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Cell-Free DNA in Oncology: Gearing up for Clinic
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In the past several years, interest in the clinical utility of cell-free DNA as a noninvasive 
cancer biomarker has grown rapidly. Success in the development of plasma genotyping 
assays and other liquid biopsy assays has widened the scope of cell-free DNA use in re-
search and the clinic. Already approved by the US Food and Drug Administration in the 
narrow context of epidermal growth factor receptor-mutated non-small cell lung cancer, 
plasma genotyping assays are currently being investigated in a wide array of clinical set-
tings and modalities. These include plasma genotyping as a tool for early diagnosis, the 
detection of minimal residual disease, and the evaluation of treatment response/progres-
sion. In this review, we assess the clinical landscape of plasma genotyping assays and 
propose strategies for their further expansion into routine clinical care. 
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INTRODUCTION

Nearly 70 years after the discovery of cell-free DNA (cfDNA) by 

Mandel and Metais [1], plasma genotyping of cfDNA is on the 

brink of transforming cancer care. cfDNA is free-floating DNA 

present in the blood and other bodily fluids [2-4]. In addition to 

its applications in oncology, cfDNA analysis is used extensively 

for prenatal genetic testing [5-7]. Because of our already expan-

sive and ever-accelerating understanding of cancer genetics, 

the cfDNA component of liquid biopsy assays is particularly in-

triguing in oncology, in which plasma genotyping assays can 

noninvasively detect and quantify clinically relevant point muta-

tions, insertions/deletions, amplifications, rearrangements, and 

aneuploidy within cfDNA [8, 9]. Plasma genotyping has poten-

tial clinical utility in early diagnosis, the detection of minimal re-

sidual disease (MRD), and the evaluation of treatment response 

and resistance (Fig. 1). In 2016, Roche’s Cobas plasma epider-

mal growth factor receptor (EGFR) mutation test V2 (US-IVD) 

was approved by the US Food and Drug Administration (FDA) 

to guide treatment decisions in patients with lung cancer who 

are unable to undergo tissue biopsy; this is still the only FDA-

approved plasma genotyping assay [10]. At present, clinical as-

sessment of cancer primarily consists of invasive tissue biopsies 

and radiation-emitting scans [11-13]. In addition to its noninva-

sive nature, plasma genotyping has several advantages, includ-

ing longitudinal monitoring, short turnaround time, low cost, and 

the ability to capture heterogeneity, which is sometimes missed 

by tissue biopsy, within tumors and between metastatic lesions 

[14-16]. The realization of these benefits, however, is neither in-

dubitable nor possible without significant further work. 

In this review, we detail the clinical landscape of cfDNA analy-

sis in oncology and the necessary next steps for further clinical 

adoption of this promising technology. Over the past five years, 

strong concordance has been shown between plasma- and tis-

sue-based genomic assays, encouraging “observational” trials 

that explore the potential clinical utility of plasma genotyping. 

Success in completed observational trials has spurred the re-

cent initiation of several “interventional” trials to test the value of 

incorporating cfDNA results into routine clinical care (Fig. 2). 
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PLASMA GENOTYPING ASSAY DEVELOPMENT

Clinical use of cfDNA analysis requires exceedingly accurate as-

says for the genetic characterization of DNA fragments within 

the fluid of interest, often blood. These assays must have high 

analytical sensitivity to detect clinically relevant genetic altera-

tions in a high background of wild-type DNA shed by nonmalig-

nant cells. Low allelic frequencies (AF, <0.5% mutant AF) are 

commonly seen in patients, particularly in the context of early 

detection or MRD. In addition, exquisite specificity is required 

because false positives can lead to further unnecessary, invasive 

testing or inappropriate treatment adjustment. Various groups 

have developed valuable tools to increase the analytic specificity 

of assays. The use of molecular tags and improved bioinformat-

ics (e.g. polishing [17]) has dramatically improved the specific-

ity of next-generation sequencing (NGS) assays [17-20]. Speci-

ficity considerations are even more important in the context of 

early detection. 

Several highly sensitive and specific platforms exist for the de-

tection and quantification of genetic alterations within cfDNA. 

More targeted approaches that investigate focused alterations, 

often point mutations, in single alleles include digital PCR [21], 

BEAMing [22], and Scorpion ARMS PCR [23]. NGS permits 

broader inquiries, allowing assessment of the mutation status of 

thousands/millions of bases [17-20]. At present, ongoing clini-

cal trials are evaluating the concordance of cfDNA alterations in 

plasma, using digital PCR or NGS platforms, with DNA altera-

tions identified in tumor tissue. Notably, Sacher and colleagues 

have published a prospective clinical trial demonstrating perfect 

specificity and 70–80% sensitivity for detection of EGFR driver 

mutations in non-small cell lung cancer (NSCLC) using allele-

specific PCR [24]. In addition, prospective clinical trials testing 

NGS of plasma cfDNA in other malignancies are ongoing [25-

27].

STANDING ON ITS OWN: CLINICAL DECISION-
MAKING WITH cfDNA

1. Catching cancer early
Cancer outcomes vary greatly based on the stage at detection; 

Fig. 1. Plasma genotyping assays can use cell-free DNA to longitudinally track dynamic cancer responses in diverse clinical situations. In 
particular, these assays can evaluate responses to targeted agents and the presence or recurrence of disease after curative surgery. 
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late-stage diagnoses are associated with increased mortality rates 

and treatment inefficacy [28-31]. Widespread clinical adoption 

of screening tools has diminished cancer morbidity and mortal-

ity in many malignancies; however, high rates of late-stage diag-

noses underscore the desperate need for better screening ca-

pabilities. The development of accurate plasma genotyping as-

says described above has generated interest in the potential use 

of cfDNA analysis as a diagnostic tool.

Early detection demands biomarkers specific to disease that 

are detectable at an early stage. To assess the qualifications of 

cfDNA as such a biomarker, Bettegowda and colleagues per-

formed digital PCR on cfDNA from 640 patients with different 

types and stages of cancer [32]. While rates of tumor DNA pres-

ent in plasma differed by tissue of origin, 47% of stage I cancers 

and 55% of stage II cancers had detectable circulating tumor 

DNA (ctDNA). Plasma genotyping assays with greater sensitivity 

(<0.2% AF) and breadth (as the genetic alterations promoting 

tumorigenesis are not known prior to the screen) could raise the 

detection rates of early-stage cancers [32]. Indeed, several bio-

technology companies are pursuing the development of NGS 

assays that sequence deeper and broader, requiring larger cfDNA 

input and greater sequencing power [33, 34]. The ultimate goal 

of these assays is to use them for early detection in high-risk pop-

ulations. Although interest in population screening is growing, 

current assay specificity is not amenable to such screens, where 

the prior probability of any patient having cancer is very low. Bet-

tegowda’s extensive work provides confidence that many early-

stage cancers shed DNA into the blood, but the presence of 

mutated DNA fragments in the blood does not necessarily indi-

cate the presence of a malignancy [32].

cfDNA analysis of healthy volunteers has provided insights 

into specificity concerns with the use of plasma genotyping as a 

diagnostic tool. In a longitudinal study that followed healthy vol-

unteers, 33 of more than 1,000 volunteers were shown to have 

either a KRAS or TP53 mutation in their blood. Interestingly, 16 

of these 33 developed cancer after an average of 18.3 months, 

showing the potential for early detection with plasma genotyping 

[35]. The potential origin of these mutations may be the hema-

topoietic compartment in the context of clonal hematopoiesis of 

indeterminate potential [36]. However, these data also highlight 

the challenges surrounding population-wide screens, particu-

larly the rate of false positives due to rare and unexplained can-

Year

Fig. 2. The clinical trial landscape for cell-free DNA. (A) Three major 
clinical trial types conducted in the field of cell-free DNA analysis. Con-
cordance trials assess the accuracy of plasma genotyping assays to 
capture genetic mutations found in tumor tissue. Observational trials 
explore the predictive capacity of cell-free DNA as a biomarker. Inter-
ventional trials compare treatment outcomes of clinical decision-making 
with plasma genotyping versus standard of care (imaging, tissue biopsy, 
etc.). (B) Graph of clinical trials registered to clinicaltrials.gov that have 
investigated some aspect of plasma genotyping in oncology. This high-
lights the rapid growth of interest in the clinical utility of cell-free DNA 
and the recent initiation of interventional trials.
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cer-related mutations in the blood of healthy volunteers. These 

findings necessitate a reformulation of how we think about cfDNA 

as a biomarker. In particular, the presence of cancer-related mu-

tations in the blood does not axiomatically prove the presence of 

an underlying malignancy. This complicates all cfDNA analysis, 

but is particularly important to the future of diagnostic plasma 

genotyping.

There are several methods to limit false positives and to inves-

tigate the common, but not absolute, link between cancer-re-

lated mutations within the blood and underlying malignancies. 

First, if a mutant DNA molecule has found its way into the blood 

from a cancerous cell, then broad sequencing of cfDNA should 

detect other cancer-related mutations, such as activating muta-

tions in oncogenes or inactivating mutations in tumor suppres-

sors. Thus, deep and broad sequencing could provide the sen-

sitivity needed to detect low levels of cfDNA alterations in pati

ents with early-stage disease. Indeed, Abbosh et al [37] performed 

multiregion whole-exome sequencing of early-stage NSCLC tu-

mors to show an abundance of clonal mutations in these tumors. 

Assaying plasma for a broad panel of patient-specific clonal sin-

gle nucleotide variants (SNVs) provides greater sensitivity. How-

ever, broad panels are associated with specificity issues. Abbosh 

et al [37] provided an intriguing solution to this issue by requir-

ing the detection of two or more SNVs for the determination of 

the presence of cancer [37]. Therefore, optimal cfDNA assay 

development for cancer detection may require a combination of 

broader panels (to increase sensitivity) and stricter calling meth-

ods (to increase specificity). Second, studies investigating meth-

ylation patterns of cfDNA suggested the possibility of understand-

ing the tissue-of-origin makeup of cfDNA [38-40]. Lehmann-

Werman and colleagues analyzed methylation patterns to distin-

guish the relative proportions of cfDNA shed by each organ [38]. 

An early diagnosis tool should provide information on both the 

genetics and location of the cancer. A tissue-of-origin assay could 

potentially locate the malignancy. Upon discovering a KRAS mu-

tation in the cfDNA, for example, one may see an increase in 

cfDNA from the pancreas by methylation analysis, potentially 

indicating a pancreatic adenocarcinoma driven by mutant KRAS. 

Third, waiting and re-assaying the plasma weeks or months later 

is perhaps the best way to distinguish signal from noise. Any 

false positive would most likely not be seen in a re-assay. Malig-

nancies will likely be detected again, potentially at a higher AF, 

indicating a growing tumor. These three ideas will help clinicians 

and researchers discard false positives (or true mutations that 

have arisen from hematopoietic events) and solidify the link be-

tween plasma genotyping results, and clinically relevant malig-

nancies.

Ultimately, clinical adoption of cfDNA assays will only occur if 

their use improves patient outcomes. Because many malignan-

cies are detected too late, the clinical utility of a highly sensitive 

and specific early diagnostic test is obvious. However, it remains 

unclear whether plasma genotyping assays can achieve the nec-

essary sensitivity and specificity of such a diagnostic test. Fur-

thermore, clinical care in this setting is ill-defined. Interventional 

clinical trials that assess clinical decision-making using results 

from such assays are needed to prove clinical efficacy. Monitor-

ing high-risk populations with diagnostic cfDNA assays is an ob-

vious next step and is being pursued [25, 26]. Observational tri-

als in early detection investigate whether cancer variants found 

by plasma genotyping will lead to eventual cancer diagnosis. 

Large-scale observational trials funded by private ventures have 

been announced [25-27]. Upon obtaining successful results in 

observational trials, treating patients based on plasma results in 

interventional trials will need to show improved outcomes over 

the current process of diagnosing and treating cancer. Larger 

consortiums with immense resources and vast clinical infrastruc-

ture should play a key role in carrying out these large-scale stud-

ies [41].

2. Detecting MRD 
Patients that have undergone curative surgery or are in com-

plete remission frequently show recurrence due to the presence 

of previously undetected MRD [42-44]. Early detection of MRD 

can inform decisions regarding adjuvant therapy and improve 

outcomes while preventing overtreatment [45, 46]. However, 

detection of such recurrence is currently limited to radiation-

emitting scans, the development of clinically relevant symptoms, 

or protein biomarkers with poor sensitivity and specificity [47, 

48]. Thus, new biomarkers to predict MRD before radiologic or 

clinical detection are urgently needed. Recently, researchers 

have investigated the presence of plasma tumor DNA post-sur-

gery or other curative treatments and the ability to predict even-

tual recurrence. 

Extensive studies of plasma tumor DNA as a prognostic bio-

marker for MRD in breast cancer [49-51], colorectal cancer [52-

54] diffuse large B-cell lymphoma (DLBCL) [55], gastric cancer 

[56], lung cancer [37], and pancreatic cancer [57] have estab-

lished the high predictive power of plasma tumor DNA and the 

early detection of recurrence using this marker. In perhaps the 

largest prospective clinical trial of MRD to date, Tie and colleagues 

performed NGS of 1,046 plasma samples from 230 patients 

with resected stage II colorectal cancer. They showed impres-
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sive positive (80%) and negative (97%) predictive values. Fur-

thermore, they found that plasma tumor DNA is a better marker 

for recurrence than carcinoembryonic antigen (CEA), which is 

currently used in the clinical setting [52]. In the same setting, 

Reinert and colleagues showed perfect sensitivity and specificity 

of their NGS- and digital PCR-based assays in predicting recur-

rence after curative surgery. In addition, plasma genotyping-based 

recurrence detection preceded detection by conventional follow-

up by 10 months [53]. Roschewski et al [55] followed 107 pa-

tients with DLBCL after complete remission and confirmed the 

strong positive (88%) and negative (98%) predictive values of 

plasma tumor DNA for assessing recurrence. Additionally, simi-

lar to Reinert’s study, Roschewski et al [55] found that the pres-

ence of plasma tumor DNA often occurs before evidence of clin-

ical disease (3–5 months). In breast cancer, Olsson et al [49] 

and Garcia-Murillas et al [50] showed the high predictive power 

of plasma tumor DNA and its lead time of several months over 

clinical detection of recurrence. Abbosh and colleagues per-

formed a prospective clinical trial in NSCLC using patient-spe-

cific NGS assays to predict MRD with high sensitivity (92.3%) 

and specificity (100%), with a median lead time of 70 days over 

computed tomography (CT) imaging [37]. Notably, Sausen and 

colleagues followed patients with pancreatic cancer after cura-

tive surgery and showed that plasma tumor DNA predicts recur-

rence accurately and with a median lead time of 6.5 months 

over imaging [57].

While this list does not include ongoing MRD studies using 

plasma tumor DNA as a prognostic biomarker, it confirms the 

importance of plasma genotyping in MRD detection. We believe 

that these studies provide ample evidence to begin interventional 

trials assigning adjuvant therapy, or the resumption of therapy, 

upon plasma genotyping-based recurrence determination after 

either curative surgery or complete remission. However, stan-

dardization of cfDNA analysis in MRD is lagging. The studies 

listed above use varying platforms including targeted NGS, digi-

tal PCR, and low-coverage whole-genome sequencing. Clinical 

adoption of the most sensitive and specific assays and assays 

that are most amenable to longitudinal monitoring is needed. In 

MRD, as in diagnosis, specificity takes precedence over sensi-

tivity because overtreatment of false positives introduces unnec-

essary harm. We envision clinical monitoring for recurrence in 

addition to plasma genotyping because the sensitivity of these 

assays is imperfect. Overall, current data suggest that plasma 

tumor DNA is a highly sensitive and specific biomarker of dis-

ease recurrence and justify the initiation of interventional trials 

using cfDNA analysis to guide clinical decision-making.

3. Evaluating treatment response and progression 
In addition to its capacity to determine the presence of a malig-

nancy in diagnosis and MRD, plasma genotyping can also be 

used to guide the choice of therapeutic agent and to monitor 

dynamic tumor responses throughout treatment. Genotype-di-

rected personalized therapy in oncology has been shown to be 

successful due to our deep understanding of cancer genetics 

and advances in drug development of targeted agents. Tissue 

biopsy genotyping is the current gold standard for collecting tu-

mor genotype data. Due to the many advantages discussed above, 

plasma genotyping has been extensively studied for the deter-

mination of progression and for the characterization of genetic 

alterations that drive resistance. Plasma progression, i.e., the re-

emergence or significant increase in plasma tumor DNA during 

drug treatment, is strongly correlated with radiographic/clinical 

progression [17, 20, 58]. Several studies have shown that plasma 

progression can predict progression with a lead-time of months 

over radiographic progression [16, 59, 60]. This has led to the 

initiation of an interventional clinical trial seeking to examine 

outcomes of switching treatment at the time of plasma progres-

sion versus waiting for radiographic or clinical progression, as is 

standard of care [61]. The outcome of this trial will determine 

the clinical future of cfDNA as a biomarker for the determination 

of progression.

In addition to identifying progression, cfDNA analysis can pro-

vide further details of the potential genetic causes of progres-

sion; plasma genotyping often illuminates the genetic mecha-

nisms of resistance seen in the tumor [12, 59, 62-68]. A major 

success of plasma genotyping has been the ubiquitous clinical 

use of cfDNA analysis at progression to the first-generation EGFR 
tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib in patients 

with NSCLC. Over 50% of patients with lung cancer taking these 

agents will develop the EGFR T790M mutation, which confers 

acquired resistance to erlotinib/gefitinib [69]. The recent appro

val of osimertinib [70], a drug that targets the EGFR T790M re-

sistance mechanism, makes this an optimal setting for potential 

displacement of the current standard of care (tissue rebiopsy) 

with cfDNA analysis. Our group has shown the high positive pre-

dictive value of EGFR T790M mutations identified in plasma, 

thus redefining the paradigm of optimal care for erlotinib/gefi-

tinib-resistant patients at progression [24, 60]. Whereas tissue 

rebiopsy is currently recommended for these patients at pro-

gression, our data suggest that assaying cfDNA for the EGFR 
T790M mutation will lead to equivalent outcomes and save many 

patients from invasive tissue rebiopsy [71, 72]. Thus, plasma 

genotyping at the time of progression to erlotinib/gefitinib should 
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be performed. If T790M is detected, osimertinib should be ad-

ministered. If not detected, a tissue rebiopsy is justified, as sen-

sitivity for EGFR T790M mutation in the plasma is imperfect. 

Further work characterizing genetic mechanisms of resistance 

to the growing list of FDA-approved targeted agents is necessary. 

Clinical adoption of plasma genotyping at progression requires 

well-defined and actionable mechanisms of resistance. Additional 

approvals of these types of targeted therapies will only increase 

the potential clinical use of plasma genotyping at progression. 

As with lung cancer resistant to first and second- generation EGFR 

TKIs, routine clinical use requires further clinical trials proving 

equivalent or improved outcomes in patients switching treatment 

based on cfDNA analysis versus tissue rebiopsy.

In addition to evaluating progression, cfDNA has been increas-

ingly studied as a biomarker of response. Plasma response, a 

significant or complete decline in ctDNA during drug treatment, 

is highly concordant with successful response to therapy [15-

17, 20, 73-76]. At present, radiographic imaging and clinical 

assessment are the primary tools for evaluation of response. A 

major advantage of cfDNA as a biomarker of response is its non-

invasive collection and ease of longitudinal monitoring. Due to 

its strong concordance with tissue response and the aforemen-

tioned logistical benefits, many recently initiated early-phase 

clinical trials have included cfDNA analysis as a biomarker of 

response. Our group showed the value of plasma tumor DNA as 

a pharmacodynamic biomarker in a phase 1 clinical trial [77]. 

Although imaging and clinical assessment will continue to be 

the foundation of response determination, cfDNA is an intrigu-

ing potential biomarker of response. We expect greater integra-

tion of cfDNA into early-phase clinical trials for noninvasive lon-

gitudinal monitoring of response, which has immense clinical 

utility.

CONCLUSION

A rapid expansion of research and clinical interest in cfDNA has 

occurred over the past five years. Academic and industry teams 

have developed assays to detect and quantify tumor DNA in the 

plasma with high sensitivity and specificity. The application of 

these assays has shown that plasma DNA and tumor tissue DNA 

are highly concordant. Potential areas of clinical adoption of 

cfDNA analysis include diagnosis, characterizing treatment re-

sponse and progression, and identifying MRD. Widespread clin-

ical use of plasma genotyping for these indications can only oc-

cur once the high threshold to displace the current standard of 

care is met. We believe that current evidence justifies the initia-

tion of interventional clinical trials comparing outcomes of plasma 

genotyping-guided treatment against the standard of care. Such 

trials provide a crucial clinical test of plasma genotyping and will 

ultimately determine whether this approach can be used in the 

clinical setting. In no way should this deter further assay devel-

opment of more sensitive and specific platforms for cfDNA anal-

ysis. The potential failure of such interventional trials may indi-

cate flawed assays more than the flaws of cfDNA as a biomarker. 

Further studies are needed to elucidate whether cfDNA is indeed 

a clinically useful biomarker and whether current plasma geno-

typing assays are sufficient for detecting cfDNA. As plasma ge-

notyping assays gear up for major clinical tests, these uncertain-

ties still remain.
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