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Abstract

Purpose

This work aims to develop, validate and optimize the radiolabeling of Starch-Based Microparti-

cles (SBMP) by 188Re and 68Ga in the form of ready-to-use radiolabeling kits, the ultimate goal

being to obtain a unique theranostic vector for the treatment of Hepatocellular Carcinoma.

Methods

Optimal labeling conditions and composition of freeze-dried kits were defined by monitoring

the radiochemical purity while varying several parameters. In vitro stability studies were

carried out, as well as an in vivo biodistribution as a preliminary approach with the intra-

arterial injection of 68Ga radiolabeled SBMP into the hepatic artery of DENA-induced rats

followed by PET/CT imaging.

Results

Kits were optimized for 188Re and 68Ga with high and stable radiochemical purity (>95%

and >98% respectively). The in vivo preliminary study was successful with more than 95%

of activity found in the liver and mostly in the tumorous part.

Conclusion

SBMP are a promising theranostic agent for the Selective Internal Radiation Therapy of

Hepatocellular carcinoma.
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Introduction

Hepatocellular Carcinoma (HCC), a liver cancer is the fifthmost common cancer and the sec-
ond leading cause of cancer death in men worldwide (seventh and sixth for women respec-
tively) [1]. HCC is associated with a poor prognosis, with a 5-year survival of 12% [2].
Depending on the stage of the disease and other prognostic parameters [3–6] several therapeu-
tic options are available but the only curative treatment is surgery, either resection or transplant
[2,7–9].

Selective Internal Radiation Therapy (SIRT) is a relatively new therapeutic modality [10]
that is increasingly applied in both primary and secondary liver tumors [11]. This technique
consists of the injection of yttrium-90 (90Y) microspheres to the tumor through the hepatic
arteries that vascularize the tumor in order to deliver high radiation dose while sparring the
healthy hepatic parenchyma that is supplied by the venous system [12–15]. 90Y is a pure β-

emitter (Emax = 2.3 MeV) with a half-life of 64h (2.67 days) [16] and a short tissue penetration
(mean 2.5 mm and maximum 11mm) [17]. SIRT is a two-step procedure, with a pre-therapeu-
tic step carried out before the therapy. A pre-treatment assessment is first performed for evalu-
ating the tumor vasculature, the potential extra-hepatic uptake and the hepatopulmonary
shunt. Following a diagnostic hepatic arteriography, a catheter is positioned selectively accord-
ing to tumor localization and therapeutic objectives. Then, human serum albuminmacroaggre-
gates (MAA) labeled with 99mTc are injected via this catheter in order to mimic the
biodistribution of the 90Y-microspheres that will be injected for therapy in the second step of
the procedure [18]. Scans post infusion of 99mTc-MAA allow firstly, the exclusion of patients
with a high percentage of radioactivity being shunted into the lungs or spread into any other
organ, such as the gastroduodenumand secondly, the determination of the predictive tumor
dosimetry. Both steps (pre-therapeutic and therapy itself) are based on the assumption that the
biodistribution of 90Y-microspheres and 99mTc-MAA will be identical. However, the MAA
have a different size and morphology (aggregates with heterogeneous shapes with size com-
prised between 10–100μm [19]) in comparison with the 90Y-microspheres (spherical shape
with size comprised between 20–40μm [20]) that can lead to a different biodistribution and an
approximate tumor dosimetry [11,15,18,21,22].

In order to overcome this problem we propose an original theranostic tool, the starch-based
microparticles (SBMP), as a unique system for both the pre-therapeutic step after technetium-
99m (99mTc) or gallium-68 (68Ga) radiolabeling and the treatment after rhenium-188 (188Re)
radiolabeling. These radionuclides offer the advantage of being all easily obtained from genera-
tors (99Mo/99mTc; 68Ge/68Ga and 188W/188Re) and do not require an on-site cyclotron like
fluor-18 (18F) [23–26]. 99mTc is a pure gamma emitter (Emax = 140 keV; t½ = 6.02h) while 68Ga
is a β+ emitter (Emax = 1.9 MeV; t½ = 68min); they are used for diagnostic purpose to perform
Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomogra-
phy (PET) imaging respectively. 188Re is a β- emitter (Emax = 2.1MeV; t½ = 16.98h) allowing
the radiotherapy but emits also a γ emission (155 keV) that can be imaged. SBMP was first
developed and patented in our laboratory for lung perfusion scintigraphy and formulated as
ready-to-use 99mTc radiolabeling kit [27–29].

These microparticles display several attractive features as theranostic vector for the SIRT of
HCC, i.e. a non-human/non-animal origin that ensures a safety toward the risk of disease
transmission and an ability for complexation of radioisotopes. Using the same particle in both
steps of the SIRT constitutes a major advantage, as the biodistribution of the diagnostic and
therapeutic agents should be identical. Furthermore the SBMP labeled with 68Ga for the imag-
ing and dosimetrywith PET offer improved sensitivity, spatial resolution and signal quantita-
tion compared with SPECT [30–32]. Finally, the SBMP labeled with 188Re for the treatment
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allow a very easy post-treatment imaging in order to verify the distribution of the therapeutic
agent. Hence, this leads us to consider the SBMP as a promising theranostic vector for the
SIRT of HCC.

In this work we were able to develop and optimize ready-to-use kits allowing fast and stable
labeling of SBMP with 188Re or 68Ga. For the diagnostic kit, we labeled the already optimized
99mTc-SBMP kit with 68Ga, and subsequently developed a dedicated kit for 68Ga. An in vivo
biodistribution by PET/CT (PET/Computed Tomography) of the SBMP radiolabeledwith
68Ga injected intra-arterially in a carcinogen-inducedHCC rat model was also carried out as a
very preliminary test of the pre-therapeutic step, prior to the mandatory comprehensive biodis-
tribution and dosimetry studies whose completion is required before considering human use.

Materials and Methods

Materials

Potato starch was a kind gift from Roquette Freres (Lestrem, France). Sodiummetaperiodate,
sodium borohydride, stannous chloride dihydrate (SnCl2, 2H2O), sodium gluconate and
cadaverine were purchased from Sigma Aldrich (USA). Medical argon gas was obtained from
Air Liquide Santé (Gentilly, France), and deionizedwater was delivered by a Milli-Q plus sys-
tem (Merck Millipore, Darmstadt, Germany). Solution of sodium perrhenate (188ReO4

-) was
obtained by saline elution of a 188W/188Re generator (IRE, Belgium) and then concentrated.
Solution of gallium trichloride (68GaCl3) is obtained from a 68Ge/68Ga generator (50mCi IGG-
100, Eckert&Ziegler, Germany), based on the TiO2 resin technology. It is eluted with 5mL of
0.1N HCl solution obtained fromHCl 30% suprapure (Merck Millipore, Germany) diluted in
ultrapure water (J.T.Baker, USA). Hydrophilic 5 mm syringe filters were purchased from Sarto-
rius (Palaiseau, France). Sodium acetate trihydrate 1M (pH = 4.1) was provided by Eckert&-
Ziegler (Germany).

Starch-Based MicroParticles (SBMP) synthesis

Microparticles were prepared according to a previously described and patented method [29].
Briefly, native starch microparticles of the desired size were selected by sieving, then oxidized
by sodium periodate to obtain dialdehyde starch. This step allows the grafting of a polyamine
ligand the cadaverine onto the modified starch particles. This grafting is stabilized by a reduc-
tion step with sodium borohydride to obtain the SBMP. Amino functions from the cadaverine
act as the complexant agent for radiometals like 99mTc, 188Re and 68Ga.
Size measurement. Size distributionmeasurements of the particles were carried out

through a counting analyzer Multisizer 3 Coulter Counter (BeckmanCoulter, France). Five to
10 mg of SBMP were suspended in a weak Isoton II electrolyte solution (BeckmanCoulter,
France) and drawn through a small aperture (200 μm) until at least 20,000 particles were
counted.

Formulation of starch-based microparticles as ready-to-use kits

Ready-to-use kits were prepared by adding the desired amount of SBMP, 1mL of NaCl 0.9%
and if needed amount of SnCl2 and gluconate to a sterile vial according to the different experi-
ments carried out. The microparticles were then lyophilized and kept under vacuum.

Radiochemical purity measurements

Radiochemical purity was assessed according to a previously describedmethod [27]. It consists
of a filtration of 0.5mL to 1mL of the labeledmicroparticles suspension on a 5-μm syringe filter.
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The RCP is determinedwith the following equation:

RCP %ð Þ ¼
Filter activity ðMBqÞ

Filter activity ðMBqÞ þ Filtrate activity ðMBqÞ
� 100

188Re radiolabeling

Determination of the optimal composition of 188Re labeling kits. In order to determine
the influence of each parameter on the RCP different variations of the composition of kits and
labeling conditions have been tested. The SnCl2 is a reducing agent required during the radiola-
beling process of the SBMP with 99mTc [27,28] as well as 188Re [16,33–35]. To define the opti-
mal amount needed for the complexation of the 188Re with the SBMP, a range of SnCl2 from
50μg to 2mg (n = 3) has been tested on kits containing an amount of 300mg SBMP. Then, the
appropriate quantity of particles was assessedwith kits containing 1mg of SnCl2 and a variation
from 50 to 400mg of SBMP (n = 3). Influence of the amount of radiolabeling activity was tested
with 100MBq and 3GBq and kits of 300mg SBMP with 1mg of SnCl2 (n = 3). A final optimiza-
tion step was carried out with the addition of a range of sodium gluconate from 0 to 60mg
(n = 3) in the selected 300mg SBMP kits. The gluconate is a weak chelate that allows the forma-
tion of a transitional complex and facilitate the complexation of 188Re with the ligand [36].
Apart from the variations, in most of the experiments SBMP kits have been labeled with about
100MBq of perrhenate, 2mL or 4mL of reaction volume and 30min of vortex agitation (Vor-
tex-Genie 2T, Scientific Industries, USA) before the measure of RCP.

In vitro Stability study. Kits containing 300mg of SBMP, 1mg of SnCl2 and 9mg of NaCl
(n = 3) were labeled with 2.5mL of perrhenate (3107 ± 422 MBq) followed by a vortex agitation
of 30min. After 1h of radiolabeling the first RCP is measured followed by the measures at 6h
and 24h, in order to determine the stability of the radiolabeling over time. After the first RCP,
2 aliquots of 0.5mL were removed to be incubated either with 4mL of rat plasma during 1h at
37°C or with 4mL of histidine 10-3M a metallic ion chelator during 3h at room temperature.

68Ga radiolabeling

Direct labeling with 68GaCl3 eluate

Native starch particles labeling: 20mg of native starch particles (n = 3) were labeled with gal-
lium trichloride (GaCl3) (552 ± 223 MBq) with addition of NaCl or HCl 0.1N if needed to
obtain a 4mL reaction volume and put under vortex agitation. RCP was taken at different time
(5, 10 and 30 min) by filtration.

SBMP labeling: 20mg (n = 6), 50mg (n = 3) or 100mg (n = 3) of SBMP and kits (originally
optimized for 99mTc radiolabeling [27,28]) containing 100mg of SBMP; 9mg of NaCl and 55μg
of SnCl2 were labeled with 4mL of 68GaCl3 (552±120MBq and 785±171MBq for the 100mg
kits) and put under vortex agitation. RCP was taken at different time (5, 10 and 30min).
Optimization of labeling with 68Ga with addition of pH4.1 buffer. Kits of 20mg of

SBMP and 9mg of NaCl; 50mg of SBMP and kits of 100mg of SBMP and 9mg of NaCl were
labeled with 4mL of 68GaCl3 (522±36MBq) and 0.5mL of sodium acetate trihydrate 1M
(pH4.1) and put under vortex agitation (n = 3). RCP was taken at 5, 10 and 30min. The pH was
measured on RCP filtrate with pH-indicator strips MColorpHast 2.0–9.0 (Merck Millipore,
Germany).

In vitro stability studies. Kits were labeled with 4.5mL of 68GaCl3 (698±33MBq) under
vortex agitation. After the first measure of the RCP at 5min, 0.5mL of SodiumAcetate
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trihydrate 1M was added to the kit to increase the pH from 1 up to 4 and obtain an injectable
solution. The RCP was monitored at different times (5, 10, 30 (n = 3) and 60min (n = 2)).

Histidine Challenge: Just after the addition of sodium acetate to the kits, 1mL of SBMP (i.e.
20mg of microparticles) was incubated with 4mL of histidine (10-3M) (Sigma-Aldrich,USA) at
room temperature under vortex agitation during 30min (n = 3). Labeling stability was assessed
by measuring the RCP both before the incubation and during the incubation with histidine at
5, 10 and 30min.

Fetal Bovine Serum (FBS) stability: Likewise, just after the addition of Sodium acetate in the
kits, 1mL of SBMP (i.e. 20mg of microparticles) was incubated with 4mL of FBS at room tem-
perature under vortex agitation during 30min (n = 3). FBS is a complex media that contained
among other proteins the transferrin, a natural iron chelator that can also chelate the ion Ga3+.
The RCP was monitored before and after the incubation with FBS (5, 10 and 30min).

In vivo studies

Ethic Statement. All experimental procedures and protocols used in this investigation
were reviewed and approved by the Institutional Animal Care and Use Ethics Committee of
the University of Liège (Belgium). The “Guide for the Care and Use of Laboratory Animals”,
prepared by the Institute of Laboratory Animal Resources, National Research Council, and
published by the National Academy Press, was followed carefully as well as European and local
legislation. Animal welfare was assessed at least once per day, and all efforts were made to min-
imize animal suffering during the experiments (mainly housing conditions as no suffering
appeared).
HCC inductionmodel. Hepatic carcinogenesis was chemically induced in seven-weeks-

old maleWistar rats weighting 180-296g obtained from the central animal facility of Liège Uni-
versity Hospital (Breeder agreement LA2610359). Diethylnitrosamine (DENA) (Sigma-
Aldrich, USA) was administered in drinkingwater (100mg/L) during 8 weeks [37]. The ani-
mals were kept in polycarbonate cages containing a disposable polyethylene plastic liner (Tec-
niplast, Italy) with 2 animals per cage in a room with controlled temperature (20–22°C),
humidity (50–70%), and light (12-hour light/dark cycles). Room air was renewed at the rate of
10 vol/hour. Tap water and food were provided ad libitum.

68Ga radiolabelingof SBMP kits. Ready-to-use kits containing 20mg of SBMP, 55μg of
SnCl2 and 9mg of NaCl were radiolabeledwith 4mL of 68GaCl3 (626±55MBq) under vortex
agitation. After adding 0.5mL of sodium acetate trihydrate 1M and checking the RCP by filtra-
tion the syringe was filledwith the radiolabeled SBMP solution when the RCP has reached at
least 98%. For 2 rats, 100 or 50μL of methylene blue was added in the syringe to facilitate the
following of the radiolabeled solution during injection.
Intra-arterial injection of SBMP labeledwith 68Ga. The totality of the procedure was

realized under general anesthesia until sacrifice. Three rats were successfully injected 10±1
weeks after the end of the induction. Rats were weighted and sequentially anesthetized by i.p.
injection of sodium pentobarbital (60 mg/kg of body weight) (Nembutal sodium solution,
Abbott Laboratories, North Chicago, IL) followed by isoflurane anesthesia (1.5% isoflurane,
3% oxygen, Abbott Laboratories, USA) until euthanasia. The surgical procedure was performed
under aseptic conditions and under a dissectingmicroscope. A laparotomy was performed to
expose the liver and the hepatic arteries. The celiac trunk, hepatic and gastroduodenal arteries
were identified and all the visible collateral arteries of the hepatic artery ligatured in order to
prevent the particles to spread in other organs than the liver. The injection of the 68Ga-SBMP
(21±26MBq) was realized directly in the celiac trunk by using a 27G ½ 0.4x13 needle (BD,
USA) connected to a 1mL syringe with the aim that the solution reached the hepatic artery and
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the liver. At the moment of perforation the artery was clamped to temporarily stop arterial
flow. The flow was restored during the injection, then after the injection a final ligature of the
celiac trunkwas performed. The rat muscular wall and skin were stitched up before the PET/
CT imaging. After final imaging the rat were kept under anesthesia and euthanatized by a lethal
injection of sodium pentobarbital (200 mg/kg of body weight) (Nembutal sodium solution,
Abbott Laboratories, North Chicago, IL). The liver was harvested and preserved in formalin
4% (Q-Path Chemicals, VWR Chemicals, USA).
PET/CT imaging. The in vivo biodistribution of the 68Ga-SBMP was monitored with a

clinical Gemini TF16 PET/CT scanner (Philips Medical Systems, The Netherlands). Static
image acquisitions were performed 17min±1 after injection of the 68Ga-SBMP. Rats were
maintained under isoflurane anesthesia (1.5% isoflurane, 3% oxygen, Abbott Laboratories,
USA) during the acquisition time of 20min. The method of reconstruction used had the TOF
(time-of-flight) capability disabled because of the small size of the animals [38]. Images were
analyzed using PMOD (version 3.607). Volumes-of-interests (VOI) for liver, for non-specific
activity in the intraperitoneal area and for the whole body were set manually with help of isovo-
lumetric tool.

Statistical Analysis

Statistical analyses were conducted using Prism 6.0 software (v6.0f, GraphPad software, La Jolla,
USA).When testing the null hypothesis, a threshold value for p of 0.05 (error α) was chosen to
set statistical difference. Anova test followed by a Tukey’s HSD test was used to performmultiple
comparisons of the RCPmeans for rhenium-188 and gallium-68 radiolabeling studies.

Results
188Re radiolabeling of SBMP

To develop the optimal 188Re radiolabeling kit, variation in several parameters were studied
and the RCP was monitored. Thus varied amount of SnCl2 needed for the kit was tested along
with the particle quantity, activity and gluconate addition. The SBMP have a mean size of
29.65±11.73μm and 1g of SBMP contains 87.64.106 particles.

A range of SnCl2 quantity from 50μg to 2000μg, was tested on 300mg SBMP kits to define
the best reducing conditions for the complexation of 188Re (Fig 1A). The maximal RCP (91.6
±0.9%) was obtained with kits containing 1000μg of SnCl2 and was significantly higher to RCP
obtained with 50μg of SnCl2 (p<0.0001) and with 500μg of SnCl2 (p<0.0018). Adding a greater
amount of SnCl2 (2000μg) did not cause a significant change in radiochemical purity
(p = 0.2839). For further studies the amount of SnCl2 per kit was therefore set to 1000μg. The
influence of particles quantity on RCP was assessed with increasing amount of SBMP from
50mg to 400mg (Fig 1B). The RCP increases with the quantity of SBMP up to 300mg. The max-
imal RCP (91.6±0.9%) was obtained with kits containing 300mg of SBMP and was significantly
higher to RCP obtained with 50mg of SBMP (p<0.0001), 100mg of SBMP (p<0.0001) and
200mg of SBMP (p<0.0321). Adding a higher amount of SBMP (400mg) did not cause signifi-
cant change in radiochemical purity (p = 0.742).

This composition of 300mg of SBMP and 1mg of SnCl2 was chosen to conduct the further
investigations. The ability of the SBMP kit to complex high activity of 188Re was tested (Fig
1C). The RCP were not significantly different (p = 0.4602) whether the radiolabeling studies
were conducted with high (3097±345MBq) or low (116±16MBq) activities.

Kits containing 300mg of SBMP; 1mg of SnCl2 were labeled with 3GBq of perrhenate and
underwent stability study over time and competition tests in rat plasma and histidine 10-3M a
metallic ion chelator (Table 1). The radiolabeling is stable over time and in competition.
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In order to optimize radiolabeling of the SBMP kit, the influence of addition of gluconate to
the kit was tested (Fig 1D). The RCP reached 96.4±0.1%with the addition of 30mg of gluconate
and was significantly superior to the addition to the SBMP kit of 10mg of gluconate
(p = 0.0013), 60mg of gluconate (p = 0.0071) or no gluconate (p = 0.0011).

68Ga radiolabeling of SBMP

The study of complexation of 68Ga by microparticles was first carried out by using directly a
68GaCl3 eluate without any buffer at room temperature (Fig 2A). The kinetic over time of the
radiolabeling of 68Ga was monitored with the measure of the RCP 5min, 10min and 30min
after the beginning of the radiolabeling reaction. As shown on Fig 2A native starch particles
does not react with 68Ga since the RCP does not reach 3%, whereas SBMP were successfully
radiolabeled.Using direct labeling from 68GaCl3 eluate the quantity of SBMP had an influence
on the RCP. Indeed the RCP kinetic of 20mg of SBMP radiolabeledwith 68GaCl3 was slow and
the maximal RCP did not reach 70% giving a RCP between 35.6±26.1% and 61.6±25.6% (Fig
2A). The radiolabeling improved when using a kit containing 50mg of microparticles, with a
RCP = 91.7±1.0% after 10min of reaction, and reached a RCP = 94.5±0.3% after increasing the

Fig 1. Influence on the RCP of several parameters during the 188Re radiolabeling of SBMP. (a) RCP of 300mg

SBMP radiolabeled kits with varied amount of SnCl2. (b) RCP of 1mg SnCl2 radiolabeled kits with varied amount of

SBMP. (c) RCP of 300mg SBMP, 1mg SnCl2 kits with varied amount of activity. (d) RCP of 300mg SBMP, 1mg SnCl2
kits with varied amount of gluconate.

doi:10.1371/journal.pone.0164626.g001

Table 1. Stability over time and competitions tests of 300mg SBMP kits with 1mg of SnCl2 radiolabeled by 188Re.

Stability over time Competition test

Time after radiolabeling (h) Incubation time

1 6 24 Rat plasma +1h Histidine +3h

RCP (%) 88.8±0.5 88.0±0.7 83.8±5.4 84.4±1.5 83.7±1.3

doi:10.1371/journal.pone.0164626.t001

188Re/68Ga SBMP Labeling for HCC Theranostic
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time of reaction to 30 min (p = 0.0218). However an even better kinetics of labeling reaction
was obtained with kits containing 100mg of SBMP as the RCP reached 98.7±0.2% after 10min
of reaction (p = 0.0001) and was maximal (99.1±0.1%) after 30min (p = 0.0002). We observed
a similar kinetic with 100mg SBMP kits already optimized for the 99mTc containing 55μg of
SnCl2, the reducing agent needed for 99mTc or 188Re [16,33–35].

The optimized radiolabeling of SBMP by 68Ga was achieved by adding sodium acetate trihy-
drate 1M (pH = 4.1) in the kit just after the addition of 68Ga eluate (Fig 2B). These labeling condi-
tions allowed a high and stable kinetic of radiolabelingwith RCP>95% from 5min and�99%
from 10min for whatever was the amount of microparticles in the kit with no statistical difference
between 20mg, 50mg and 100mg. For the same amount of sodium acetate trihydrate (0.5mL), we
observed slight variations in the pH according to the quantity of SBMP with a pH ranging from
3.0–3.6 for 20mg; 3.9 for 50mg and a suitable pH for injection of 4.0 with 100mg of SBMP.

In vitro stability studies (Table 2) showed a stable radiolabelingwith a high RCP of almost
100% both in a complex media such as Fetal Bovine Serumand also in histidine solution a metal-
lic ion chelator. This study mimics the stability in blood after injection.As control the RCP was
monitored in parallel with the unchallenged SBMP up to 60min and the RCP was also>99%.

In vivo studies of the 68Ga-SBMP

A bioevaluation of the 68Ga-SBMP was carried out in 3 rats induced with a carcinogen to
develop HCC tumor, as a preliminary study of the SIRT’s pre-therapeutic diagnostic step, in

Fig 2. 68Ga radiolabeling of SBMP. (a) Direct radiolabeling of varied amount of SBMP or native starch with 68GaCl3 eluate. (b)

Optimization of 68Ga radiolabeling of varied amount of SBMP with addition of 0.5mL of sodium acetate trihydrate 1M (pH4.1).

doi:10.1371/journal.pone.0164626.g002

188Re/68Ga SBMP Labeling for HCC Theranostic

PLOS ONE | DOI:10.1371/journal.pone.0164626 October 14, 2016 8 / 17



order to evaluate the behavior, stability and biodistribution of the particles in vivo (Fig 3). For
this experiment, kits of 20mg of SBMP (optimized for 99mTc labeling i.e. with 55μg of SnCl2)
were labeled with 626MBq±55MBqwith addition of 0.5mL of sodium acetate trihydrate 1M

Table 2. In vitro stability studies: 68Ga radiolabeling of 100mg SBMP kit with 55μg of SnCl2.

Radiochemical purity

Radiolabeling time 5 min 10 min 30 min 60min

Stability over time 95.6±2.2% 99.7±0.1% 99.9±0.1% 99.9% (100%; 99.8%)

Incubation time 5min 10min 30min

Histidine competition 99.6±0.2% 99.8±0.1% 99.8±0.1%

FBS competition 99.3±0.2% 99.5±0.1% 99.2±0.1%

doi:10.1371/journal.pone.0164626.t002

Fig 3. PET/CT imaging of DENA-induced rats injected intra-arterially with 68Ga-SBMP and macroscopic view of the liver. On the

macroscopic view, (open abdominal view) the major tumors nodules are identified by white arrowheads for the rat n˚3 and for the rat n˚8 the dashed

line delimits the upper tumorous part of the liver. In the column displaying the ROI on the corresponding PET/CT slice: the orange ROI corresponds to

the liver, the green one to the intraperitoneal area and the pink one to the activity counted as the rest of the body. Abbreviations: CT (Computed

Tomography); PET (Positron Emission Tomography); MIP (Maximum Intensity Projection) and ROI (Region of Interest).

doi:10.1371/journal.pone.0164626.g003
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(pH = 4.1) with a RCP>98%. The PET/CT imaging shows that all injections resulted in the
particles being locally gathered in the liver with no spreading throughout the body (Fig 3). This
is confirmed by the PET biodistribution analysis: the 68Ga-SBMP are concentrated in the liver
with a mean of 96.4±0.9% (rat n°1: 97.4%; n°2: 96.3% and n°3: 95.6%) of the total activity in
the rat, with the rest of the activity in the intraperitoneal area surrounding the liver with a
mean of 3.4±1.2% (rat n°1: 2.1%; n°2: 3.7% and n°3: 4.4%). No activity was found in the rest of
the body (mean of 0.2±0.3%with rat n°1: 0.5% and the 2 others rats: 0.0%). Previous studies
have shown that the intravenous injection of the SBMP results in a biodistribution in the lungs
with all of the microparticles trapped in the lungs capillaries [27]. Since no activity in the lungs
was observed, this supports a stability of the SBMP and the fact that they stay confined to the
liver microvasculature with no recirculation. The macroscopic aspect of the liver showed that
among the 3 rats, one of them did not present any lesions (rat n°1) despite the DENA induc-
tion. The second rat (n°2) had well defined tumor nodules rather large with several smaller
lesions across the whole liver with a surrounding parenchyma with a smooth aspect. The rat
n°3 displayed a widely spread HCC in the left lobes of the liver with a granular aspect while the
right lobe was not affected by tumor. The radiolabeled particles in the rat without any lesion
(n°1) were distributed homogeneously throughout the whole liver whereas the activity in the
two other rats was found mostly in the tumorous parts of the liver (Fig 3).

Discussion

In the context of HCC, the development of a unique radiolabeled vector for both the pre-thera-
peutic evaluation (68Ga-SBMP) and the treatment itself (188Re-SBMP), could solve the issues of
miscorrelation in the biodistribution encountered in the clinical practice when using 99mTc-
MAA and the 90Y-microspheres [11,18,21,22].

The size of SBMP vary from 7 to 60μm with a mean of 30μm [27,28]. The average size is
comparable to the 90Y-micropsheres currently used in SIRT. However the size distribution
of the SBMP is different, with some smaller particles, which theoretically could lead to a distri-
bution further downstream in the liver microvasculature. This may favorably modify the
microscopic dosimetry but this aspect will require appropriate comparative studies with 90Y-
microparticles. By their non-human and non-animal origins they avoid risk of disease trans-
mission. The range of tissue penetration and Emax is similar between 90Y and 188Re. The 90Y
(Emax = 2.3 MeV) have a maximum range of 12mm and a mean of 2.8mmwhile the 188Re
(Emax = 2.1 MeV) have a maximum range of 11mm and a mean of 2.4mm [39,16]. 188Re half-
life is shorter than 90Y (17.0 h versus 64.1 h respectively). However, contrary to 90Y, a pure beta
emitter, the 188Re has the advantage to possess a gamma emission with a similar energy than
99mTc (Emax[99mTc] = 140keV and Emax[188Re] = 155keV, 15% [16,39]) allowing a SPECT
imaging of the particles after the injection in an easiest way than with 90Y. Post-treatment
imaging is important in order to evaluate the accurate delivery of the therapeutic dose: verify
the distribution of the particles, the absence of extrahepatic deposition and predict the treat-
ment efficacy [20,40–42]. 90Y can be indirectly imaged by SPECT through bremsstrahlung
radiations that are created when the β particles interact with the matter, but with poor spatial
resolution and result only in approximate evaluation. A gain in resolution can be gained with
PET by imaging the very small amount of positron (0.003%) emitted through the decay of 90Y
[43–47]. The direct imaging of 188Re could offer an easier and better quantitative assessment.

Our previous study has demonstrated that SBMP was not sensible to the enzymatic degra-
dation by the alpha-amylase [28]. In the lungs the half-life of SBMP approached 3h due to
mechanical degradation with the forces of friction encountered in the lungs. It is an advantage
for patients in lung perfusion scintigraphy, since the time for the acquisition is already
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sufficient. These forces of friction are not present in the liver and we did not observe any SBMP
degradation in vitro or in vivo during our investigations. However the in vivo stability of the
compounds is of primary importance, especially considering the therapeutic one, i.e. the SBMP
radiolabeledwith 188Re, and further investigation in animal models is needed.

The optimized 188Re dedicated kits (300mg of SBMP, 1mg of SnCl2, 9mg of NaCl and 30mg
of gluconate) contain a higher quantity of SnCl2 than 99mTc dedicated kits (1mg versus 55μg);
this is due to the fact that perrhenate is more difficult to reduce than perrtechnetate [16,33].
The addition of 30mg of gluconate in the kits seems to help the reaction of complexation. The
gluconate is a weak chelate that can form transitional complex with the perrhenate and reduce
its oxidation state to facilitate the complexation [36].

The SBMP kit offers advantages and flexibility. The 188Re is easily available from in-house
generator and cost-effective [48–50]. The production of the 90Y-microspheres depends directly
of a cyclotron and currently their very high cost is a challenge for a broader use [39,48]. More-
over the 188Re labeling process of SBMP is fast, performed at room temperature and the activity
per particles can be varied and adjusted according to the amount of activity put into the kit.
The 188Re kit of 300mg contains approximately 26 million of particles.With a RCP of 96.4%
and perrhenate elution activities between 3GBq and 22GBq [48], theoretical specific activity of
SBMPmay range from 114Bq/particle to 811Bq/particle. This places the SBMP between the
SIR-Sphere1 (50Bq/particle) and the TheraSphere1 (2500Bq/particle) [17,18,20,51]. They
offer an intermediate alternative to overcome the limitations encountered in some cases with
the two clinical devices. The lower specific activity of SIR-Sphere1 imply a higher number of
particles injected (approximately 40–80 millionmicrospheres per treatment) and this could
lead to the saturation of the entire vascular bed with an incomplete administration of the thera-
peutic dose [51–53] and a potential limitation of effect of the radiations due to hypoxia. Indeed,
oxygenated cells are more sensible to the radiations than hypoxic cells [54,55]. On the contrary,
TheraSphere1 have a high specific activity per microsphere, hence a lower number of particles
needed for treatment (approximately 2–4 millionmicrospheres) [51]. This prevent the prob-
lems of saturation and the oxygenation is maintained [56] but an inadequate coverage of the
tumor volume could occur [51–53]. The aim of an ideal device would be to obtain an optimal
balance between the number of particles (the embolic effect) and the therapeutic dose injected
(the radioactive effect) [53] to achieve a good biodistribution (coverage of all the tumor volume
by the particles) without reaching a saturated state of the entire vascular bed that would pre-
vent the full administration of the intended dose [51,57]. The characteristics of the 188Re-
SBMP kit constitute a promising alternative for the SIRT of HCC.

SBMP kits for the 99mTc radiolabeling have already been optimized for lung perfusion scin-
tigraphy but our results prove that they are also very appropriate for the radiolabelingwith
68Ga. Furthermore the 68Ga radiolabeling of the SBMP is an improvement in the development
of an optimized radiotheranostic vector for SIRT. In comparison to the clinically used 99mTc-
MAA, the 68Ga-SBMP provides two advantages: (i) the vector is the same for the pre-therapeu-
tic step and the therapy (SBMP), and (ii) 68Ga allows the use of PET which is more accurate for
dosimetry than SPECT, with better sensitivity and spatial resolution [30–32]. Hence, the use of
68Ga-SBMP would provide a more precise and quantitative assessment of the biodistribution,
thus allowing for improved individual dosimetry and therapy planning. The use of 99mTc-
SBMP instead of 68Ga-SBMP is also possible for the pre-therapeutic step if no PET is available,
but the 68Ga-SBMP should be preferred when both SPECT and PET are available.

The fact that native starch are not labeled by 68Ga highlights the importance of the ligand
grafted onto the SBMP for the radiometals’ chelation. The ligand, a polyamine, allows the com-
plexation of both the 188Re (most likely in its +5 oxidation form) and the 68Ga (in +3 oxidation
state) by the numerous nitrogen atoms that create good conditions as hard donors for chelation
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[58,16,59]. The labeling of SBMP by 68Ga with a RCP�95% or higher was achievedwith several
labeling conditions, at room temperature and within 5 min of reaction. In the case of direct
radiolabeling the higher and stable RCP�98% were obtained with 100mg of SBMP only, corre-
sponding to 8.8 million of particles. The direct radiolabeling of 100mg kits dedicated to 99mTc
containing 55μg of SnCl2 was also successful with a slightly slower kinetic that can be due to
the reducing agent. The optimized labeling conditions were attained with the addition of
sodium acetate trihydrate 1M, a pH = 4.1 buffer. Not only has it allowed to optimize the 68Ga
radiolabeling of all SBMP quantities tested but with the increased pH of the radiolabeled solu-
tion, it is thereby injectable. The ligand grafted onto the SBMP, the cadaverine is very basic,
hence variations in pH were observedwith the same volume of acetate added.With a greater
amount of SBMP the amount of acetate required to reach pH that is acceptable for injection is
lower, as shown with the 100mg SBMP kits. With acetate condition even the 20mg kits could
(without or with SnCl2 in the case of the in vivo study) attain a RCP>95% and even higher,
whereas it only reached 60% of RCP after 30min with direct labeling. Again the kinetic is faster
and reaches higher RCP without SnCl2. During our investigations we have observed that the
best way to obtain the higher RCP was to add the acetate just after the 68GaCl3 and not before.
The in vitro stability studies consistently showed a very stable labeling, as we never observed
any decrease in the RCP after the maximum value is reached. During our investigation we did
not see any influence of the amount of activity on the RCP as seen with perrhenate. The activity
tested ranged from 367 up to 930MBq that correspond to the range obtained through the life of
the 68Ge/68Ga generator.

The in vivo preliminary study was carried out in rats induced with DENA, a chemical car-
cinogen to develop HCC, this model offer the advantage of being histopathologically similar to
human [60–62]. Thus the HCC nodules would be irrigated by arteries whereas the healthy
parenchyma is irrigated by the venous system. However, the disadvantage of this model is its
small size, particularly for interventional endovascular procedures. This first in vivo test was
performed as a very preliminary evaluation of the biodistribution and stability of the SBMP
after the intra-arterial injection. The 68Ga-SBMP were used for this first preliminary study in
rats, as it would first be used in the pre-therapeutic step of SIRT for diagnostic, dosimetry and
therapy planning purpose. In this context, we did not use the 188Re since as a therapeutic radio-
nuclide it would leads to radioprotection constraints too demanding for an initial preclinical
evaluation.Moreover it should be noted that the intra-arterial injection in the rat model is a
major technical challenge in itself. In place of the catheterization of the femoral artery via
angiographic monitoring [15], a surgical intervention was carried out with ligature of the col-
lateral arteries except the hepatic artery. The direct injection of the radiolabeled particles into
the celiac trunkwas difficult.One problem encountered when injecting the particles was the
tendency of SBMP to easily sediment on the syringe by gravity. Like the 90Y-microspheres used
clinically [42,51] they are microparticles in suspension and like everymicroparticles easily sedi-
ment in time without agitation. To perform the injection of the 90Y-microspheres, dedicated
infusion-sets for TheraSphere1 and SIR-Sphere1 have been conceived. These sets allow a
slow perfusionmatching the hepatic arterial flow rate [51] with a right suspension of the parti-
cles preventing sedimentation. However in our case, the difficulty is that no agitation can be
done during the injection if the particles sediment again. The clinical infusion-sets are not
appropriate to be used with a rat model. Thus injected activity and quantity of particles varied
from one rat to another. A maximal activity of 51MBq was successfully injected in the last rat
(n°3) after a continuous agitation of the particles in the syringe just before injection. For all the
injections there was no spreading of the radiolabeled solution outside the artery except for the
rat n°2 for which a part of the solution has extravasated to the abdominal cavity due to a slight
damage of the celiac trunk during the injection. The extravasated solution being colored could
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bemostly removed. All injections resulted in the 68Ga-SBMP being locally gathered in the liver
with more than 95% of the total activity. Moreover in the rats which developed the HCC, the
activity was particularly found in the tumorous parts of the liver. This can be explained by the
use of intra-arterial injection and the fact that liver tumors are irrigatedmostly by the arteries
whereas healthy parenchyma is irrigated by the venous system [12–15]. In the rat (n°1) no
change in the blood supply occurred since no carcinogenesis developed [63]. This explains the
homogeneous distribution of the particles observed in the liver. Moreover when injected intra-
venously, SBMP are trapped in the lungs capillaries [27]. No activity was found in the lungs,
supporting the fact that SBMP do not recirculate. The activity observed in the rest of the body
is negligible in the rat n°1 (0.5%) and is not observed in the other rats. The limited intraperito-
neal activity may be due to thin non-ligatured collateral arteries that were not recognizeddur-
ing the surgery. The outcome of the injection is dependent of the success of the ligature of all
the small collateral arteries. In some cases the ligature of all the collateral is difficult or even
impossible. In any event, the results support the preliminary study that the particles are depos-
ited in the liver since no activity was found that could be explained by blood distribution
beyond the liver arterial circulation.

As observedpreviously, due to the difficulty of the intra-arterial injection in a small size
model such as the rat, further studies need to be conducted in a biggermodel, more appropriate
to the interventional procedures. Hence, in perspective, in order to lead this work toward the
clinic, further preclinical biodistribution and efficacy studies will be carried out in the rabbit
with the VX2model [64]. The injection would be easier in the femoral artery with the use of
angiography.

Conclusion

This work shows that the SBMP is a promising new theranostic agent for the SIRT of HCC.
They can be labeled by 3 different radionuclides, 99mTc [27,28], 68Ga and 188Re, at room tem-
perature with fast labeling, with the potential of being used with SPECT and PET as well as for
therapeutic purpose.
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