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Abstract

Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages
to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we
investigated its role in M1/M2 induction. In Btk deficient (Btk2\2) mice we observed markedly reduced recruitment of M1
macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk2/2

macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated
markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced
STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of
inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-kB and SHIP1. In
keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-kB p65 and Akt
phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk2/2 macrophages in response to M1
polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was
observed in Btk2/2 macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2
inflammation, treatment of Btk2/2 mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of
M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk,
thus promoting the development of allergic inflammation.

Citation: Nı́ Gabhann J, Hams E, Smith S, Wynne C, Byrne JC, et al. (2014) Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide. PLoS
ONE 9(1): e85834. doi:10.1371/journal.pone.0085834

Editor: Kevin Currie, Vanderbilt University Medical Center, United States of America

Received October 16, 2013; Accepted December 2, 2013; Published January 21, 2014

Copyright: � 2014 Nı́ Gabhann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Health Research Board, Ireland (RP/2004/79) and P/2006/121 www.hrb.ie) and Science Foundation Ireland (Grant 08/
IN.1/B2091 www.sfi.ie). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: JAJ is an employee of the company Amgen. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and
materials.

* E-mail: cjefferies@rcsi.ie

Introduction

Macrophages are central players in the development, progres-

sion and resolution of inflammation. Similar to the T cell

paradigm of Th1 and Th2 subpopulations, macrophages polarize

in response to diverse microbial and environmental signals into

various sub-populations with distinct effector functions defined as

classic inflammatory M1 and immunosuppressive M2 macrophag-

es. With respect to their role in disease, increased levels of M1

macrophages are associated with autoimmune and inflammatory

diseases such as lupus nephritis [1] and multiple sclerosis [2]. M2

macrophages on the other hand have been shown to play a role in

promoting tumour growth [3], and in the development of allergic

inflammation and airway disease through their ability to induce

differentiation of Th2 cells (reviewed in [4]).

In recent years much study has gone into understanding the

precise molecular mechanism regulating M1/M2 development

and polarization. Several studies have implicated key transcription

factors and regulatory proteins in this process, including members

of the interferon regulatory factor (IRF) family, signal transducer

and activator of transcription (STAT) proteins and the suppressors

of cytokine signalling (SOCS) family (reviewed in [5]). M1-

associated gene induction, following stimulation of macrophages

with IFN-c, LPS or TNFa, is mediated by the activation of

STAT1, the p65 subunit of Nuclear factor kappa beta (NF-kB),

phosphoinositide 3-kinase (PI3K) and mitogen-activated protein

kinases (MAPK), resulting in enhanced production of inflamma-

tory cytokines, chemokines and iNOS [6–9]. IL-4 and IL-13

mediate M2 macrophage polarisation by inducing phosphoryla-

tion of STAT3 and STAT6 followed by nuclear translocation and

M2-associated gene induction [10,11]. In keeping with the

importance of STAT3 and STAT6 in driving M2 macrophage

polarization, several studies have demonstrated that inhibition of

these proteins promotes an M1 phenotype in macrophages [12–

14]. Additionally Peroxisome proliferator-activated receptor gam-

ma (PPAR-c) and Krüppel-like factor 4 (KLF4) have been

identified as factors that work in concert with STAT6 to promote

an M2 phenotype [15,16]. Another critical modulator of

macrophage polarization is the myeloid restricted Src homology-

2 domain-containing inositol 5-phosphatase, (SHIP1), which is an
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anti-inflammatory protein that functions to convert PIP3 to

PI(3,4)P2 in order to turn off PI3K-dependent signalling and

negatively regulate NF-kB and IRF3 activity via regulating

complex formation and the localisation of key signalling proteins

such as TBK1 [17–19]. Interestingly, induction of the microRNA

miR-155 has been associated with an enhanced M1 phenotype as

a result of SHIP1 down regulation [20]. Recently the inhibitory

p50 subunit of NF-kB has also been shown to contribute to the

process of tolerance and thus M2 macrophage induction by

negatively regulating M1 macrophage polarization and IFN-b
induction [9]. Furthermore, the suppressors of cytokine signaling

(SOCS) proteins also contribute to macrophage polarization, with

SOCS3 regulating M1 development while SOCS2 promotes an

M2 phenotype [21].

Stimulation of macrophages via Toll Like receptors (TLRs) such

as TLR4 or TLR9 has been shown to be a critical signal in driving

macrophage polarization via activation of NF-kB or the IRF

family members. The Tec tyrosine kinase, Bruton’s tyrosine kinase

(Btk), is critical for LPS-induced proinflammatory cytokine

production and IFN-c-induced natural killer cell activation [22–

26]. Btk interacts with TLR2, 3, 4 and 7 and in doing so mediates

their phosphorylation and the transduction of downstream signals.

At a molecular level Btk regulates NF-kB activation by regulating

p65 phosphorylation downstream of multiple TLRs including

TLR4, 7 and 9 [23–26]. In addition Btk regulates IRF3 activation

downstream of TLR3 and hence IFN-b production in response to

viral recognition [27]. Interestingly, IRF3 and IRF5 have been

implicated in regulating M1 polarization and associated gene

induction [28,29]. Thus as a critical regulator of transcription

factors such as NF-kB and the IRFs, the possibility exists that Btk

may regulate macrophage polarization downstream of classical

M1and M2 polarizing stimuli.

To fully address this possibility we examined polarisation of

macrophages derived from Btk2/2 mice, which allowed us to

directly determine the exact contribution of Btk to this dynamic

process. This study shows that Btk plays an important role in

regulating LPS-driven M1 polarisation, with impaired recruitment

of M1 macrophages and preferential polarisation towards an M2

phenotype observed in the absence of Btk following stimulation

with IL-4 and IL-13 or in vivo challenge with Schistosoma mansoni

eggs, a classic model of allergic inflammation. This bias towards an

M2 phenotype could not be recovered by treatment with an M1

polarizing cocktail, as this too was shown to promote M2-

associated gene induction. At a molecular level, enhanced STAT6

and reduced NF-kB p65, Akt and STAT1 phosphorylation as well

as altered SHIP1 induction was shown to contribute to this skew.

These studies demonstrate a critical role for Btk in macrophage

polarisation with Btk acting as a negative regulator of M2

macrophage induction.

Materials and Methods

Ethics Statement
All mouse work was carried out in strict accordance with the

requirements of Royal College of Surgeons in Ireland Ethics

Committee with ethics approval number: REC582. Animals were

culled using CO2 asphyxiation and the appropriate organs and

cells harvested.

Reagents
LPS was purchased from Cayla Invivogen (Escherichia coli

0111:B4). Recombinant murine IFN-c, IL-13 and IL-4 were

purchased from Immunotools.

Mice
Btk deficient (Btk2/2) mice on a C57BL/6 background were a

kind gift from Dr Rudi Hendriks [30]. Mice were housed at the

Biomedical Research Facility at the Royal College of Surgeons in

Ireland under specific pathogen-free conditions. Animals were

housed with 12 hour day-night cycle with lights on at 7:30 pm in a

temperature (2261uC) and humidity (5565%) controlled room.

The animals’ health status was monitored prior to and throughout

the experiments and all mice were free of all viral, bacterial, and

parasitic pathogens. Prior to commencement of experiments the

animals were separated and housed in relevant treatment groups

in individually ventilated cages. Each treatment group consisted of

3–4 animals and experiments were performed in triplicate. Prior to

and during the experimental period all mice were allowed free

access to sterile water and nutrition. All cages contained bedding

and were enriched with mouse houses. All efforts were made to

minimise suffering.

Intraperitoneal (i.p) LPS Injection
Age-matched (6 to 10 weeks) wild type (WT) (n = 4) C57BL/6

mice (Harlan Laboratories) and Btk2/2 mice (n = 4) were

administered an intraperitoneal injection (i.p.) of 1 mg/kg LPS

dissolved in sterile saline solution. Control mice were given an i.p.

injection of the equivalent volume of saline. Following 24 hour

LPS treatment mice were culled by CO2 asphyxiation.

Isolation of Peritoneal Macrophages
Peritoneal cells were harvested by peritoneal lavage with of

10 ml sterile ice cold PBS. Peritoneal cells were allowed to adhere

to plates for 4 hours. Non-adherent cells were subsequently

removed by washing with RPMI, and the adherent macrophages

were refed with RPMI containing 20% calf serum and gentamicin.

Purity of adherent cells (.95%) was determined by flow cytometry

following staining with using F4/80 and CD11b (BD Biosciences).

Macrophages were used for experiments immediately following

isolation. For some experiments macrophages were treated ex vivo

with an M1 (100 U/ml IFN-c plus 100 ng/ml LPS) or an M2

(10 ng/ml IL-4 plus 10 ng/ml IL-13) polarizing cocktail for the

indicated time points.

Peritoneal macrophages were collected from WT or Btk2/2

mice following i.p. LPS injection. Cells were stained for F4/80,

CD11b, CD86, and IA/IE (MHCII), using specific antibodies (BD

Biosciences) and analysed by flow cytometry using a FACSCantoII

flow cytometer (BD Biosciences).

Real-time PCR
Total RNA was extracted using an RNeasy kit (Qiagen) and

reverse transcribed to cDNA using Omniscript reverse transcrip-

tase (Qiagen) according to manufacturer’s recommendations.

Quantitative real-time PCR was performed using SYBR Green

Taq ReadyMixTM (Sigma) and the data was normalised to a b-

actin reference. Real-time PCR data was analyzed using the

22DDCt method [31].

Helminth Egg Injections
Eggs from S. mansoni–infected mice were obtained as described

previously [32]. WT mice (n = 4) or Btk2/2 mice (n = 4) were given

an intravenous (i.v)injection of either 5,000 S. mansoni eggs or PBS.

Mice were killed on day 14 and lungs were removed. Lungs lobes

were snap-frozen or homogenised for analysis of macrophages by

flow cytometry or qPCR, as described previously [33].

M1 Macrophage Polarization Requires Btk
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In vivo Macrophage Activation
WT mice (n = 4) or Btk2/2 mice (n = 4) were injected i.p. with

approximately 800 ng Chitin (Sigma) with to induce M2 cells in

the peritoneum as previously described [34]. Peritoneal cells were

collected by lavage after 48 hours and gene induction was

determined by qPCR.

Western Blot Analysis
WT and Btk2/2 BMDMs were treated ex vivo with an M1 or

M2 polarizing cocktail as indicated. Expression of STAT1(Santa

Cruz Biotechnology #sc-592), STAT6 (Santa Cruz Biotechnology

#sc-621), pY-STAT1 (Cell Signaling #9171), pY-STAT6 (Im-

genex #IMG408A), Akt (Cell Signaling #9271), pS-Akt (Cell

Signaling #9272), NF-kB p65 (Santa Cruz Biotechnology #sc-

372), pS-NF-kB p65 (Cell Signaling #3036S), iNOS (Transduc-

tion Laboratories #N39120) and SHIP-1 (Santa Cruz Biotech-

nology #sc8425), was determined by Western blot as described

previously [23].

Statistical Analysis
Student’s unpaired t test was performed using GraphPad Prism

6.0. Results are presented as mean 6 STD. Data were deemed to

be significantly different at P values less than 0.05.

Results

Btk is Required for LPS-elicited Macrophage Polarization
in vivo

Given the role of Btk as a central regulator of TLR4-driven pro-

inflammatory cytokine production [22,23,25,26], we sought to

determine whether Btk was involved in regulating in vivo M1/M2

differentiation downstream of TLR4. To date several surface

antigens have been employed in order to discriminate between

polarized macrophage populations. Initial studies have suggested

that size and relative expression of F4/80 and CD11b can

distinguish subtypes which are loosely defined as F4/80intCD11bhi

M1-like macrophages and F4/80hiCD11bhi M2-like macrophages

[35]. However, while this approach has utility, the authors noted

that this technique did not fully address the heterogeneity of the

population. It is now therefore accepted that in addition to F4/80

and CD11b the relative expression of antigen presentation

molecules, co-stimulatory molecules and Ly6C can be used to

more fully discern polarized macrophages, with M1 macrophages

demonstrating increased expression of these antigens relative to

M2 macrophages [36–38]. Taking these approaches into account,

LPS was injected i.p. into WT and Btk 2/2 mice and 24 hours

later peritoneal macrophages were profiled by flow cytometry for

F4/80 and CD11b (Figure 1A), following which analysis of the

relative proportion of F4/80intCD11bhi M1-like macrophages and

F4/80hiCD11bhi M2-like macrophages was performed (Figure 1B

and 1C, respectively). Gating on F4/80intCD11bhi we assessed the

effect of LPS on recruitment of M1-like macrophages to the

peritoneum and found that in the absence of Btk significantly

reduced levels of F4/80intCD11bhi cells (8.5% v 4.8%; p#0.05)

were observed compared to WT mice (Figure 1 B). Additionally

we assessed recruitment of M2-like macrophages by gating on F4/

80hiCD11bhi cells and determined that significantly enhanced

levels of these cells (41.5% v 20.9%; p#0.05) were recruited to the

peritoneum in the Btk-deficient mice compared to similarly treated

WT mice (Figure 1 C). Consistent with suggestions that that these

F4/80hiCD11bhi cells represent an influx of M2-like macrophages

Btk-deficient peritoneal macrophages displayed reduced levels of

the co-stimulatory molecule CD86 (33% v 62%) and reduced

expression of MHC class II (39% v 73%) when compared to WT

mice (Figure 1 D). In addition, analysis of MHC Class II

expression within M1 and M2 gates as defined in Figure 1A

revealed that the majority of expression for this antigen was within

the F4/80intCD11bhi (M1) gated region, with WT peritoneal

macrophages displaying enhanced levels of MHC class II when

compared to Btk-deficient peritoneal macrophages (Figure 1 E).

Furthermore reduced expression of Ly6C was observed on

infiltrating myeloid cells following LPS treatment in Btk2/2 mice

compared to WT mice (Figure 1 F). This data suggests that in the

absence of Btk M2-like macrophages are preferentially recruited

following exposure to LPS.

Polarized macrophage subsets can be further distinguished

according to the array of cytokines and chemokines they

differentially secrete [39,40]. We investigated gene induction

profiles of M1- and M2- associated genes in WT and Btk2/2

peritoneal macrophages following ex vivo LPS treatment (Figure 1

G–H). As expected, LPS-treated WT peritoneal macrophages

displayed significantly enhanced expression of the characteristic

M1-associated genes Tnfa, Il12p40 and Cxcl10 when compared to

Btk2/2 cells (Figure 1G). In contrast, LPS-treated Btk2/2

macrophages had significantly reduced expression of M1-associ-

ated genes but enhanced expression of the M2-associated

chemokines Ccl2, Ccl17 and Ccl22 in comparison to WT

macrophages (Figure 1H). Thus not only are Btk2/2 macrophages

defective in their ability to induce proinflammatory cytokines in

response to LPS [23–26], they appear to preferentially polarize

towards anti-inflammatory M2 macrophages in response to this

normally pro-inflammatory stimulus.

Dominant M2 Phenotype in Macrophages Lacking Btk
Given that polarized macrophage states can be modulated or

reversed [41], we next asked whether Btk2/2 macrophages would

polarize normally in response to either M1 or M2 polarizing

stimuli. Peritoneal macrophages isolated from WT and Btk2/2

mice were treated ex vivo with either an M1 (LPS plus IFN-c) or an

M2 (IL-4 plus IL-13) polarizing cocktail and gene induction was

determined by real time PCR. As expected, treatment with the M1

polarizing cocktail resulted in robust induction of Tnfa, Il12 and

Cxcl10 in WT macrophages (Figure 2 A). However, similarly

treated Btk2/2 macrophages demonstrated impaired induction of

M1-associated genes, instead showing a marked propensity to

express M2-associated genes (Figure 2 B). Treatment with the M2

polarizing cocktail resulted in expression of M2-associated genes in

WT and Btk2/2 macrophages; however Btk2/2 macrophages

exhibited significantly enhanced induction of M2-associated genes

when compared to WT macrophages (Figure 2 D; p#0.05). Thus

our results strongly indicate that Btk2/2 macrophages preferen-

tially polarize to an M2 phenotype and that these cells are

incapable of switching to an M1 phenotype following exposure to

IFN-c and LPS. Indeed the M2 skew is exacerbated by exposure

to M2 polarizing stimuli in the Btk2/2 macrophages compared to

WT, indicating that pathways governing M2 polarization are

constitutively primed in Btk2/2 macrophages.

Altered Phosphorylation of Key Signalling Intermediaries
in the Absence of Btk

We next sought to investigate the mechanism by which Btk

contributes to macrophage polarisation. Investigating the effects of

LPS or IFN-c on STAT1 activation we observed that tyrosine

phosphorylation of STAT1 was impaired in the absence of Btk

following culture of BMDMs with either LPS or IFN-c alone

(Figure 3 A). Additionally the combination of LPS and IFN-c also

induced less STAT1 phosphorylation in Btk2/2 BMDMs

compared to WT BMDMs (Figure 3 B). Consistent with increased

M1 Macrophage Polarization Requires Btk
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Figure 1. Impaired TLR4-mediated induction of peritoneal M1 cells in Btk2/2 mice in vivo. (A–E) Peritoneal macrophages were harvested
from WT or Btk2/2 mice following i.p. LPS injection. (A) Representative plots demonstrate the gating strategies for macrophage discrimination where
total peritoneal macrophages were defined following co-staining with CD11b APC-Cy7 and F4/80 PE-Cy7. (B–C) Macrophage subsets were further
distinguished as F4/80intCD11bhi M1-like macrophages and F4/80hiCD11bhi M2-like macrophages (M1 and M2 gates, respectively). The relative
percentage of M1 (B) and M2 (C) macrophages within the total macrophage gate were determined for WT or Btk2/2 mice following i.p. LPS injection.
(D) Expression of CD86 and MHC Class II was determined by flow cytometry. (E) MHC Class II expression was examined within the defined M1 and M2
gates following co-staining with F4/80 and CD11b. (F) Ly6C was determined by flow cytometry. In all cases data is presented as percent increased
expression above background as determined by staining with the relevant isotype control (indicated by markers in panel (D). (G–H) Peritoneal
macrophages harvested from WT or Btk2/2 mice were treated ex vivo with LPS (100 ng/ml) for the indicated time course and the induction of M1- (G)
and M2- (H) associated genes was determined by real time PCR (qPCR). Peritoneal macrophages were pooled after isolation, with each treatment
group consisting of 3–4 animals, and all experiments were performed in triplicate. Student’s paired t test was performed comparing gene induction in
Btk2/2 peritoneal macrophages to WT cells at the indicated time points. Results shown are mean6SD from three independent experiments.
* = p#0.05.
doi:10.1371/journal.pone.0085834.g001

M1 Macrophage Polarization Requires Btk
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generation of M2 macrophages in the absence of Btk, we observed

enhanced phosphorylation of STAT6 in response to IL-4 and IL-

13 in the Btk2/2 BMDMs compared to WT BMDMS (Figure 3 B,

lower panel).

It is well established that in addition to STAT activation M1

and M2 polarizing signals modulate the expression of inflamma-

tory genes via differential activation of transcription factors,

including NF-kB, as a result of activation of key pathways

including PI3K/Akt [42]. Not surprisingly given the previously

identified role for Btk in regulating p65 phosphorylation and

hence NF-kB activation, and the role NF-kB plays in regulating

M1/M2 differentiation, we observed significantly less phosphor-

ylation of p65 in Btk2/2 BMDMs compared to WT BMDMs

following LPS and IFN-c treatment, whereas M2 polarizing

conditions failed to promote p65 phosphorylation either in WT or

Btk2/2 BMDMs (Figure 3 C). Similarly phospho-Akt levels were

also reduced under the same conditions in Btk2/2 BMDMs, and

again M2-polarizing signals failed to induce Akt activation in

either WT or Btk2/2 cells. In addition under the same conditions,

we observed potent induction of the classical pro-inflammatory

M1-associated marker iNOS in WT BMDMs when compared to

Btk2/2 BMDMs (Figure 3 D), with M2 polarizing signals having

Figure 2. Btk2/2 macrophages have impaired ability to expand in vitro into M1 cells. (A–D) Peritoneal macrophages were extracted from
WT and Btk2/2 mice and treated ex vivo with an M1 (LPS plus IFN-y) or an M2 (IL-4 plus IL-13) polarizing cocktail for 24 hr and induction of M1 (A–B)
and M2- associated (C–D) genes determined by qPCR. In all cases peritoneal macrophages were pooled after isolation, with each treatment group
consisting of 3–4 animals, and all experiments were performed in triplicate. Student’s paired t test was performed comparing gene induction in Btk2/2

peritoneal macrophages to WT cells following treatment with polarizing cocktails as indicated. Results shown are mean6SD from three independent
experiments. * = p#0.05.
doi:10.1371/journal.pone.0085834.g002

M1 Macrophage Polarization Requires Btk
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Figure 3. Altered phosphorylation of key signalling intermediaries in the absence of Btk. (A) WT and Btk2/2 BMDMs were treated ex vivo
with LPS (100 ng/ml) or IFN-c (100 U/ml) for 3 hours or 15 minutes, respectively, lysates were prepared and phosphorylated Y701-STAT1 levels
determined by Western blot. WT and Btk2/2 BMDMs were treated ex vivo with an M1 or M2 polarizing cocktail over the indicated time course, lysates
were prepared and tyrosine phosphorylated STAT1 and STAT6 (B), serine phosphorylated AKT (upper panel) and NF-kB p65 (lower panel) (C) iNOS
and SHIP-1 (D) levels were determined by Western blot. Results in each case are representative of three independent experiments. Densitometric
analysis was performed and graphs represent phosphorylated protein levels relative to unphosphorylated proteins (B-C) or changes in total protein
levels relative to b-actin (D) for WT and Btk2/2 BMDMs. Student’s paired t test was performed comparing relative expression of phosphorylated or
total proteins in Btk2/2 BMDMs to WT BMDMs following treatment with polarizing cocktails as indicated. Results shown are mean6SD from three
independent experiments. * = p#0.05.
doi:10.1371/journal.pone.0085834.g003

M1 Macrophage Polarization Requires Btk
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no effect. These results indicate that Btk mediates M1 gene

induction via promoting Akt and p65 activation. Regarding what

might drive Btk2/2 macrophages to become skewed towards an

M2 phenotype even in the presence of M1 polarizing signals,

SHIP1, as a key anti-inflammatory protein that negatively

regulates PI3K-dependent signalling and subsequently activation

of NF-kB and IRF3 thus negatively regulating M1 macrophage

polarisation, is a potential target [17–19]. In keeping with the

importance of SHIP1 in promoting M2 polarization, treatment

with IL-4 and IL-13 resulted in expression of SHIP1 in both WT

and Btk2/2 BMDMs, however expression levels were enhanced in

Btk2/2 macrophages compared to WT macrophages, suggesting

inappropriate regulation of SHIP-1 expression and potentially

activity in Btk2/2 BMDMs contributes to the M2 skew observed

(Figure 3 D, lower panel). Thus in the absence of Btk diminished

activation of key signaling intermediaries and transcription factors

and enhanced expression of the M2-promoting proteins including

STAT6 and SHIP1 accounts for the inability of macrophages to

effectively polarize towards an M1 phenotype.

Absence of Btk Exacerbates M2 Recruitment and
Induction Following Induction of Allergic Inflammation

To date our data suggests that loss of Btk results in a

predominant M2 phenotype which may potentially aggravate

M2-mediated disease such as allergic inflammation. Both Schisto-

soma mansoni eggs and chitin drive allergic inflammation via

promoting M2 induction and a Th2-mediated response [43,44].

We hypothesised that M2 induction would be exacerbated in the

absence of Btk. WT and Btk2/2 mice were injected i.v. with 5,000

S. mansoni eggs and 14 d later M2 macrophages were analysed in

lungs by flow cytometry, with induction of M1 or M2 associated

genes determined by qPCR. In keeping with our previous findings,

we observed a significant (p#0.05) increase in recruitment of M2

macrophages to the lungs of Btk2/2 mice compared to WT mice

(Figure 4 A), accompanied by a preferential induction of M2-

associated genes, Arginase 1 and Relm-a, in Btk2/2 mice

compared to WT mice (Figure 4 B and C).

To further address the role of Btk in in vivo generation of M1

versus M2 cells, WT and Btk2/2 mice were injected i.p. with

chitin following which peritoneal cells were collected by lavage

and M1/M2 gene induction determined by qPCR. Similar to S.

mansoni challenge, chitin treatment of Btk2/2 mice resulted in

enhanced induction of the M2-associated genes Arginase 1 and

Relm-a, in peritoneal exudate cells compared to controls (Figure 4

D). Similar to the enhanced basal levels of M2-associated genes in

the peritoneum following in vivo LPS treatment (Figure 1 G) we

also observed enhanced basal levels of M2-associated genes in vivo

(Figure 4 B–D). Collectively, using two separate M2 inducing

in vivo mouse models, in lungs or peritoneum, there is marked

polarization to M2 cells in the absence of Btk.

Discussion

This study demonstrates a novel role for Btk in determining

macrophage lineage commitment, with preferential M2 macro-

phage induction observed in the absence of Btk as a result of

altered activation of key signaling pathways and transcription

factors such as NF-kB p65, Akt and proteins known to regulate

macrophage polarization including SHIP1 and members of the

STAT family. Furthermore we show that Btk is essentially

required downstream of TLR4 and IFN-c for optimal p65-

dependent and STAT1-dependent M1 macrophage polarization

(Figure 5).

To date there has been no direct evidence supporting a role for

Btk in macrophage polarization and reports of Btks contribution to

inflammation have been controversial. Several studies have

suggested that Btk functions as a negative regulator of inflamma-

tion [45–47] while there is gathering evidence to suggest that Btk

may be important in driving the inflammatory process. Studies

examining APCs derived from XLA patients, who have a natural

mutation in Btk, have shown that they have defects in both

phagocytosis and inflammatory cytokine production following

TLR stimulation [25,26,48]. Recently the potential that Btk plays

a direct role in positively regulating antigen presentation and

maturation of APCs was described by Lui et al. These studies

found impaired TLR-driven activation of APCs due to an inability

to form a MHC class II and CD40 complex in the absence of Btk

[49]. At a molecular levels Btk has been shown to stabilise TNF-a
mRNA via a p38- dependent pathway in X-linked immunodefi-

ciency (Xid) mice and in XLA patients as well as being critically

involved in NF-kB activation and specifically p65 phosphorylation

downstream of multiple TLRs including TLR4, TLR7 and TLR9

[23–26]. More recently studies by our group have suggested that

increased IL-10 production together with a significant reduction in

IFN-c production in the absence of Btk may result in an altered

Th1/Th2 balance [22], potentially implicating Btk in macrophage

polarization. In the current study we observed impaired activation

of NF-kB p65 in the absence of Btk following TLR4 and IFN-c
treatment, further supporting a positive role for Btk in M1

macrophage polarisation. Interestingly, M2 macrophages have

been shown to inhibit the expression several M1 associated

chemokines including CXCL10 by modulating the activity of both

NF-kB and STAT1 [50,51]. We observed impaired phosphory-

lation of Akt, a key MyD88-dependent signalling intermediary and

inducer of M1-associated cytokines [52,53] in the absence of Btk.

Studies in B cells have shown that Btk and Akt directly interact

and that in the absence of Btk, Akt activation is prevented [53]. A

recent study has implicated Akt as a negative regulator of Btk,

phosphorylating it in order to promote 14-3-3f binding, a novel

negative regulator of Btk signalling [54]. Thus the ability of Btk

and Akt to cross-regulate each other and the involvement of Akt in

regulating macrophage polarization, indicates that the inability of

Btk2/2 macrophages to phosphorylate Akt in response to M1

polarizing stimuli has an important contribution to the M2 skew

observed in these cells.

Whilst a direct link between Btk and STAT1 in regulating

macrophage activity has not been previously demonstrated,

overexpression studies and studies in B cells have demonstrated

that Btk and other Tec family kinases can interact with STAT

family members and promote or inhibit their activation. Btk has

been shown to interact directly with JAK1 and this association

results in Btk phosphorylation [55]. More recently the absence of

Btk was shown to result in reduced polyI:C-mediated activation of

STAT1 [27]. Relevant to our findings, Btk has been shown to

prevent STAT3 activation in B cells thus promoting apoptosis

[56]. Overall our study indicates that Btk is required for optimal

STAT1 activation and that in the absence of Btk, enhanced

STAT6 phosphorylation is observed, in keeping with the

inhibitory role for Btk regarding STAT3 activation reported by

Uckun et al [56]. Given that Btk has been implicated as key

positive regulator of TLR4-mediated cytokine production and that

STAT1 activation is required for optimal LPS induced activation

of macrophages [57], this study demonstrates an important link

between Btk activation, subsequent transcription factor phosphor-

ylation and macrophage polarization.

Interestingly whilst exposure of Btk-deficient macrophages to

M1 polarizing stimuli did not result in increased STAT6
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phosphorylation or SHIP1 induction, we did however observe

significantly impaired activation of key M1 promoting signalling

molecules, such as NF-kB p65, STAT1 and AKT, as previously

published [6–9]. Together our data suggests that not only is Btk

critical for the induction of signals driving M1 polarization but that

it also functions as a negative regulator of M2-polarizing signalling

pathways, as evidenced by the hyper-phosphorylation of STAT6

and increased induction of SHIP1 we observed following IL-4 and

IL-13 treatment in the absence of Btk. The possibility therefore

exists that much like SHIP1 [58–60] and Akt [61,62], Btk may

have a dual function in mediating macrophage polarization. This

role is supported by studies demonstrating that Btk phosphorylates

the key TLR4 adaptor Mal, resulting in SOCS1-mediated

ubiquitination and degradation of Mal and hence negative

regulation of TLR4-dependent pathways [7]. Additionally unpub-

lished observations in our group demonstrate that SHIP1 and Btk

interact and that this interaction regulates the phosphorylation and

presumably the activity of SHIP1 in an as yet undetermined

manner. Thus the lack of Btk contributes not only to the

expression of SHIP1 but may also play a role in regulating its

activity.

Thus our data suggests that loss of Btk results in a predominant

M2 phenotype which may potentially exacerbate Th2 mediated

disease such as allergic asthma. Asthma is traditionally thought of

as a disease mediated by an imbalance between Th1/Th2/Th17

cells, however it is becoming more apparent that alveolar

macrophages play an important role in directing disease outcome

[2,4]. Indeed the enhanced production of M2-associated chemo-

kines by alveolar macrophages is thought to contribute to small

airway and peripheral lung inflammation observed in asthma

patients [63]. Our data in two models of allergic disease

demonstrate that a lack of Btk exacerbates M2 polarization,

indicating the critical role of this protein in ensuring a balanced

response and strongly suggests that lack of a proper M1/M2

balance in the lung in the absence of Btk may exacerbate allergic

inflammation. Indeed a study of allergic airway inflammation in

mice reports increased IgE responses an exaggerated airway

inflammation in the absence of Btk [64]. Clinically, most likely due

to absent circulating immunoglobulin and a role for Btk in mast

cell degranulation, reports of allergy in XLA patients are rare

[65,66]. Despite the rarity of allergic reactions, pulmonary

complications such as decreased lung function and increased

thickening have been observed in XLA patients [67]. Given the

known role of macrophages in driving airway disease, it is

tempting to propose that an M1/M2 imbalance may be driving

this response.

Btk inhibitors are currently in trial for a number of conditions

including B cell malignancies and inflammatory autoimmune

conditions [68,69]. Whilst undoubtedly Btk inhibitors contribute

to reduced production of pro-inflammatory cytokines by macro-

phages, Btk inhibition also affects apoptotic cell uptake, in addition

to its role in regulating macrophage polarization as demonstrated

Figure 4. Increased in vivo M2 macrophage generation in the absence of Btk. (A–C) WT and Btk2/2 mice were injected i.v. with 5,000 live
S.mansoni eggs. (A) The percentage of pulmonary M2 macrophages was evaluated by flow cytometry using F4/80 and CD11b co-staining. (B–C)
Induction of M2-associated genes was determined by qPCR. (D) WT and Btk2/2 mice were injected i.p. with approximately 800 ng Chitin. Peritoneal
cells were collected by lavage after 48 hours and gene induction of M2-associated genes was determined by qPCR. In all cases peritoneal
macrophages were pooled after isolation, treatment groups consisted of 3–4 animals, and experiments were performed in triplicate. Student’s paired
t test was performed comparing gene induction following in vivo exposure to S.mansoni eggs or Chitin as indicated in WT and Btk2/2 peritoneal
macrophages. Results shown are mean6SD from three independent experiments. * = p#0.05.
doi:10.1371/journal.pone.0085834.g004
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here [70]. Given the emerging role for macrophages in allergy,

asthma, cancer and certain autoimmune conditions such as

systemic lupus erythematosus, our findings suggest that manipu-

lation of Btk activity may have unwanted effects in certain disease

settings and indicates the need for more extensive analysis of the

role of Btk in macrophages in inflammatory disease.

Author Contributions

Conceived and designed the experiments: JNG EH SS CW JCB SS KB

AK PGF JAJ CAJ. Performed the experiments: JNG EH SS CW JCB SS

KB. Analyzed the data: JNG EH SS CW JCB SS KB AK PGF JAJ CAJ.

Contributed reagents/materials/analysis tools: JNG EH SS CW JCB SS

KB AK PGF JAJ CAJ. Wrote the paper: JNG EH SS CW JCB SS KB AK

PGF JAJ CAJ.

References

1. Orme J, Mohan C (2012) Macrophage subpopulations in systemic lupus

erythematosus. Discov Med 13: 151–158.

2. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to

control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 229:

332–346.

3. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, et al. (2012) Macrophages in

tumor microenvironments and the progression of tumors. Clin Dev Immunol

2012: 948098.

4. Dasgupta P, Keegan AD (2012) Contribution of alternatively activated

macrophages to allergic lung inflammation: a tale of mice and men. J Innate

Immun 4: 478–488.

Figure 5. Proposed transcriptional regulation of macrophage polarization in the absence of Btk. (A) This study has demonstrated that in
response to LPS and IFN-c Btk contributes to M1 polarizing of myeloid cells via promoting the phosphorylation of Akt and subsequently the p65
subunit of NFkB, in addition to enhancing to phosphorylation of STAT1. (B) In the absence of Btk exposure of myeloid cells to LPS and IFN-c results in
the preferential induction of M2 associated genes and preferentially recruitment of M2 cells in vivo. Previous studies in Btk2/2 mice have observed
increased levels IL-10 systemically following LPS treatment. IL-10 is known to activate STAT3 and there is some evidence to suggest that STAT3 may
also play a role in promoting M2 macrophage polarization. Thus in the absence of Btk, in response to M1 polarizing stimuli increased IL-10 production
together with reduced phosphorylation of key signaling intermediaries, combined with activation of p50 the inhibitory subunit of NF-kB could
potentially account for the observed preferential skew towards an M2 phenotype. Additionally this study has shown that in response to IL-4 and IL-13
Btk2/2 cells demonstrate an increased capacity to polarize towards an M2 phenotype as a result of enhanced STAT6 phosphorylation and increased
SHIP1 expression.
doi:10.1371/journal.pone.0085834.g005

M1 Macrophage Polarization Requires Btk

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e85834



5. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo
veritas. J Clin Invest 122: 787–795.

6. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a

leading role for STAT3. Nat Rev Cancer 9: 798–809.

7. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, et al. (2006) Suppressor of

cytokine signaling 1 negatively regulates Toll-like receptor signaling by
mediating Mal degradation. Nat Immunol 7: 148–155.

8. Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal

new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J
28: 2114–2127.

9. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, et al. (2009) Tolerance and M2
(alternative) macrophage polarization are related processes orchestrated by p50

nuclear factor kappaB. Proc Natl Acad Sci U S A 106: 14978–14983.

10. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer:
balance, tolerance, and diversity. Curr Opin Immunol 22: 231–237.

11. Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, et al. (2004)

Enhancer-mediated control of macrophage-specific arginase I expression.
J Immunol 172: 7565–7573.

12. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, et al. (2005) Inhibiting
Stat3 signaling in the hematopoietic system elicits multicomponent antitumor

immunity. Nat Med 11: 1314–1321.

13. Ostrand-Rosenberg S, Grusby MJ, Clements VK (2000) Cutting edge: STAT6-
deficient mice have enhanced tumor immunity to primary and metastatic

mammary carcinoma. J Immunol 165: 6015–6019.

14. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-

derived suppressor cells and induction of M1 macrophages facilitate the rejection

of established metastatic disease. J Immunol 174: 636–645.

15. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V,

et al. (2007) Macrophage-specific PPARgamma controls alternative activation
and improves insulin resistance. Nature 447: 1116–1120.

16. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, et al. (2011) Kruppel-like factor 4

regulates macrophage polarization. J Clin Invest 121: 2736–2749.

17. Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G (2004) LPS-induced

upregulation of SHIP is essential for endotoxin tolerance. Immunity 21: 227–

239.

18. An H, Xu H, Zhang M, Zhou J, Feng T, et al. (2005) Src homology 2 domain-

containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-
mediated LPS response primarily through a phosphatase activity- and PI-3K-

independent mechanism. Blood 105: 4685–4692.

19. Gabhann JN, Higgs R, Brennan K, Thomas W, Damen JE, et al. (2010)
Absence of SHIP-1 results in constitutive phosphorylation of tank-binding kinase

1 and enhanced TLR3-dependent IFN-beta production. J Immunol 184: 2314–
2320.

20. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol

phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National
Academy of Sciences 106: 7113–7118.

21. Spence S, Fitzsimons A, Boyd CR, Kessler J, Fitzgerald D, et al. (2013)
Suppressors of cytokine signaling 2 and 3 diametrically control macrophage

polarization. Immunity 38: 66–78.

22. Ni Gabhann J, Spence S, Wynne C, Smith S, Byrne JC, et al. (2011) Defects in
acute responses to TLR4 in Btk-deficient mice result in impaired dendritic cell-

induced IFN-gamma production by natural killer cells. Clin Immunol.

23. Doyle SL, Jefferies CA, O’Neill LA (2005) Bruton’s tyrosine kinase is involved in

p65-mediated transactivation and phosphorylation of p65 on serine 536 during

NFkappaB activation by lipopolysaccharide. J Biol Chem 280: 23496–23501.

24. Doyle SL, Jefferies CA, Feighery C, O’Neill LA (2007) Signaling by Toll-like

receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem 282: 36953–
36960.

25. Horwood NJ, Mahon T, McDaid JP, Campbell J, Mano H, et al. (2003)

Bruton’s tyrosine kinase is required for lipopolysaccharide-induced tumor
necrosis factor alpha production. J Exp Med 197: 1603–1611.

26. Horwood NJ, Page TH, McDaid JP, Palmer CD, Campbell J, et al. (2006)

Bruton’s tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not
IL-6, production. J Immunol 176: 3635–3641.

27. Lee KG, Xu S, Kang ZH, Huo J, Huang M, et al. (2012) Bruton’s tyrosine
kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl

Acad Sci U S A 109: 5791–5796.

28. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, et al. (2011) IRF5
promotes inflammatory macrophage polarization and TH1-TH17 responses.

Nat Immunol 12: 231–238.

29. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA (2009) GM-CSF-

and M-CSF-dependent macrophage phenotypes display differential dependence

on Type I interferon signaling. Journal of Leukocyte Biology 86: 411–421.

30. Hendriks RW, de Bruijn MF, Maas A, Dingjan GM, Karis A, et al. (1996)

Inactivation of Btk by insertion of lacZ reveals defects in B cell development only
past the pre-B cell stage. EMBO J 15: 4862–4872.

31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:
402–408.

32. Smith P, Mangan NE, Fallon PG (2009) Generation of parasite antigens for use
in Toll-like receptor research. Methods Mol Biol 517: 401–413.

33. Mangan NE, Dasvarma A, McKenzie AN, Fallon PG (2007) T1/ST2

expression on Th2 cells negatively regulates allergic pulmonary inflammation.
Eur J Immunol 37: 1302–1312.

34. Hams E, Saunders SP, Cummins EP, O’Connor A, Tambuwala MT, et al.
(2011) The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic

shock via alternative activation of macrophages and IL-10 production by B1

cells. Shock 36: 295–302.

35. Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, et al. (2010) Two

physically, functionally, and developmentally distinct peritoneal macrophage

subsets. Proc Natl Acad Sci U S A 107: 2568–2573.

36. Taneichi H, Kanegane H, Sira MM, Futatani T, Agematsu K, et al. (2008) Toll-

like receptor signaling is impaired in dendritic cells from patients with X-linked
agammaglobulinemia. Clin Immunol 126: 148–154.

37. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:

23–35.

38. Lin SL, Castaño AP, Nowlin BT, Lupher ML, Duffield JS (2009) Bone Marrow
Ly6Chigh Monocytes Are Selectively Recruited to Injured Kidney and

Differentiate into Functionally Distinct Populations. The Journal of Immunology
183: 6733–6743.

39. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, et al. (2004) The

chemokine system in diverse forms of macrophage activation and polarization.
Trends Immunol 25: 677–686.

40. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional

profiling of the human monocyte-to-macrophage differentiation and polariza-
tion: new molecules and patterns of gene expression. J Immunol 177: 7303–

7311.

41. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, et al. (2005)
Macrophage activation switching: an asset for the resolution of inflammation.

Clin Exp Immunol 142: 481–489.

42. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:
499–511.

43. Ramalingam TR, Reiman RM, Wynn TA (2005) Exploiting worm and allergy

models to understand Th2 cytokine biology. Curr Opin Allergy Clin Immunol 5:
392–398.

44. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, et al. (2007)
Chitin induces accumulation in tissue of innate immune cells associated with

allergy. Nature 447: 92–96.

45. Perez de Diego R, Lopez-Granados E, Pozo M, Rodriguez C, Sabina P, et al.
(2006) Bruton’s tyrosine kinase is not essential for LPS-induced activation of

human monocytes. J Allergy Clin Immunol 117: 1462–1469.

46. Gagliardi MC, Finocchi A, Orlandi P, Cursi L, Cancrini C, et al. (2003) Bruton’s
tyrosine kinase defect in dendritic cells from X-linked agammaglobulinaemia

patients does not influence their differentiation, maturation and antigen-

presenting cell function. Clin Exp Immunol 133: 115–122.

47. Jyonouchi H, Geng L, Toruner GA, Vinekar K, Feng D, et al. (2008)

Monozygous twins with a microdeletion syndrome involving BTK, DDP1, and
two other genes; evidence of intact dendritic cell development and TLR

responses. Eur J Pediatr 167: 317–321.

48. Amoras AL, da Silva MT, Zollner RL, Kanegane H, Miyawaki T, et al. (2007)
Expression of Fc gamma and complement receptors in monocytes of X-linked

agammaglobulinaemia and common variable immunodeficiency patients. Clin

Exp Immunol 150: 422–428.

49. Liu X, Zhan Z, Li D, Xu L, Ma F, et al. (2011) Intracellular MHC class II

molecules promote TLR-triggered innate immune responses by maintaining

activation of the kinase Btk. Nat Immunol 12: 416–424.

50. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev

Immunol 2: 725–734.

51. Hu X, Li WP, Meng C, Ivashkiv LB (2003) Inhibition of IFN-gamma signaling
by glucocorticoids. J Immunol 170: 4833–4839.

52. Li X, Tupper JC, Bannerman DD, Winn RK, Rhodes CJ, et al. (2003)

Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of
NF-kappa B in endothelial cells. Infect Immun 71: 4414–4420.

53. Kitaura J, Asai K, Maeda-Yamamoto M, Kawakami Y, Kikkawa U, et al. (2000)

Akt-dependent cytokine production in mast cells. J Exp Med 192: 729–740.

54. Mohammad DK, Nore BF, Hussain A, Gustafsson MO, Mohamed AJ, et al.

(2013) Dual Phosphorylation of Btk by Akt/Protein Kinase B Provides Docking
for 14-3-3zeta, Regulates Shuttling, and Attenuates both Tonic and Induced

Signaling in B Cells. Mol Cell Biol 33: 3214–3226.

55. Takahashi-Tezuka M, Hibi M, Fujitani Y, Fukada T, Yamaguchi T, et al. (1997)
Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through

JAK. Oncogene 14: 2273–2282.

56. Uckun F, Ozer Z, Vassilev A (2007) Bruton’s tyrosine kinase prevents activation
of the anti-apoptotic transcription factor STAT3 and promotes apoptosis in

neoplastic B-cells and B-cell precursors exposed to oxidative stress. Br J Haematol

136: 574–589.

57. Ohmori Y, Hamilton TA (2001) Requirement for STAT1 in LPS-induced gene

expression in macrophages. J Leukoc Biol 69: 598–604.

58. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, et al. (2005) SHIP represses the
generation of alternatively activated macrophages. Immunity 23: 361–374.

59. Antignano F, Ibaraki M, Kim C, Ruschmann J, Zhang A, et al. (2010) SHIP is

required for dendritic cell maturation. J Immunol 184: 2805–2813.

60. Weisser SB, McLarren KW, Voglmaier N, van Netten-Thomas CJ, Antov A, et

al. (2011) Alternative activation of macrophages by IL-4 requires SHIP

degradation. Eur J Immunol 41: 1742–1753.

61. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, et al.

(2012) Akt1 and Akt2 protein kinases differentially contribute to macrophage

polarization. Proc Natl Acad Sci U S A 109: 9517–9522.

M1 Macrophage Polarization Requires Btk

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e85834



62. Xu F, Kang Y, Zhang H, Piao Z, Yin H, et al. (2013) Akt1-Mediated Regulation

of Macrophage Polarization in a Murine Model of Staphylococcus aureus
Pulmonary Infection. J Infect Dis 208: 528–538.

63. Taha RA, Minshall EM, Miotto D, Shimbara A, Luster A, et al. (1999) Eotaxin

and monocyte chemotactic protein-4 mRNA expression in small airways of
asthmatic and nonasthmatic individuals. J Allergy Clin Immunol 103: 476–483.

64. Kawakami Y, Inagaki N, Salek-Ardakani S, Kitaura J, Tanaka H, et al. (2006)
Regulation of dendritic cell maturation and function by Bruton’s tyrosine kinase

via IL-10 and Stat3. Proc Natl Acad Sci U S A 103: 153–158.

65. Hata D, Kawakami Y, Inagaki N, Lantz CS, Kitamura T, et al. (1998)
Involvement of Bruton’s tyrosine kinase in FcepsilonRI-dependent mast cell

degranulation and cytokine production. J Exp Med 187: 1235–1247.
66. Shabestari MS, Rezaei N (2008) Asthma and allergic rhinitis in a patient with

BTK deficiency. J Investig Allergol Clin Immunol 18: 300–304.

67. Costa-Carvalho BT, Wandalsen GF, Pulici G, Aranda CS, Sole D (2011)

Pulmonary complications in patients with antibody deficiency. Allergol

Immunopathol (Madr) 39: 128–132.

68. D’Cruz OJ, Uckun FM (2013) Novel Bruton’s tyrosine kinase inhibitors

currently in development. Onco Targets Ther 6: 161–176.

69. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, et al. (2010) The

Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is

efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl

Acad Sci U S A 107: 13075–13080.

70. Byrne JC, Nı́ Gabhann J, Stacey K, Coffey BM, McCarthy E, et al. (2013)

Bruton’s Tyrosine Kinase Is Required for Apoptotic Cell Uptake via Regulating

the Phosphorylation and Localization of Calreticulin. J Immunol In press.

M1 Macrophage Polarization Requires Btk

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e85834


