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Abstract
A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genet-

ics studies allows screening the entire genome to discover novel genes that modulate brain

structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in

such genome-wide based imaging genetic studies can be computationally intense and also

likely has low statistical power since a stringent multiple comparisons correction is needed

for searching over the entire genome and brain. In imaging genetics with functional mag-

netic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate

focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-

wise search to single-value summary measures within a priori ROIs could prove efficient

and promising. The goal of this investigation is to evaluate the sensitivity and reliability of dif-

ferent single-value ROI summary measures and provide guidance in future work. Four dif-

ferent fMRI databases were tested and comparisons across different groups (patients with

schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were

conducted. Our results show that four of these measures, particularly those that represent

values from the top most-activated voxels within an ROI are more powerful at reliably

detecting group differences and generating greater effect sizes than the others.

Introduction
The effect of genes on cognition and behavior is modulated through a complex series of inter-
mediate steps including changes at the molecular level and alternations in neural circuits [1, 2].
In the past decade, imaging genetics has emerged as a promising genetic association analysis
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approach that uses a variety of state-of-the-art anatomical or functional brain imaging mea-
sures as phenotypes to evaluate the impact of genetic variation on the susceptibility to neuro-
psychiatric disorders [1, 3, 4]. The quantitative measures from so-called structural imaging
(e.g., volume, cortical thickness, surface area, etc.) or brain function (physiological response of
the brain during information processing or in the so-called “resting state”) derived from neuro-
imaging modalities are potential intermediate phenotypes that are both genetically associated
with neuropsychiatric disorders and closely related to the underlying neural mechanisms of the
disease process [4, 5].

Two general association-based approaches have been used in imaging genetics. The candi-
date gene association approach is a strategy for studying the effects of a well-defined candidate
gene that is a good candidate because of its implication in the biological pathway of the disease
on measures of brain biology and circuits. On the other hand, the genome-wide association
(GWA) approach seeks to discover novel genetic loci which might be related to brain structure
and function through screening the entire genome for potential associations. To date, a number
of GWA studies of imaging phenotypes have been conducted and some of these studies
reported multiple single nucleotide polymorphisms (SNPs) related to risk for schizophrenia
and Alzheimer’s disease [6–10].

Imaging phenotype measures in GWAS depend on large groups of neurons whose structure
and function are affected by multiple genes. While studying the relationship between multi-
gene and multiple intermediate neuroimaging phenotypes can generate exciting new discover-
ies, it places a big challenge for researchers to choose an overall valid strategy and apply suitable
computational tools and statistical methods [11, 12]. There are two major issues related to the
GWAS approach in imaging genetics. One is that relating whole genome and whole brain data
requires immense computational power [13]. Therefore, prior studies have typically made a
significant reduction in imaging space and only examined a few imaging variables, such as
using magnetic resonance imaging (MRI) measures of hippocampal atrophy [14], total cerebral
brain volume (TCBV), white matter hyperintensity (WMH) volumes, etc. [15]. Secondly a
whole brain voxel-wise approach in genome-wide searches would also likely have low power. A
stringent multiple comparisons correction is needed for searching over the entire genome and
all the voxels in the brain to control for the number of false positives.

Resolving this issue is especially critical for studies using functional magnetic resonance
imaging (fMRI), a popular neuroimaging tool used in Imaging Genetics studies. A practical
solution is to apply dimensionality reduction on the acquired fMRI time series that contains
tens of thousands of voxels in a single brain volume.

Traditionally, the first step toward dimensionality reduction of fMRI data is built upon
model-driven approaches such as performing a general linear model to reduce the 4-D time
series to a 3-D statistical parametric map (SPM) for each subject. And then a second-level
voxel-wise statistics is performed to find activated voxels across subjects [16]. However, correc-
tion for multiple comparisons across all the voxels results in much reduced statistical power
[17]. In addition, due to the anatomical and functional variability between brains of different
individuals, the peak locations of the regional activation vary significantly across subjects, even
with careful spatial normalization and smoothing [16]. Therefore, the sensitivity of the group-
level analysis may be compromised by this approach [18].

Because many experimental paradigms in imaging genetics activate focal regions that can be
pre-specified based on a priori knowledge, reducing the whole-brain search to single-value
summary measure of ROIs is a viable approach, as evaluated in the current study. Two ques-
tions arise when performing the ROI analysis. The first question is how to select an appropriate
ROI [19, 20] for extracting the single-value summary measure. The second, potentially more
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difficult question, is how to find an ROI measure that is robust and sensitive to group differ-
ences [21], which is the primary focus of the current study.

In order to investigate the effects of different ROI summary measures on the group analysis
of fMRI activation, ten ROI summary measures were chosen for several considerations. The
most commonly used ROI summary measures are to simply take the ROI mean or median.
However, due to volume averaging artifacts in fMRI, the mean or median summary over a
multi-voxel ROI may not optimally represent activity within the ROI as one region may not be
functionally homogenous, that is, activated voxels may be grouped with inactive or de-acti-
vated voxels resulting in lower summary measures [18, 21]. One way to reduce the influence of
these voxels of no interest is to use the first eigenimage [22] to compute a weighted ROI mean.
Another strategy is to select voxels above a certain threshold, i.e., “activated” or “top fraction”
voxels in an ROI [20]. In this study we used either the individual voxel’s p values (p = 0.05) or
percentile (q = 25th %, 10th %, or 5th %tile of all voxels) as the threshold. These above-threshold
voxels are regarded as showing significant difference in BOLD response across task sessions
underlying the cognitive/behavioral process being tested and are more likely to represent true
activity within the ROI.

Another set of activation-based ROI summary measures is to select voxels surrounding each
individual’s ROI maxima (peak) of activation [21]. Choosing the active voxels around individ-
ual peaks can accommodate the inter-subject variability in the location of activation [23]. Due
to activation fluctuation, a single peak voxel could contain extreme value that may not best rep-
resent the individual’s activation in the ROI. Selecting a group of activated voxels surrounding
the peak and using the mean as the ROI single-value summary measure can help reduce the
between-subject variance. Here we used several strategies to select voxels surrounding peak
voxels: top N (N = 10, 20, 50) contiguous voxels surrounding the peak, a sphere surrounding
the peak, an activated cluster surrounding the peak, or voxels within the ROI whose time
courses are highly correlated with the peak voxel’s time course. Finally, we also examined the
number of activated voxels (i.e., the extentmeasure), which is a commonly used ROI summary
measure in fMRI studies [24].

While the ROI approach can increase statistical power, strong prior hypotheses of the par-
ticular ROI used are required. These prior hypotheses of ROI selection can either be based on
published literature of the task of interest [21], made on an anatomical basis, or focused on the
functional activation induced by the task [25]. Despite of more advanced ROI selection meth-
odologies based on multivariate pattern analysis (e.g., independent component analysis, ICA)
[19], since the primary goal of this work was to assess and compare the ten ROI-based single
summary measures described above, we chose the three simple, univariate ROI definition strat-
egies to detect group differences in an attempt to provide practical guidance for future work for
selecting the most optimal imaging phenotype/measure in large scale genome-wide imaging
genetics studies.

The number of voxels in an ROI may also affect the effect size. In general, we expect to see
greater variability between ROI summary measures in ROIs that contain a larger number of
voxels such as the anatomical ROIs. As for the smaller 10-mm spherical ROI, the voxels
selected using the different ROI summary measures may largely overlap and result in similar
effect sizes across the measures.

In this project we examined the ROI single-value summary measures using four datasets,
with the purpose to test the reliability of each measure across datasets. Firstly, it has been con-
sistently observed that patients with schizophrenia (PTs) show increased brain activity in
DLPFC regions compared with normal control subjects (NCs) during the NBack working
memory task when performance does not differ between the groups [26]. We compared the
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replicability of the ROI summary measures by comparing two performance matched groups
(PTs vs. NCs) using an NBack task dataset that was split into two matched subgroups.

The unaffected siblings (SIBs) of patients with schizophrenia have also been shown to mani-
fest DLPFC hyperactivity compared with control subjects with similar levels of performance
[27], suggesting this phenomenon to be a heritable trait measure related to genetic risk for
schizophrenia. Therefore we included unaffected siblings in the second dataset to examine
which of the ROI summary measures tested are more sensitive to uncover genetic risk shared
by patients with schizophrenia and their unaffected siblings.

The third dataset was chosen to test the validity of the different ROI summary measures in an
imaging genetics study. This is a particularly relevant investigation, since genetic variants have
typically been shown to have very subtle effects on imaging measures (less than 1% per allele),
which is much lower than the effect due to any disease process that is discernable with neuroimag-
ing [28]. For this part of the study, we chose a dataset comprised of NBack fMRI data in healthy
volunteers from three genotype groups related to a common functional polymorphism (Val108/
158 Met) in the Catechol-O-methyltransferase (COMT), which accounts for variation in enzy-
matic activity and cortical dopamine catabolism. This was based on prior evidence that the
Val158 allele of COMT is associated with inefficiency in prefrontal cortex information processing
and lower performance during the NBack working memory task in an allele dosage fashion Val/
Val> Val/Met>Met/Met [29]. Therefore, we expect to observe greatest DLPFC activation dur-
ing the N-Back working memory task in the Val/Val group when compared to the Val/Met
group who would show greater activation than the Met/Met group. Despite the differences in
subjects populations, the above three datasets used the same blocked design NBack paradigm. To
test if the results from the analyses of N-Back block design data could be generalizable to event-
related data for a different cognitive process and ROI, we examined the ROI summary measures
using an event-related modified Flanker task dataset. In a previous study [30], patients with
schizophrenia and their unaffected siblings showed decreased dorsal anterior cingulate cortex
activation relative to normal controls during No-Go condition.

Methods

Participants
There were three groups of subjects whose data were used in this project: patients with schizo-
phrenia (PTs), their unaffected siblings (SIBs), and normal control subjects (NCs). All partici-
pants were recruited nationwide as part of an ongoing family study of schizophrenia at the
Clinical Brain Disorders Branch, NIMH, NIH (Protocol 95-M-0150, Dr. Weinberger PI). The
study was approved by the institutional review board of the Intramural Program of the
National Institute of Mental Health, National Institutes of Health. All participants were
assessed with a Structured Clinical Interview for DSM-IV (APA, 1994). They were prescreened
to exclude those with premorbid IQ below 70, those with recent drug or alcohol abuse (within
1 year) or more than 5 years of previous abuse, and those with medical or neurological condi-
tions. Most PTs were on a stable regimen of antipsychotic medication (typical neuroleptics and
atypical antipsychotics). SIBs and NCs were selected with the additional requirements that
they are not on any current psychotropic pharmacological treatment. Further, NCs should not
have a first-degree relative with a schizophrenia spectrum disorder. After a complete descrip-
tion of the study to the subjects, written informed consent was obtained.

Experimental Procedures and Image Acquisitions
The datasets used in current study were collected during two cognitive tasks: the NBack task
[27] and the modified Flanker task [31].
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NBack Task. The NBack working memory task consisted of four 30-sec blocks of the
0-Back condition alternating with four blocks of the 2-Back condition, in which a random
series of numbers (1 to 4) were presented every 2 seconds for 500 milliseconds at set locations
in a diamond-shaped box. During the 0-Back condition, participants were asked to respond to
current number being presented by pressing the corresponding keys on a keypad; in the 2-Back
condition, participants encoded the number currently being shown and simultaneously
recalled and responded to the number presented two stimuli earlier.

BOLD fMRI was performed on a General Electric (GE) Signa 3T scanner (GE Healthcare,
Waukesha, WI, USA). A gradient-echo EPI (Echo Planar Imaging) sequence was used to
acquire 120 images (24 interleaved 6 mm axial slices, in-plane resolution = 3.75 × 3.75 mm2,
FOV = 24 cm2, matrix = 64 × 64, TR/TE = 2000/28 ms, flip angle = 90°).

Images were preprocessed in SPM5. The first four scans were discarded to allow for signal
saturation. Images were realigned to the first image of the scan run, spatially normalized into a
standard stereotactic space with a voxel size of 3 mm isotropic [Montreal Neurological Institute
(MNI) template] by using affine and nonlinear transformations, smoothed with a full-width
half-maximum (FWHM) Gaussian filter (8 mm) and ratio normalized to the whole-brain
global mean. All fMRI data were individually examined for motion artifacts and excluded for
excessive intra-scan motion (>2 mm translation,>1.5° rotation). A statistical image for the
contrast of 2-Back Vs. 0-Back was then obtained for each subject.

The effect of interest was the 2-Back versus 0-Back contrast, using which abnormal right
dorsolateral prefrontal cortex (rDLPFC) function had been previously reported in patients
with schizophrenia and unaffected siblings [27].

Flanker Task. The modified Flanker task [31] is an event-related task designed to evaluate
response inhibition and interference suppression. Each session consisted of four experimental
conditions and a total of 145 trials. Each trial was presented for 800 ms that included five sym-
bols with the central arrow pointing left or right, flanked by four symbols, two on each side. In
three conditions (‘congruent’, ‘incongruent’, ‘neutral’), the subjects were asked to indicate the
direction of the central arrow on the screen while ignoring the four flankers. During the ‘No-
Go’ condition, the subjects were instructed to withhold their motor response when the flankers
were ‘X’s. In current project, we limited our analysis to the correct trials in the No-Go condi-
tion to focus on response inhibition process.

BOLD fMRI was performed on a GE Signa 3T scanner. A gradient EPI sequence was used to
acquire 300 images (26 axial slices, 4mm thicknesswith 1mmgap, in-plane resolution= 3.75 × 3.75
mm2, FOV = 24 cm2, matrix = 64 × 64, TR/TE = 2000/28 ms, flip angle = 90°).

Images were preprocessed following the same procedures as NBack task (slice-timing cor-
rection, motion correction, spatial normalization and smoothing) in SPM5. A contrast image
for response inhibition (No-Go) was generated per subject per session using the correct trials
only.

Datasets
As described earlier, we tested the ROI single-value summary measures using four datasets: 1)
the NBack task split dataset, 2) the NBack task sibling dataset, 3) the NBack task COMT data-
set, and 4) the Flanker task dataset.

The NBack task split dataset. This dataset consisted of 100 PTs and 100 NCs. To compare
the replicability of the ROI summary measures, the dataset was split into two equal subsets.
Each subset comprised of 50 PTs and 50 NCs. The NCs in each of the split subsets were
matched (t test p values were all above 0.2; see S1 Table) for age, gender, premorbid IQ esti-
mated by the scores on wide range achievement test (WRAT), handedness, task performance
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on 2-Back blocks (% correct), and the image time course stability as measured by temporal sig-
nal-to-noise ratio (TSNR), which is calculated by dividing the mean of the time course by its
standard deviation (TSNR; [32]). The two NC groups and the two PT groups were also
matched, respectively.

In addition, to validate the robustness of our results and to ensure good replication power,
we ran many random samplings (without replacement) on this dataset. That is, from among
the 100 PTs in the first dataset, we used an automated script to randomly choose 50 of them
during each iteration. Then among the 100 NCs in the same dataset, we selected 50 NCs that
were matched for age, gender, WRAT, and 2-Back accuracy (t test p values were all above 0.2)
with the 50 PTs. We repeated this random sampling and matching procedure 1000 times so
that each sampled subset contained 50 PTs and 50 matched NCs that were matched for age,
gender, WRAT, and 2-Back accuracy.

The NBack Sibling dataset. The dataset include three groups: NCs, SIB, and PTs, with 43
subjects in each group. To reduce the confound effect of task performance on the prefrontal
activation [33], we only selected the subjects with relative high performance in the 2-Back task
with the percentage of accuracy greater than 70%. The three groups were also matched for age,
gender, WRAT score, handedness, percent correct on the 2-Back WM task, and TSNR (one-
way ANOVA p values were all above 0.2; see S2 Table).

The NBack COMT dataset. A third dataset consisted of NBack data from 216 NCs (43
Val/Val individuals, 106 Val/Met individuals, and 67 Met/Met individuals). The three groups
were matched for age, gender, WRAT score, handedness, percent correct in 2-Back task, and
TSNR (one-way ANOVA p values were all above 0.2; see S3 Table).

The Flanker task dataset. Our current dataset include two groups: 28 NCs and 28 PTs,
which is a subset of the data used by Sambataro et al. [30] with the two groups matched for age,
gender, WRAT score, handedness, percent correct on No-Go task, and TSNR (t test p values
were all above 0.2; see S4 Table).

Data Analysis
For each of the datasets, three types of ROI definition strategies were used for extracting the
single summary values: a smaller spherical ROI based on published literature (see details
below), a bigger anatomical ROI based on an atlas, and a task-activated cluster constrained by
the anatomical ROI. See S1 Fig.

The ROI masks (S1 Fig). For the NBack task dataset 1 and 2, the three types of ROI
masks were: 1) A 10-mm sphere ROI placed in the right dorsolateral prefrontal cortex
(rDLPFC) and centered on the coordinates MNI xyz = [40 31 34] obtained from a published
meta-analysis (Owen et al., 2005); 2) Right DLPFC anatomical ROI. The ROI was created by
combining the right BA46 and lateral BA9 and dilated by 2 voxels from the Brodmann Area
Atlas provided by Wake Forest University PickAtlas (WFU PickAtlas; www.fmri.wfubmc.edu/
downloads), with the medial aspect removed; 3) Task-activated cluster in the right DLPFC,
which was defined using the following steps: For each of the NC and PT groups, a main effect
of task map was created using a one-sample t test across all the subjects in that group. Then for
each of these group maps, the voxels above p< 0.05 familywise error (FWE) correction within
the right DLPFC anatomical mask were deemed as task-activated voxels. A joint map between
the two group maps was used as the ROI mask.

The ROIs used for the NBack task dataset 3 were the same as those used for dataset 1 and 2
except for the center of 10-mm spherical ROI based on previous literature. Egan et al. [29]
reported a greater activation in right DLPFC for Val/Val> Val/Met>Met/Met contrast with
the peak located in BA 46 (MNI xyz = 58 32 12) during 2-Back task. Therefore, we chose this
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peak location as the center for the 10-mm spherical ROI, with x coordinate shifted to 52 so that
the voxels in this 10-mm radius ROI are within the brain.

For the Flanker task dataset 4, three ROIs were used 1) A 10-mm sphere ROI placed in the
dorsal anterior cingulate (ACC) centered on MNI coordinates xyz [0 15 36] obtained from
Sambataro et al. [30]; 2) Anatomical ACC ROI by combining BA 24 and BA 32 and dilated by
1 voxel from the WFU PickAtlas; 3) Similar to the NBack task ROI mask, a joint map in an
anatomical ROI encompassing ACC based on activations in NC and PT group maps was used
as the ROI mask.

ROI Single Value Summary Measures. We used ten different ROI summary measures to
extract single-value summaries from an ROI, see Table 1. The procedures of voxel selections
for each ROI summary measure are described below. For measures 3 to 10, we also masked the
ROI with a threshold (p = 0.05) to select the activated voxels.

All ROI summary values were extracted individually from each subject’s first level contrast
map (e.g., 2Back> 0Back contrast) to account for between-subject variation in functional acti-
vation patterns. All thresholds are set at an individual subject level.

1. Mean

a. Mean linear fit coefficient of all voxels in the ROI.

b. The mean linear fit coefficient of the voxels above a p threshold (p = 0.05, uncorrected in
this study) in the ROI.

2. Median

a. Median linear fit coefficient of all voxels in the ROI.

b. The median linear fit coefficient of the voxels above a p threshold (p = 0.05) in the ROI.

3. Contrast map mean weighted by the first eigenimage of an ROI

Eigenimages of an ROI were obtained using singular value decomposition (SVD), which is
an operation that decomposes an original time-series (M) from all voxels in the ROI into
two sets of orthogonal vectors V (patterns in space) and U (patterns in time) where:

½U; S; V � ¼ SVD ðMÞ

Table 1. The methods for extracting values from an ROI.

A: Without applying p threshold B: Only include voxels above p threshold of 0.05

1 Mean Mean

2 Median Median

3 ROI mean weighted by eigenimage ROI mean weighted by eigenimage

4 Voxels above percentile (75%tile, 90%tile, or
95%tile) threshold

Voxels above percentile (75%tile, 90%tile, or 95%
tile) threshold

5 ROI peak

6 Top 10, 20, or 50 voxels around the ROI peak

7 Voxels within a sphere (radius = 6, 7.5, or 10
mm) around the ROI peak

Voxels within a sphere (radius = 6, 7.5, or 10 mm)
around the ROI peak

8 Voxels whose timecourse are highly
correlated with the peak voxel

Voxels whose timecourse are highly correlated
(r = 0.7, 0.8, 0.9) with the peak voxel

9 Voxels in cluster containing ROI peak

10 Extent of ROI peak cluster

doi:10.1371/journal.pone.0151391.t001
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Here S is a diagonal matrix of decreasing singular values [22]. The first eigenimage is the
pattern that accounts for the greatest amount of the variance-covariance structure. We use
it to weight the contrast map so that the voxels that represent the most common pattern of
the activation in an ROI are enhanced and the other irrelevant voxels are suppressed.

a. For each individual subject’s time series, we extracted the timecourses of all the voxels
within the ROI and then the first eigenimage of these voxels was calculated by SVD. Each
voxel’s linear fit coefficient was weighted by this eigenimage and the weighted mean was
taken as the ROI summary measurement.

b. Instead of using all voxels in the ROI, we first selected only the voxels above a p threshold
(p = 0.05). Then the first eigenimage of the selected voxels was calculated and used to
weight the linear fit coefficient of each above-threshold voxel. The weighted mean was
taken as the ROI summary measurement.

4. Voxels above percentile threshold

a. We selected voxels whose t values were among top percentiles (25th %tile, 10th %tile, or
5th %tile) of all voxels. The mean of the linear fit coefficient of these voxels was taken as
the ROI summary measurement.

b. We first selected the voxels above a p threshold (p = 0.05) in the ROI. Then a percentile
threshold was applied to these the above-p-threshold voxels. The mean of the linear fit
coefficient of these selected voxels was used as the ROI summary measurement.

5. Peak voxel within the ROI
For this approach, we chose the voxel with the maximum t statistic in an ROI from the SPM
T map, and then from the SPM contrast map we extract this voxel’s linear fit coefficient
(beta), which is essentially the slope value from the first-level multiple regression, as the
ROI’s summary measurement.

6. Top N contiguous voxels surrounding the peak
Because BOLD fMRI is affected by various types of noise, using only the peak voxel value
may bias the estimation of an ROI. Starting from the peak, this “top-down” voxel search is
to find a group of contiguous voxels with highest t values surrounding the peak. Similar to a
breadth-first search, the algorithm grew the voxel set by first visiting the 26 voxels adjacent
to the peak, and then sorting the voxels by their t values to ensure that the obtained set con-
tain the highest activated voxels. The search stopped when the number of voxels N reached
a certain threshold (N = 10, 20, 50 voxels). If N did not reach the threshold after the first
round (in this case, 50), then in the second round, the search visited the voxels surrounding
the top voxels in the sorted set, and so on. After the search, these voxels’mean linear fit coef-
ficient was used as the ROI summary measurement.

7. Voxels within a sphere surrounding the peak

a. We selected the voxels within a sphere (radius = 6, 7.5, or 10 mm) surrounding the peak
of the t contrast map. Then the mean of the linear fit coefficient of these within-sphere
voxels was taken as the ROI summary measurement.

b. First the voxels above a p threshold (p = 0.05) in the ROI were extracted. Then the above-
threshold voxels within a sphere (radius = 6, 7.5, or 10 mm) surrounding the peak were
picked and the mean linear fit coefficient of these voxels was taken as the ROI summary
measurement.
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8. Voxels’ timecourses correlated with the peak voxel

a. We computed the correlation coefficients between the peak voxel’s timecourse and the
timecourses of all other voxels in the ROI. We used different correlation coefficient
thresholds (r = 0.7, 0.8, and 0.9) to select the voxels that are highly correlated and clus-
tered together with the peak. The mean of the linear fit coefficient of these selected voxels
was used as the ROI summary measurement.

b. We first selected voxels that are above a p threshold (p = 0.05) in the ROI. Then a similar
algorithm as in 8A was applied to find the voxels that are highly correlated with the peak
voxel.

9. Cluster containing ROI peak
We used a p threshold (p = 0.05) to extract the voxels that are considered activated in the
task. These voxels may form several clusters in the ROI. We selected only the voxels in the
same cluster as the peak and then computed the mean linear fit coefficient of these voxels.
There was no restriction for the maximum cluster size. If there were no voxels above the p
threshold, then the individual’s data was considered missing in the group analysis.

10. Extent of ROI peak cluster
We applied a p threshold (p = 0.05) and identified clusters of activated voxels from the
above-threshold voxels. The number of voxels within the cluster that contained the peak
was used as the ROI summary measurement.

Statistical Analysis. All extracted data were analyzed in Statistical Analysis System (SAS)
software developed by SAS Institute Inc., Cary, NC. Two-sample t-tests were performed to test
these measures’ ability to detect a significant difference in activation between schizophrenia
patients and normal controls for dataset 1 and 4. One-way ANOVAs were used to test the sen-
sitivities of different ROI summary measures in finding the significant group effect, i.e.,
PTs> SIBs> NCs for dataset 2 and Val/Val> Val/Met>Met/Met for dataset 3.

We used the effect size to gauge the power of a test. Cohen’s d was used to explore the effect
size index for the t tests [34], and an Omega Squared test was performed to test the effect size
index for the ANOVAs [35, 36]. The power of a test is monotonically related to its effect size,
and a test with a larger effect size will have better power (for a given sample size).

Test of Small ROI Localization Differences between Groups. Any differential effects
observed across the different summary measures may have been influenced by whether all the
voxels in an ROI or only a subset of voxels within an ROI are chosen to create the summary
measure. Here we tested whether the localization of the selected cluster of voxels is different
across the groups in our study. Since many of the ROI summary measures were related to
selecting voxels surrounding each individual subject’s peak, as a result, a between-group differ-
ence derived from such a measure may be driven by a difference in peak locations between
groups. This issue was further examined by a permutation test.

We first extracted the peak coordinates within the anatomical ROIs from each individual
subject’s contrast map. Next, the Euclidean distance between the centroids of peak coordinates
among all the subjects in each group was computed (for three or more groups, the maximum
distance between each pair of centroids was used). Then we randomly assigned the group label
of each subject and computed the Euclidean distance between the centroids of these randomly
formed groups (each group contained exactly the same number of subjects as the original data-
set). The permutation test on this Euclidean distance was repeated for 1000 times. We then
computed the percentile of the actual group centroid distance against the distribution of
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random distance obtained from the permutation test. The hypothesis is that if the peak loca-
tions are different across the groups, then the actual group centroid distance will have a much
higher percentile (>95%) in the distribution.

Results and Discussion
The aim of the present work was to compare the effect of ten different implementations of ROI
single value summary measures on the results of group analysis, including both diagnostic
groups (patients with schizophrenia vs. normal control subjects) and genetic groups (COMT
Val & Met polymorphism, Val/Val, Val/Met, Met/Met). We also compared the three different
types of ROI selection strategies generally adapted by researchers in the literature: 1) a spherical
ROI centered around previously published group peak coordinates; 2) an anatomical ROI
encompassing multiple Brodmann areas based on a priori information; and 3) task-activated
cluster within an anatomical ROI. We found that four ROI single-value summary measures
were reliably consistent across datasets to show significant group differences and produce rela-
tively higher effect sizes: 1) top percentile (measure 4), 2) the top N contiguous voxels sur-
rounding the peak voxel (measure 6); 3) a sphere surrounding the peak voxel (measure 7); and
4) peak-correlated voxels (measure 8). Different ROI summary measures are more similar
when using the smaller, focal spherical ROIs.

ROI Summary Measures versus Voxel-wise SPM Analysis
We first tested the replicability of these ROI summary measures in the split dataset, in which
100 NCs and 100 PTs were split into two subsets. The voxel-wise analysis showed a significant
difference between PTs and NCs, using small volume correction within the anatomical DLPFC
ROI implemented in SPM8 when data from all the PTs and NCs were included [37]. However,
for each subset, the significance of group differences did not survive correction (p> 0.001
uncorrected for both subset 1 and 2; see Table 2).

In comparison, for the ROI summary measurements, except for measure 10 (number of
activated voxels), 9 out of the 10 measures revealed a significant difference between the NCs
and PTs for the 10-mm spherical ROI (p< 0.05), and the results were agreeable in both subsets
(see Fig 1); measures 4, 6, 7, and 8 revealed significant group differences for the anatomical
ROI (p< 0.05) in both subsets; measures 3, 4, 6, 7, and 8 revealed significant group differences
for the task-activated ROI (p< 0.05) in both subsets.

Table 2. Group difference results from the voxel-wise analysis within anatomical ROIs.

Dataset x y z Z PFWE-corr

Dataset 1: 2 Back > 0 Back contrast, PTs vs. NCs in right DLPFC anatomical ROI

All subjects: 100 PTs vs. 100 NCs 36 30 36 3.62 0.04

60 9 27 3.47 0.07

Subset 1: 50 PTs vs. 50 NCs 39 30 33 3.01 0.24

Subset 2: 50 PTs vs. 50 NCs 33 27 39 3.11 0.19

Dataset 2: 2 Back > 0 Back contrast, 43 PTs vs. 43 SIBs vs. 43 NCs in right DLPFC anatomical ROI

30 33 39 3.29 0.13

Dataset 3: 2 Back > 0 Back contrast, 43 Val/Val vs. 106 Val/Met vs. 67 Met/Met in right DLPFC
anatomical ROI

51 39 9 4.16 0.01

Dataset 4: Flanker NoGo contrast, 28 NCs vs. 28 PTs in Anterior Cingulate anatomical ROI

9 21 36 4.03 0.03

doi:10.1371/journal.pone.0151391.t002
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We extended the comparisons to datasets 2, 3, and 4 (Table 2 and Fig 2). For the NBack Sib-
ling dataset, we observed a trend but no significant difference for group comparison
PTs> SIBs> NCs (p = 0.13 FWE-corrected). However, significant differences were found for
measures 4, 5, and 8 (p< 0.05) across the three types of ROIs. For the NBack COMT dataset
and the Flanker dataset, significant group differences were observed in both the voxel-wise
analysis and the ROI summary measures (p< 0.05).

In summary, the ROI summary measures always demonstrated a group difference whereas
in half of the datasets the voxel-wise approach sometimes failed to show a significant effect.
One advantage of extracting ROI summary over the voxel-level analysis is that the ROI sum-
mary is extracted at the individual subject level, partially compensating for inter-subject ana-
tomical and functional variability. Even though the image data have been normalized to
standard space and spatially smoothed, there is still a significant degree of variability across
subject’s anatomy [23]. In addition, even though the voxels across subjects can be aligned per-
fectly, the activation may not be. By expanding the search domain to the whole ROI and
extracting individual-specific peak activation, it is more likely to precisely pinpoint the real
activity for each individual.

ROI Summary Measures and Types of ROI
Three types of ROIs were used for single-value extraction: 10-mm sphere, anatomical ROI, and
task-activated cluster. Overall, as depicted in Figs 1 and 2, more ROI summary measures that
generated significant results (p< 0.05) in the 10-mm spherical ROI than for the other two ROI
approaches. For the first dataset, 9 ROI summary measures for the 10-mm spherical ROI
showed significant group differences as compared to 4 ROI summary measures for the anatom-
ical ROI and 5 ROI summary measures for the task-activated ROI (Fig 1); for the second data-
set, the numbers are 5 (10-mm spherical ROI), 3 (anatomical ROI), and 3 (task-activated ROI)
(Fig 2, panel a); for the third dataset, the numbers are 9, 5, 1 (Fig 2, panel b); and for the fourth
dataset, the numbers are 8, 7, 8 (Fig 2, panel c). One explanation is that the 10-mm spherical

Fig 1. Using the NBack split dataset to evaluate the replicability of ROI summarymeasures. Three different strategies for ROI selection were used: (a)
a 10-mm spherical ROI centered around the MNI coordinates xyz = [40 31 34]; (b) an anatomical ROI encompassing BA46 and lateral BA9; and (c) a task-
activated cluster ROI. Asterisks denote significance level in group comparisons: * p < 0.05; ** p < 0.01.

doi:10.1371/journal.pone.0151391.g001
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ROI was created based on a known focal location that was active during the task and significant
group differences had been observed previously. Therefore, the mean of the 10-mm spherical
ROI was greater than those of the other two ROIs (p< 0.001; Fig 3, S2 Fig, red lines). For this
approach, a strong a priori hypothesis is required to create such an ROI, i.e., one needs a meta-
analysis or a previously published study that has shown significant group difference in this
region to locate the center of the ROI, which could vary based on the comparison group being
tested. For example, the ROI centered at BA9 that was used in dataset 1 and 2 could not apply
for dataset 3 because a significant group difference for COMT genotype effect was observed at
a different location in BA46 by Egan et al. (2001).

As shown in Fig 3 and S2 Fig, the peak measures were greater for the anatomical and task-
activated ROIs (p< 0.001). Further analysis showed that for dataset 1, only 17.5% of individual
subjects’ peak locations in right DLPFC were within the limited 10-mm spherical region. This
indicates that due to individual’s anatomical and functional variation in peak activity, the small
spherical ROI around MNI coordinates chosen from published literature cannot include all
subjects’ peak activity locales.

ROI Summary Measures Comparisons
The most important question we attempted to answer in this study is which ROI summary
measures can consistently generate a high effect size and significant group differences that are
reproducible. We first start the comparisons between with and without individual voxel p
value thresholds, and then compare these measures across datasets.

Fig 2. The generalizability of the ROI single value summarymeasures is further examined across three datasets. (a) The NBack Sibling dataset, PTs
vs. SIBs vs. NCs, one-way ANOVA; (b) the NBack COMT dataset, Val/Val vs. Val/Met vs. Met/Met, one-way ANOVA; and (c) the Flanker dataset, NCs vs.
PTs, t test.

doi:10.1371/journal.pone.0151391.g002
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Fig 3. Groupmean plots for two NBack datasets. (a) The split dataset PTs vs. NCs; and (b) the Sibling
dataset, PTs vs. SIBs vs. NCs. Selected ROI summary measures (mean, mean of voxels above p = 0.05
threshold, peak, and peak-correlated voxels) were used to extract single-value summaries from three types
of ROIs in right DLPFC. * p < 0.05; ** p < 0.01. Error bars represent standard errors.

doi:10.1371/journal.pone.0151391.g003
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The effect of applying individual voxel p value threshold. We postulated that applying a
p value threshold to individual voxels may improve the sensitivities to group differences,
because the selected ‘activated’ voxels will better represent voxels that show group differences
within an ROI. We compared the sensitivities of ROI summary measures 1, 2, 3, 4, 7, and 8
with or without applying p threshold to individual voxels (red vs. black bars on Figs 1, 2 and 4).
Here we chose a liberal threshold of p = 0.05. After applying the p threshold, for the two-sample
datasets (Fig 4A), the effect sizes for mean (measure 1A, 0.38 vs. 1B, 0.44), median (measure
2A, 0.25 vs. 2B, 0.40), and first eigenimage weighted mean (measure 3A, 0.23 vs. 3B, 0.44)
increased for the anatomical ROI; whereas there was no change for other measures. Similarly,
for the three-group comparisons (dataset 2 and 3, see Fig 4B), compared to other summary
measures, a bigger increase in the effect size was found for measures 1, 2, and 3 for all ROIs
(10-mm spherical ROI, measure 1A, 0.012 vs. 1B, 0.021; measure 2A, 0 vs. 2B, 0.017; measure
3A, 0 vs. 3B, 0.021; Anatomical ROI, measure 1A, 0 vs. 1B, 0.013; measure 2A, 0 vs. 2B, 0.004;
measure 3A, 0.001 vs. 3B, 0.016; Task activated ROI, measure 1A, 0 vs. 1B, 0.006; measure 3A,
0.003 vs. 3B, 0.011).

Fig 4. Results summary.We (a) combined the results of the two-sample t tests by averaging the effect sizes from dataset 1 and 4 together; and (b)
combined the one-way ANOVA results by averaging the effect sizes from dataset 2 and 3. The horizontal lines in (a) represent the medium effect size (0.50)
for Cohen’s d and the lines in (b) represent the small effect size for Omega squared (0.01).

doi:10.1371/journal.pone.0151391.g004
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The green lines in Fig 3 depict the magnitude and standard errors of measure 1B, ROI mean
of all voxels above p threshold, and the red lines represent measure 1A, ROI mean without p
threshold. In general, the ROI mean increased after applying the p threshold. For all ROIs in
subset 2 of dataset 1, the group difference became significant for 1B. But this did not generalize
to other datasets (Fig 2).

In summary, the mean, median, and eigenimage weighted mean measures were greatly
affected by the inactive or deactivated voxels in an ROI. By applying a threshold and selecting
only the top activated voxels, the effect sizes significantly improved. This finding is consistent
with Mitsis et al. [20], who observed that selecting the top fraction voxels of an ROI can
increase signal-to-noise ratio and consequently the sensitivity. In comparison, other measures
already selected the voxels that are around the peak (sphere, peak-correlated voxels) or above
certain threshold (percentile). Thus the effect sizes did not improve much by applying an addi-
tional p-value threshold.

Replicability between the two NBack subsets. We split the first dataset into two matched
subsets in order to test the replicability across the ten different ROI single-value summary mea-
sures for the three types of ROIs. The results are depicted in Fig 1.

For the 10 mm spherical ROI (Fig 1A), all measures except for the mean, median, and the
peak-cluster extent measures, showed consistency across the two subsets. For the bigger ana-
tomical (Fig 1B) and task-activated ROIs (Fig 1C), the top percentile (measure 4), top N voxel
(measure 6), sphere (measure 7), and peak-correlated voxels (measure 8) generated significant
group difference results (p< 0.05) consistently across the two split datasets. As shown in Fig
3A, the group difference magnitude of the peak measure (measure 5) (anatomical ROI, 0.21;
task-activated ROI, 0.22) was greater than measure 8 (anatomical ROI, 0.15; task-activated
ROI, 0.14). However, measure 8 has much reduced between-subject variance (anatomical ROI,
0.25; task-activated ROI, 0.24) relative to measure 5 (anatomical ROI, 0.56; task-activated ROI,
0.55). In comparison, the ROI mean measure (measure 1) has both smaller group difference
magnitude (anatomical ROI, 0.03; task-activated ROI, 0.05) and variance (anatomical ROI,
0.13; task-activated ROI, 0.16). This is the reason why the peak-correlated voxels measure, as
well as other measures to select multiple voxels surrounding the peak, could be more sensitive
to group difference than the peak and the mean measures for the anatomical and task-activated
ROIs. This brings up a question when only a subset of voxels within an ROI are chosen to cre-
ate the summary measure, whether the results can be extended to the whole ROI. We argue
that these selected voxels are around the contrast’s peak, which has been used by many
researchers to characterize the activation of the whole ROI. The mean of the selected subset of
voxels (including the peak) represents the most highly activated region in each individual’s
ROI and can be deemed as a valid measure.

To further examine the replicability of the ROI summary measures, using an automated
script we randomly selected 50 PTs and 50 matching NCs from the first dataset. This was done
1000 times. For each sample we calculated the Cohen’s d and group t test p values for each ROI
measure. S3A Fig shows the averaged Cohen’s d of the 1000 samples for each ROI measure,
and S3B Fig shows the percentage of total number of samples (out of the 1000 sampled data)
with t test p< 0.05 and p< 0.01, respectively, for each ROI measure. The patterns shown in
Fig 1 and S3A Fig are almost identical.

Replicability across the NBack datasets. We further compared the replicability of these
ROI single-value summary measures by using two more NBack datasets: the sibling dataset
and the COMT dataset. Both datasets include three groups, and we used one-way ANOVAs to
test for an effect (PTs>SIBs>NCs) in the sibling dataset, and the COMT Val/Met polymor-
phism dosage effect (Val/Val>Val/Met>Met/Met) in the COMT dataset, respectively (Fig 2A
and 2B). We noticed that the significant levels and the effect sizes were smaller relative to the
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split dataset, where a two-group comparison was conducted. A consistent finding is that the
measure of peak-correlated voxels (measure 8) always stood out to be significant for the group
comparisons, even though the effect size is in the range between the small (0.01) and medium
(0.59) of Omega Squared [38]. In addition, the top percentile voxels measure (measure 4) also
detected consistent significant group effects (p< 0.05) for the spherical ROI and the anatomi-
cal ROI.

Replicability across all the datasets. We averaged the Flanker NoGo task NCs vs. PTs
group comparison results with the ones generated by the split dataset. Overall the patterns rep-
licated what we observed in dataset 1. For the 10 mm spherical ROI, all measures except for the
peak-cluster extent measure generated medium level effect sizes; whereas for anatomical and
task-activated cluster, the percentile (measure 4), top N contiguous voxels (measure 6), sphere
surrounding the peak (measure 7), and peak-correlated voxels (measure 8) consistently gener-
ated medium effect sizes.

Parameter Comparisons
As stated in the Methods section, we used three different parameters for voxel selections for
measure 4 (percentile = top 25%, 10%, and 5%), measure 6 (N = 10, 20, and 50 voxels), measure
7 (radius = 6, 7.5, and 10 mm), and measure 8 (correlation coefficient r = 0.7, 0.8, and 0.9). No
significant difference in effect size was observed across these different approaches (S4 Fig).

Between-Group Small ROI Localization Differences
Some of the measures we are proposing here selected only a smaller subset of voxels out of a
large ROI (i.e., measures 4, 5, 6, 7, 8, 9, and 10). Thus, the localization of the smaller cluster
should be taken into consideration when comparing the extracted ROI summaries across
groups. If the localizations of the selected cluster of voxels are different across groups, then the
group difference in magnitude of ROI single value summaries would be confounded by the
clusters’ locations. Since most of the ROI summary measures were related to selecting smaller
clusters around the peak voxel of the larger ROI, the peak coordinates were used to approxi-
mately represent the smaller clusters’ center for each individual contrast map.

As described in the Method section, we used a permutation test to compare the peak locali-
zation between groups. S5 Table lists the summary of the permutation results and the percen-
tile of the actual group centroids distance in the permutation distribution for each dataset used
in the study. It shows that there is no significant difference between groups in the peak location.
Therefore, the group differences we observed in the ROI summary measures were not con-
founded by ROI localization differences between groups.

Future directions
In this study, the ROI summary measures were based on image data that were spatially normal-
ized and smoothed, and the ROIs were defined from atlases. The ROI analysis may be more
precise if the ROIs are defined based on individual anatomy [20, 23]. Going forward, we plan
to examine how ROI summary measures can be improved for the unnormalized and
unsmoothed fMRI image data by defining the ROIs in native space using anatomical
landmarks.

In this project we only employed three simple ROI definition strategies. More advanced
methodologies based on multivariate pattern analysis, such as ICA and multi-voxel pattern
analysis (MVPA), also can be used to define ROIs. Further studies should be conducted to see
how these new ROI definition strategies would interact with different ROI summary measures.
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Conclusions
This study attempted to provide guidance in defining an optimal single-value summary mea-
sure that can be reliably used in genome-wide Imaging Genetics studies. Overall, we found that
four ROI single-value summary measures were reliably consistent across datasets to show sig-
nificant group differences and produce relatively higher effect sizes: 1) top percentile (measure
4), 2) the top N contiguous voxels surrounding the peak voxel (measure 6); 3) a sphere sur-
rounding the peak voxel (measure 7); and 4) peak-correlated voxels (measure 8).

In terms of statistical power, the ROI approach is equivalent or better than the voxel-wise
analysis approach in detecting significant group differences. Different ROI summary measures
are more similar when using the smaller, focal spherical ROIs. The drawback is that this type of
ROI requires a strong a priori hypothesis to pinpoint the center of the sphere and most of indi-
vidual subjects’ peak of activation were not within the sphere selected based on a priori coordi-
nates from published literature. Applying a p threshold can help in selecting activated voxels
within an ROI, especially for the mean, median, and eigenimage weighted mean measures.

Supporting Information
S1 Table. Demographic and performance data of the NBack task split dataset.
(DOC)

S2 Table. Demographic and performance data of the NBack task sibling dataset.
(DOC)

S3 Table. Demographic and performance data of the NBack task COMT dataset.
(DOC)

S4 Table. Demographic and performance data of the Flanker task dataset.
(DOC)

S5 Table. Summary of the between-group ROI peak location permutation test for each
dataset.
(DOC)

S1 Fig. ROIs used in datasets 1–4. a)10-mm ROI in BA9 used in Dataset 1 and 2; b) The right
dorsal lateral prefrontal (DLPFC) anatomical ROI used in Dataset 1, 2 and 3; c) Task-activated
cluster in right DLPFC used in Dataset 1, 2 and 3; d) The 10-mm spherical ROI in BA46 used
in Dataset 3; e) The 10-mm spherical ROI in dorsal anterior cingulate used in Dataset 4; f) The
dorsal anterior cingulate anatomical ROI used in Dataset 4; g) The task-activated cluster in
dorsal anterior cingulate anatomical ROI used in Dataset 4.
(TIF)

S2 Fig. Group mean plots for datasets 3 (panel a) and 4 (panel b). Selected ROI summary
measures (peak, mean, mean of voxels above p = 0.05 threshold, and peak-correlated voxels)
were used to extract single-value summaries from three types of ROIs in right DLPFC. �

p< 0.05; �� p< 0.01. Error bars represent standard errors.
(TIF)

S3 Fig. Using the 1000 random samples from the NBack dataset to evaluate the replicability
of ROI summary measures. a) Averaged Cohen’s d of the 1000 samples for each ROI measure;
b) The percentage of total number of samples out of 1000 samples with t test p< 0.05 and
p< 0.01, respectively, for each ROI measure.
(TIF)
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S4 Fig. Comparisons of effect size for different parameters used in measure 4
(percentile = top 25%, 10%, and 5%), measure 6 (top N = 10, 20, and 50 voxels), measure 7
(sphere radius = 6, 7.5, and 10 mm), and measure 8 (correlation coefficient r = 0.7, 0.8, and
0.9). Panel a shows the combined the results of the two-sample t tests by averaging the effect
sizes from dataset 1 and 4 together; and panel b shows the combined the one-way ANOVA
results by averaging the effect sizes from dataset 2 and 3.
(TIF)

S1 Data. Statistics for the four datasets. The statistics include: N, mean, standard deviation, P
values, effect size, and power.
(ZIP)

S2 Data. The extracted ROI summary values from three types of ROIs for each subject in
all datasets.
(ZIP)

Acknowledgments
This research was supported by the Intramural Research Program (NCT: 00001486; Protocol
ID: 95-M-0150) of the National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.

Author Contributions
Conceived and designed the experiments: YT QC TEN RR JHC KFB DRWVSM. Performed
the experiments: YT RR JHC VSM. Analyzed the data: YT QC TEN. Contributed reagents/
materials/analysis tools: YT QC TEN. Wrote the paper: YT VSM.

References
1. Bigos KL, Weinberger DR. Imaging genetics—days of future past. NeuroImage. 2010; 53(3):804–9.

doi: 10.1016/j.neuroimage.2010.01.035 PMID: 20080192

2. Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Current opinion in genet-
ics & development. 2011; 21(3):340–8.

3. Mattay VS, Meyer-Lindenberg A, Weinberger DR. Imaging genetics. In: Senior C, Russell T, Gazzaniga
MS, editors. In Methods in Mind. Cambridge, MA: MIT Press; 2006. p. 263–90.

4. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric
disorders. Nature reviews Neuroscience. 2006; 7(10):818–27. PMID: 16988657

5. Hariri AR, Weinberger DR. Imaging genomics. British medical bulletin. 2003; 65:259–70. PMID:
12697630

6. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. A genome-wide association
study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull. 2009; 35
(1):96–108. doi: 10.1093/schbul/sbn155 PMID: 19023125

7. Potkin SG, Turner JA, Guffanti G, Lakatos A, Torri F, Keator DB, et al. Genome-wide strategies for dis-
covering genetic influences on cognition and cognitive disorders: methodological considerations. Cogn
Neuropsychiatry. 2009; 14(4–5):391–418. doi: 10.1080/13546800903059829 PMID: 19634037

8. Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD, et al. Whole genome association study
of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the
ADNI cohort. NeuroImage. 2010; 53(3):1051–63. doi: 10.1016/j.neuroimage.2010.01.042 PMID:
20100581

9. Stein JL, Hibar DP, Madsen SK, Khamis M, McMahon KL, de Zubicaray GI, et al. Discovery and replica-
tion of dopamine-related gene effects on caudate volume in young and elderly populations (N = 1198)
using genome-wide search. Molecular psychiatry. 2011; 16(9):927–37, 881. doi: 10.1038/mp.2011.32
PMID: 21502949

10. Stein JL, Hua X, Morra JH, Lee S, Hibar DP, Ho AJ, et al. Genome-wide analysis reveals novel genes
influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer's disease. Neuro-
Image. 2010; 51(2):542–54. doi: 10.1016/j.neuroimage.2010.02.068 PMID: 20197096

ROI Measures for fMRI

PLOS ONE | DOI:10.1371/journal.pone.0151391 March 14, 2016 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151391.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151391.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151391.s011
http://dx.doi.org/10.1016/j.neuroimage.2010.01.035
http://www.ncbi.nlm.nih.gov/pubmed/20080192
http://www.ncbi.nlm.nih.gov/pubmed/16988657
http://www.ncbi.nlm.nih.gov/pubmed/12697630
http://dx.doi.org/10.1093/schbul/sbn155
http://www.ncbi.nlm.nih.gov/pubmed/19023125
http://dx.doi.org/10.1080/13546800903059829
http://www.ncbi.nlm.nih.gov/pubmed/19634037
http://dx.doi.org/10.1016/j.neuroimage.2010.01.042
http://www.ncbi.nlm.nih.gov/pubmed/20100581
http://dx.doi.org/10.1038/mp.2011.32
http://www.ncbi.nlm.nih.gov/pubmed/21502949
http://dx.doi.org/10.1016/j.neuroimage.2010.02.068
http://www.ncbi.nlm.nih.gov/pubmed/20197096


11. Ge T, Schumann G, Feng J. Imaging genetics—Towards discovery neuroscience. Quantitative Biol-
ogy. 2013; 1(4):227–45.

12. Medland SE, Jahanshad N, Neale BM, Thompson PM. Whole-genome analyses of whole-brain data:
working within an expanded search space. Nature neuroscience. 2014; 17(6):791–800. doi: 10.1038/
nn.3718 PMID: 24866045

13. Stein JL, Hua X, Lee S, Ho AJ, Leow AD, Toga AW, et al. Voxelwise genome-wide association study
(vGWAS). NeuroImage. 2010; 53(3):1160–74. doi: 10.1016/j.neuroimage.2010.02.032 PMID:
20171287

14. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. Hippocampal atrophy as a
quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzhei-
mer's disease. PloS one. 2009; 4(8):e6501. doi: 10.1371/journal.pone.0006501 PMID: 19668339

15. Seshadri S, DeStefano AL, Au R, Massaro JM, Beiser AS, Kelly-Hayes M, et al. Genetic correlates of
brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in
the Framingham Study. BMCMed Genet. 2007; 8 Suppl 1:S15. PMID: 17903297

16. Brett M, Johnsrude IS, Owen AM. The problem of functional localization in the human brain. Nature
reviews Neuroscience. 2002; 3(3):243–9. PMID: 11994756

17. Nichols T, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a comparative
review. Statistical methods in medical research. 2003; 12(5):419–46. PMID: 14599004

18. Buck R, Singhal H, Arora J, Schlitt H, Constable RT. Detecting change in BOLD signal between ses-
sions for atlas-based anatomical ROIs. NeuroImage. 2008; 40(3):1157–65. doi: 10.1016/j.neuroimage.
2008.01.001 PMID: 18294868

19. Marrelec G, Fransson P. Assessing the influence of different ROI selection strategies on functional con-
nectivity analyses of fMRI data acquired during steady-state conditions. PloS one. 2011; 6(4):e14788.
doi: 10.1371/journal.pone.0014788 PMID: 21533283

20. Mitsis GD, Iannetti GD, Smart TS, Tracey I, Wise RG. Regions of interest analysis in pharmacological
fMRI: how do the definition criteria influence the inferred result? NeuroImage. 2008; 40(1):121–32. doi:
10.1016/j.neuroimage.2007.11.026 PMID: 18226552

21. Poldrack RA. Region of interest analysis for fMRI. Social cognitive and affective neuroscience. 2007; 2
(1):67–70. doi: 10.1093/scan/nsm006 PMID: 18985121

22. Friston KJ, Ashburner J., Kiebel S., Nichols T., and PennyW. Statistical parametric mapping: The anal-
ysis of funtional brain images. 1st ed. Amsterdam; Boston: Elsevier/Academic Press; 2007.

23. Nieto-Castanon A, Ghosh SS, Tourville JA, Guenther FH. Region of interest based analysis of func-
tional imaging data. NeuroImage. 2003; 19(4):1303–16. PMID: 12948689

24. Constable RT, Skudlarski P, Mencl E, Pugh KR, Fulbright RK, Lacadie C, et al. Quantifying and com-
paring region-of-interest activation patterns in functional brain MR imaging: methodology consider-
ations. Magnetic resonance imaging. 1998; 16(3):289–300. PMID: 9621970

25. Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN. A critique of functional localisers. Neuro-
Image. 2006; 30(4):1077–87. PMID: 16635579

26. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction
of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000; 10(11):1078–92.
PMID: 11053229

27. Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B, et al. Abnormal fMRI response
of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. The
American journal of psychiatry. 2003; 160(4):709–19. PMID: 12668360

28. Thompson PM, Ge T, Glahn DC, Jahanshad N, Nichols TE. Genetics of the connectome. NeuroImage.
2013; 80:475–88. doi: 10.1016/j.neuroimage.2013.05.013 PMID: 23707675

29. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT
Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the
National Academy of Sciences of the United States of America. 2001; 98(12):6917–22. PMID:
11381111

30. Sambataro F, Mattay VS, Thurin K, Safrin M, Rasetti R, Blasi G, et al. Altered cerebral response during
cognitive control: a potential indicator of genetic liability for schizophrenia. Neuropsychopharmacology:
official publication of the American College of Neuropsychopharmacology. 2013; 38(5):846–53.

31. Blasi G, Goldberg TE, Weickert T, Das S, Kohn P, Zoltick B, et al. Brain regions underlying response
inhibition and interference monitoring and suppression. The European journal of neuroscience. 2006;
23(6):1658–64. PMID: 16553630

32. Murphy K, Bodurka J, Bandettini PA. How long to scan? The relationship between fMRI temporal signal
to noise ratio and necessary scan duration. NeuroImage. 2007; 34(2):565–74. PMID: 17126038

ROI Measures for fMRI

PLOS ONE | DOI:10.1371/journal.pone.0151391 March 14, 2016 19 / 20

http://dx.doi.org/10.1038/nn.3718
http://dx.doi.org/10.1038/nn.3718
http://www.ncbi.nlm.nih.gov/pubmed/24866045
http://dx.doi.org/10.1016/j.neuroimage.2010.02.032
http://www.ncbi.nlm.nih.gov/pubmed/20171287
http://dx.doi.org/10.1371/journal.pone.0006501
http://www.ncbi.nlm.nih.gov/pubmed/19668339
http://www.ncbi.nlm.nih.gov/pubmed/17903297
http://www.ncbi.nlm.nih.gov/pubmed/11994756
http://www.ncbi.nlm.nih.gov/pubmed/14599004
http://dx.doi.org/10.1016/j.neuroimage.2008.01.001
http://dx.doi.org/10.1016/j.neuroimage.2008.01.001
http://www.ncbi.nlm.nih.gov/pubmed/18294868
http://dx.doi.org/10.1371/journal.pone.0014788
http://www.ncbi.nlm.nih.gov/pubmed/21533283
http://dx.doi.org/10.1016/j.neuroimage.2007.11.026
http://www.ncbi.nlm.nih.gov/pubmed/18226552
http://dx.doi.org/10.1093/scan/nsm006
http://www.ncbi.nlm.nih.gov/pubmed/18985121
http://www.ncbi.nlm.nih.gov/pubmed/12948689
http://www.ncbi.nlm.nih.gov/pubmed/9621970
http://www.ncbi.nlm.nih.gov/pubmed/16635579
http://www.ncbi.nlm.nih.gov/pubmed/11053229
http://www.ncbi.nlm.nih.gov/pubmed/12668360
http://dx.doi.org/10.1016/j.neuroimage.2013.05.013
http://www.ncbi.nlm.nih.gov/pubmed/23707675
http://www.ncbi.nlm.nih.gov/pubmed/11381111
http://www.ncbi.nlm.nih.gov/pubmed/16553630
http://www.ncbi.nlm.nih.gov/pubmed/17126038


33. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal
cortical dysfunction in schizophrenia: more than up or down. The American journal of psychiatry. 2003;
160(12):2209–15. PMID: 14638592

34. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Academic Press;
1988.

35. Olejnik S, Algina J. Generalized eta and omega squared statistics: measures of effect size for some
common research designs. Psychological methods. 2003; 8(4):434–47. PMID: 14664681

36. Kirk RE. Practical significance: A concept whose time has come. Educational and Psychological Mea-
surement. 1996; 56:746–59.

37. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for
determining significant signals in images of cerebral activation. Human brain mapping. 1996; 4(1):58–
73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O PMID: 20408186

38. Kotrlik JW, Williams HA. The Incorporation of Effect Size in Information Technology, Learning, and Per-
formance Research. Information Technology, Learning, and Performance Journal. 2003; 21(1):1–7.

ROI Measures for fMRI

PLOS ONE | DOI:10.1371/journal.pone.0151391 March 14, 2016 20 / 20

http://www.ncbi.nlm.nih.gov/pubmed/14638592
http://www.ncbi.nlm.nih.gov/pubmed/14664681
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:1&lt;58::AID-HBM4&gt;3.0.CO;2-O
http://www.ncbi.nlm.nih.gov/pubmed/20408186

