 02, 2012.

27. Spidlen J, Barsky A, Breuer K, Carr P, Nazaire M-D, Hill BA, Qian Y, Liefeld T, Reich
M, Mesirov JP, Wilkinson P, Scheuermann RH, Sekaly R-P, Brinkman RR. GenePat-
tern flow cytometry suite. Source Code Biol Med 2013;8:1–8.

28. Altintas I. Distributed workflow-driven analysis of large-scale biological data using
biokepler, Proc. 2nd Int. Work. Petascal data Anal. challenges Oppor.—PDAC’11,
p. 41, 2011.

Original Article

88 FCM Cross-Sample Comparison

http://www.bioconductor.org/packages/devel/bioc/html/flowMap.html
http://www.bioconductor.org/packages/devel/bioc/html/flowMap.html
http://sourceforge.net/projects/flowcyt/files/GenePattern

	l
	l

