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Rheumatoid arthritis is a chronic autoimmune syndrome associated with several genetic, epigenetic, and environmental factors
affecting the articular joints contributing to cartilage and bone damage. Although etiology of this disease is not clear, several
immune pathways, involving immune (T cells, B cells, dendritic cells, macrophages, and neutrophils) and nonimmune
(fibroblasts and chondrocytes) cells, participate in the secretion of many proinflammatory cytokines, chemokines, proteases
(MMPs, ADAMTS), and other matrix lysing enzymes that could disturb the immune balance leading to cartilage and bone
damage. The presence of autoantibodies preceding the clinical onset of arthritis and the induction of bone erosion early in the
disease course clearly suggest that initiation events damaging the cartilage and bone start very early during the autoimmune
phase of the arthritis development. During this process, several signaling molecules (RANKL-RANK, NF-xB, MAPK, NFATcI,
and Src kinase) are activated in the osteoclasts, cells responsible for bone resorption. Hence, comprehensive knowledge on
pathogenesis is a prerequisite for prevention and development of targeted clinical treatment for RA patients that can restore the

immune balance improving clinical therapy.

1. Introduction

Rheumatoid arthritis (RA) is a chronic, inflammatory
syndrome comprised of various disease phenotypes. RA
is characterized by aggressive synovial hyperplasia causing
destruction of articular joints. A combination of genetic,
epigenetic, and environmental factors is responsible for
the onset and development of RA. An array of susceptible
genes (human leukocyte antigen (HLA) class II and more
than 100 susceptibility loci including PTPN22, PADI4,
TRAF1, and CTLA4), nongenetic factors (sex hormones,
smoking, periodontal infection, and microbiota), immune
(macrophages, dendritic cells, mast cells, neutrophils, T cells,
and B cells) and nonimmune (fibroblasts and chondrocytes)
cells, and inflammatory mediators (autoantibodies, cyto-
kines, chemokines, and proteases) are collectively involved
in the inflammatory processes targeting the cartilage and
bone effectuating functional loss of joints (Figure 1) [1].
The synovium is one of the major target tissues in RA [2].
During joint inflammation, macrophage-like synoviocytes

(MLS) and fibroblast-like synoviocytes (FLS) proliferate to
form the pannus, which invades and destroys the cartilage.
These cells are the major sources of factors that can promote
inflammation and joint destruction. Autoantibodies contrib-
ute to the inflammatory process by acting as the mediator of
joint inflammation and bone erosion [3]. 50-80% of RA
patients have autoantibodies depending on the duration of
the disease. Autoantibodies can initiate inflammatory effec-
tor pathways, which affect chondrocytes and the cartilage
causing release of extracellular matrix (ECM) components.
In this context, glycosylation of autoantibodies is crucial.
Decreased IgG-Fc sialylation is associated with RA and oste-
oclastogenesis, while an increase in sialylation decreased
inflammatory bone loss [4]. Bone erosion and loss of physical
function in arthritis begin early and progress along with
disease severity. The main triggers of bone erosion are an
inflamed synovium, proinflammatory cytokines, autoanti-
bodies, and receptor activator of nuclear factor «B ligand
(RANKL). Breakdown of self-tolerance causes activation of
immune and nonimmune cells resulting in the production


https://orcid.org/0000-0001-7790-8197
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3830212

2 Mediators of Inflammation

e e e e
r |

Acetylation
Smoking HLA S ) yl N
Carbamylation

|
|

|

|

PADI x§ \%lsmne modifications NH ]

Periodonitis ) % Citrullination é\k |
A PTPN22 Methylation |

Dust exposure — %@W Phosphorylation RZ\;\[{ Vit R2 :
i

|

|

|

)

£
g
&

Sumoylat
Microbiome m TRAF1 @ DNA methylation umoylation

0
@ DNA acetylation Ubiquitination [ Citrullination |

| 141101013

Autoantigen BCR
FeR.

|
I

|

I

|

|

|

|

|

J MHCII l& CD40L CD40 ¥ |
L 3 |

. " ® E— - ]
CD28 CD80 |

I

|

I

)

Loss of tolerance

CD86

Dendritic cell T cell Bcell Plasma cell ACPA, RE, etc.

IL-1, TNF-&, GM-CSE,

MMP1, MMP2, MMP3, MMPS,
IFN-y, IL-6, IL-8, IL-15,

-

g8 Dendriticcell T cell B cell Plasma cell 1L-16, IL17, IL-18, MMP9, MMP10, MMP12, MMP13,
S MMP14

£ TNER 1L4, 110, | | ADAMTS-H ADAMTS-5

g B

2 Neutrophil ~ Macrophage  NK cell Cathepsin K, cathepsin G

5 athepsin K, cathepsin

£ IL-11, 1L-13, IL-18

3‘ Elastase

Proteinase 3

Hyperproliferative pannus Mast cell mﬂz—

I
i
I
I
£ Immune complex IL-1, IL-6, IL-8, TNF-at, CCL3, | 51¢=P°‘1=55E . |
£ GM-CSE, etc. v |
i e — |
32 ¢ [L!ncgwedexndzte ] |
=] I
g
E Nerve cell = Get worse |
a I
g [ swelngsd l
E i
7 ¢ I
| Arthralgiar| | Articular dyskinesia | ;
I
e D e e e e e e R e e e R T e e e e T e e T e L T 1
GEITI T E Y E e ey 7]
i
/ N\ | Ax cclLs 1}‘ S !
sof : . 1
° ; o —— &, — > e ‘
\__/* i
= ! Mmophage\ / Neutrophil Immune complex  Nerve cell |
£ | ]
5 - |
3 ! —> [ TN IL-1,CCL2, CCL3, IL6, CXCL8, LTB, VEGE | —> |  Pannusformations] —> | Cartilage damage | | Autoantigen release:s| !
= |
El I Mast cell Py !
=] |
i s S g &% !
| oo, —> a0 — | HY, cathepsin K, TRAP | — | Bone resorption| | Joint deformity | |
| N Osteoclast !

Ficure 1: Different phases in RA pathogenesis. (1) Genetic, epigenetic, and environmental factors contribute to arthritis progression. Multiple
environmental risk factors (for example, smoking, pollutants, or microbes), when come in contact with the mucosal sites, are most likely
responsible for causing local inflammatory events and immune system activation inducing epigenetic modifications and protein
posttranslational modifications (PTMs) [59], before crossing the threshold to trigger disease in genetically vulnerable people. (2) Dendritic
cells presenting altered self or related peptides to T cells (breakdown of tolerance mechanisms) leads to the activation of T and B cells
effectuating synthesis of cytokines and autoantibodies. Progressively, these autoantibodies are produced more and more, which recognize
several neoepitopes by the process of epitope spreading, and gets overt during the onset of the clinical disease [1]. (3) Disease
development involves autoimmune responses against both posttranslationally modified and unmodified self-antigens, which starts many
years before the subclinical synovitis and appearance of clinical symptoms [60]. (4) Autoantibodies induced during this preclinical phase
can also be responsible for bone erosion and pain. Before the onset of inflammation, these alterations could reduce overall functions of the
joints. After the autoantibodies start binding to different epitopes and form immune complexes, inflammation in the synovium and
development of arthritis ensue. (5) Antibody-induced cartilage and bone changes, if minor, resolve without any considerable damages.
However, if left untreated or in the presence of continuous external stimuli, these changes can give rise to chronic inflammation, joint
destruction, and disability [59]. Arthritis is associated with both local as well as systemic pathological manifestations. ACPA:
anticitrullinated protein antibody; ADAMTS: a disintegrin and metalloproteinase with thrombospondin motifs; BCR: B cell receptor; CCL:
c-c motif chemokine ligand; CXCL: C-X-C motif chemokine ligand; CTLA4: cytotoxic T-lymphocyte-associated protein 4; FcR: Fc
receptor; FLS: fibroblast-like synoviocytes; GM-CSF: granulocyte-macrophage colony-stimulating factor; HLA: human leukocyte antigen;
IFN-y: interferon gamma; IL: interleukin; IL-1Ra: interleukin-1 receptor antagonist; IL-18BP: interleukin-18-binding protein; LTB,:
leukotriene B4; MMP: matrix metalloproteinase; MHC II: major histocompatibility complex class II; NK cell: natural killer cell; PADI:
peptidyl arginine deiminase; PDGF: platelet-derived growth factor; PGE,: prostaglandin E2; PTPN22: protein tyrosine phosphatase
nonreceptor type 22; RANKL: receptor activator of nuclear factor kappa B ligand; RF: rheumatoid factor; sIL-1RII: soluble interleukin 1
receptor II; sSTNFR: soluble tumor necrosis factor receptors; TCR: T cell receptor; TGFf: transforming growth factor f3; TNF-a: tumor
necrosis factor a; TRAF1: TNF receptor-associated factor 1; VEGF: vascular endothelial growth factor.
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of inflammatory mediators. Fibroblasts expressing RANKL
together with macrophage colony-stimulating factor (M-CSF)
promote differentiation of preosteoclasts into bone-resorbing
osteoclasts; this process is initiated at the junction of the car-
tilage and bone. Targeting T and B cells, proinflammatory
mediators, signaling molecules, and synovium-specific targets
are pursued as new treatment options [5]. In this review, we dis-
cuss about disease pathways contributing to cartilage and bone
damage to facilitate research on developing targeted drugs.

2. T Cells

Increasing evidences demonstrate that RA development
results due to an imbalance between CD4" T cell subsets
[6, 7]. Under physiological conditions, T cells are tolerant
toward self-antigens [8, 9]. The presence of T cells in the
inflamed synovium, association of arthritis with HLA loci,
and transfer of disease using T cells in rodent models sug-
gest the importance of T cells in arthritis pathogenesis.
However, difficulty in identifying consistent T cell effector
mechanisms and not so convincing results from T cell-
targeted therapies question this view. Currently, CD4" T cells
reactive with citrulline were identified and the detection rate
was high during the first 5 years after RA diagnosis. Although
this finding provides a theoretical basis for the correlation
between citrulline-specific CD4" T cells and RA, the mecha-
nisms of T cell activation and its role in promoting joint
inflammation need further investigation. Recent studies iden-
tified a defective glycolytic process present in T cells from RA
patients, which causes glucose to be diverted into the pentose
phosphate pathway, driving the accumulation of NADPH and
ROS consumption. With an excess of reducing equivalents, T
cells are unable to activate the relevant redox kinase, which
enabled bypassing the regulatory checkpoint of the G2/M cell
cycle that is conducive for their excessive proliferation [10].

Citrulline-specific CD4" T cells of Th1 memory pheno-
type are higher in RA patients [11]. Upon stimulation with
many cytokines, CD4" T cells differentiate into Th1, Th2,
and Th17 cells secreting different cytokines, while an exces-
sive production of Th17 cells associates with disease severity
in many autoimmune diseases. Th17 cells can also mediate
osteoclast activation and synovial neovascularization causing
bone erosion. Overexpression of Th17-specific transcription
factor, retinoic acid-related orphan receptor (RORyt), not
only induced a high expression of chemokine receptor 6
(CCRS6) but also promoted CD4" T cell migration into the
affected joints through the CCR6-specific chemokine ligand
20 (CCL20) pathway [7].

On the other hand, Treg cells by secreting IL-10 and
TGF-B maintain lymphocyte homeostasis and tolerance.
When a RA mouse model was administered with sialic
acid-binding Ig-like lectin-9, Th17 cell differentiation was
reduced and Treg cells proliferated, which attenuated joint
inflammation and bone damage. In this context, Foxp3 plays
a crucial role by affecting the glycolysis and metabolism of
Treg cells through the phosphatidylinositol 3-kinase/protein
kinase B/rapamycin target protein (PI3K/Akt/mTOR) sig-
naling pathway [12].

It has been suggested that PTPN22 encoding a tyrosine
phosphatase contributes to the immune tolerance by limit-
ing the signaling events after recognition of autoantigens
and weak agonistic antigens by T cell antigen receptors
(TCRs) of naive and effector T cells, while not hindering
the response to foreign antigens [13]. This observation sug-
gests that inactivation of the PTPN22 allele can amplify the
effector or memory T cells, which possibly could enhance
the development of an autoimmune disease. More impor-
tantly, the PTPN22-related alleles have a stronger interac-
tion with arthritis-susceptible HLA-DR alleles. Therefore,
an in-depth functional study of PTPN22 gene polymor-
phisms in arthritis development may further improve our
understanding of RA pathogenesis.

3. Dendritic Cells

During homeostasis, dendritic cells (DCs) are involved in the
maintenance of immune regulation and tolerance. However,
in RA by presenting self-peptides, they trigger differentiation
and activation of the auto-reactive T cells as well as innate
immune effector functions [14]. In RA patients, increased
numbers of DCs are present in the synovial fluid and tissues.
Interestingly, tolerogenic DCs (TolDCs) can be generated by
genetic and pharmacological modifications or by using cyto-
kines in an antigen-specific manner. Induction of such
immune tolerance mechanisms is a promising approach to
treat or prevent autoimmune disorders. Many application
methods to achieve antigen-specific therapy were reviewed
recently [15]. Autologous self-antigen-loaded TolDCs are
capable of deleting or reprogramming auto-reactive T cells
and were used for the treatment of experimental arthritis
with more promising results [16].

4. B Cells and Autoantibodies

Importance of B cells in the pathogenesis of RA has been
studied and discussed extensively. Initially, the role of B cells
in arthritis was appreciated mainly in terms of autoanti-
bodies because of their importance in clinical diagnosis and
prognosis and also as inflammatory mediators. However, B
cells can also contribute to disease pathogenesis through
antibody-independent mechanisms [17] including antigen
presentation, modulation of T and dendritic cell functions,
and production of proinflammatory and regulatory cyto-
kines, facilitating the tertiary lymphoid tissue formation in
target organs and possibly tissue repair as well. In recent
years, the clinical efficiency of B cell-targeted therapies has
revealed the pathogenic properties of B cells clearly in several
inflammation-dependent diseases [18]. Recent studies have
provided insights into the enrichment of memory B cell sub-
sets distinguished by the expression of Fc-like receptor 4
(FcRL4) in the joints and mucosa-associated lymphoid tis-
sues of RA patients. Interestingly, antibodies produced from
FcRL4™ B cells have high binding capacity to citrullinated
autoantigens [19].

Autoantibodies are highly prevalent and detectable in RA
patients’ sera several years before the clinical symptoms
appear [20]. During the time of disease onset, epitope
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FiGure 2: Likely interactions of molecules and factors in the antibody mediated joint inflammation. Upon binding to joint antigens or
deposited as immune complexes on the cartilage surface, autoantibodies initiate inflammation-dependent and inflammation-independent
activities, which culminate in the direct damage to the cartilage and bone. Activation of complement cascades by autoantibodies leads to
the release of anaphylatoxins (C3a, C5a), attracting FcR-bearing immune cells to the inflammation foci, which in turn get more activated
and secrete cytokines that can further activate resident nonimmune cells in the joint. All these cells in the inflamed joint secrete more
inflammatory mediators and extracellular matrix lysing enzymes that could destroy the cartilage and bone. AA: arachidonic acid; Clgq,
C2a, C3, C3a, C4b and C5a and B (factor B): complement components; CCL3: chemokine (C-C motif) ligand 3; COX2: cyclooxygenase-2;
EP4: prostaglandin receptor; MASP: mannose-associated serine protease; MBL: mannose-binding lectin; IC: immune complex; IL:
interleukin; LTB4: leukotriene B4; FcyR: Fc gamma receptors; PGE2: prostaglandin E2; TGF: transforming growth factor; TNF: tumor

necrosis factor.

spreading [21], avidity maturation [22] and proinflammatory
IgG-Fc glycosylation phenotype [23] of ACPAs were found
to occur. Interestingly, the presence of desialylated ACPAs
is more during active joint inflammation and transfer of sialic
acid-enriched antibodies attenuated experimental arthritis
[24]. Alterations in N-glycome induce Fc conformational
changes that have direct influence on antibody effector and
immunoregulatory functions. Furthermore, germ line-
encoded antibodies were identified to be important in exper-
imental arthritis and self-antigen-specific B cells were neither
deleted nor anergized [25]. Autoantibodies after binding to
their target antigens trigger downstream inflammatory cas-
cades either directly or in the form of immune complexes
[26]. At this effector phase of arthritis, activation of different
pathways of complement [27, 28] and FcyR-bearing immune
cells contributes to cartilage destruction either directly or by
promoting the secretion of inflammatory cytokines and
matrix lysing enzymes (Figure 2) [29]. At the same time,
antibodies binding to collagen type II (CII) can also induce
target damage independent of inflammatory mediators or

cells [30]. These antibodies disrupt the integrity of the car-
tilage matrix by promoting impaired cartilage formation,
inhibiting cartilage fibril generation, and disassembling
CII fibrils in the ECM. In addition, anti-CII antibodies
induced pain prior to and after the appearance of arthritis
symptoms and involved in immune complex-mediated acti-
vation of neurons [31]. Upon passive transfer, purified anti-
CII antibodies from RA patients induced arthritis in naive
mice [32], which demonstrated their pathogenicity. Unlike
anti-CII antibodies, ACPAs might be nonpathogenic [33].
Conversely, ACPAs were shown to mediate osteoclastogenesis
[34] and be responsible for bone loss prior to the onset of clin-
ical arthritis [35]; ACPAs induced pain [36] and FLS migra-
tion through activation of phosphoinositide 3-kinase [37].
Immune complexes or ACPAs from RA patients induced
TNF-a production in peripheral blood mononuclear cells
and macrophages [38]. Furthermore, ACPAs were suggested
to be agonists for a receptor-mediated response, but this
notion is still controversial [39]. Hence, more studies are
needed to understand all the possible roles of ACPAs in RA.
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5. Macrophages

Macrophages are central in perpetuating arthritis develop-
ment by stimulating neovascularization, clearing apoptotic
immune cells, and promoting the proliferation of fibro-
blasts and secretion of proteases. Based on the expression
of surface molecules, cytokine secretion, and arginine metab-
olism, macrophages are classified into pro- (M1) and anti-
inflammatory (M2) phenotypes [40]. The synovial macro-
phages of RA patients are of M1 phenotype, which highly
express proinflammatory proteins PHD3, CCR2, MMP12,
and TNF-a with a concomitant low expression M2-type
polarization markers [41]. In addition, the level of synuclein
A (activin A) encoded by the proinflammatory INHBA gene
is significantly elevated in RA patients produced by activated
macrophages that can mediate M1-type polarization [42].
Such polarized M1 macrophages secrete a large number of
proinflammatory cytokines (IFN-y, TNF-a, IL-1, and IL-6),
chemokines (CCL5, CXCL-1, and CXCL-10), and various
matrix lysing enzymes, which in turn activate fibroblasts
and osteoclasts; aid in the recruitment of neutrophils, mono-
cytes, and lymphocytes; and trigger a series of inflammatory
reactions that accelerate inflammation and cause destruction
to the articular cartilage. In RA, such a high activation of
macrophages increases the expression of toll-like receptors
(TLR2, TLR3, TLR4, and TLR7) and promotes the synovial
inflammation and cartilage destruction by producing
enzymes, cytokines, and other inflammatory factors [43].
In addition, autophagy of macrophages plays an essential
role in the pathogenesis of RA [44], which can increase
the number of osteoclasts contributing to enhanced bone
resorption activity.

6. Neutrophils

In RA, neutrophils may alter immune regulation by
increasing their cell survival and mobility, having anoma-
lous inflammatory activity, increasing oxidative stress,
releasing of neutrophil extracellular traps (NETs), and
also by interacting with resident FLS in the synovium
to promote inflammatory and antigen-presenting pheno-
type [45]. High levels of NETs are present in the serum,
synovial tissue, rheumatoid nodules, and skin of ACPA™
RA patients. The formation of NETs requires two major
biochemical activities. First, the inactivation of the
PTPN22 enzyme is considered to be necessary for the
production of NETs, which may be involved in the
removal of the nuclear envelope and NET components
[46]. Second, NETSs are composed of DNA and histones,
which can be acted upon by peptidyl arginine deiminase
type IV (PADI4) causing citrullination. This process pre-
vents histone methylation and transcription leading to
chromatin depolymerization, a central event in the NET
formation [46]. In addition, NETs contain PAD deposits
that promote the formation of citrulline products. Inter-
estingly, the level of NETs in the plasma are highly spe-
cific (92%) and sensitive (91%) during diagnosis of early
RA patients.

7. Fibroblasts

Normal FLS in the synovial intimal lining layer has impor-
tant functions in the maintenance of joint homeostasis by
secreting hyaluronan, lubricin, and plasminogen activator;
controlling synovial fluid volume and normal inflammatory
responses; and regulating leukocyte trafficking and in the
maintenance of the joint capsule. In arthritis, FLS are hyper-
proliferative and an impaired apoptosis could also promote
accumulation of FLS in the joints. In RA, FLS produces cyto-
kines and proteases, apart from acquiring an aggressive,
tumor-like phenotype because of transcriptional mecha-
nisms of imprinting and epigenetic changes, which could
mediate cartilage destruction and drive joint inflammation
[47]. IL-17 is one of the crucial factors in transforming FLS
into an invasive RA-FLS type and may directly assist in
FLS-mediated progression of RA by significantly increasing
its activation, migration, and invasive potential. RA-FLS also
secretes many proangiogenic factors like fibroblast growth
factor, vascular endothelial growth factor (VEGEF), hypoxia-
inducible factors (HIFs), and IL-18, which promote new
blood vessel formation, pannus growth, and inflammation.

8. Chondrocytes

Chondrocytes are unique to the articular cartilage, which
maintain an equilibrium between synthesis and breakdown
of extracellular matrix under physiological conditions. A
chondrocyte secretome contains extracellular matrix pro-
teins, cytokines, growth factors, enzymes, and their inhibitors
as well as many other protein components having different
target specificities [48]. Cytokines trigger chondrocytes to
release more cytokines and matrix metalloproteinases
(MMPs) that can degrade the cartilage and also inhibit gen-
eration of tissue inhibitors of metalloproteinases (TIMPs).
IL-1p released during inflammation can increase the cata-
bolic activities of chondrocytes by inhibiting the spontaneous
calcium signaling as well as in altering signaling in the cell
cycle and Rho GTPases present within the chondrocytes.
Dependent on the release of proinflammatory cytokines from
the synovium, chondrocytes are activated to participate in
cartilage damage. At the same time, they could also act as
the source of proinflammatory cytokines, which in turn
increases catabolic events in the cartilage while suppressing
anabolic tissue repair and remodeling processes.

9. Role of Cytokines

Cytokines are involved in many inflammatory events related
with the regulation of inflammation, autoimmune responses,
synovitis, and articular joint destruction. Many crucial cyto-
kines (IL-1, IL-6, IL-10, IL-12, IL-15, IL-17, IL-18, TNF-q,
TGEp, IL-23, etc.) [49] (Table 1) and all the four family of
chemokines (CXC, CC, C, and CX,C) [50] (Table 2) are con-
tributing to the joint inflammation. Successful amelioration
of signs and symptoms of arthritis in patients with TNF-a-
neutralizing agents has transformed RA treatment strategies
quite significantly, which facilitated further research to target
other inflammatory cytokines like IL-1, IL-6, and IL-17.
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However, targeting cytokines should be done with caution
because they are pleiotropic, redundant, and multifunc-
tional apart from having antagonistic and synergistic func-
tions between them. Many RA patients are still reported to
be refractory to anti-TNF-« therapy and TNF inhibitors
were found to be more effective in clinical trials than in
daily clinical practice. Moreover, anti-inflammatory cyto-
kines also can promote joint inflammation [51]. Pro- and
anti-inflammatory cytokines and chemokines involved in
joint inflammation/resolution, their cellular sources, target
cells, and major functions are summarized in Tables 1 and
2, respectively.

10. MMPs, ADAMTS, and TIMPs

Several proteinases like MMPs, ADAMTS (a disintegrin and
metalloproteinase with thrombospondin motifs), neutrophil
elastase, and cathepsins (G and B) can damage the cartilage
directly. Depletion of proteoglycans from articular cartilage
is an initial event in RA development leading to the degrada-
tion of the collagen fibrils. It is of interest to note that CII-
reactive monoclonal antibodies upon passive transfer
induced a significant amount of proteoglycan depletion
within 72 hours [30]. Many MMPs (MMP 1-3, MMP 7-9,
MMP-13, and MT1-MMP) preferentially split the bond
between Asn>*'-Phe*** of aggrecan. Conversely, ADAMTS],
ADAMTS4, and ADAMTS5 cleave the Glu*”>-Ala*”* bond in
addition to other sites in the G2-G3 domains of proteogly-
cans. Thus, both the MMP and ADAMTS enzymes contrib-
ute to aggrecan degradation during arthritis development.
TIMPs are endogenous blockers of MMPs and regulators of
matrix turnover, tissue reorganization, and cellular activity.
Sources, targets, and receptors/ligands and major functions
of MMPs, ADAMTS, and TIMPs involved in arthritis patho-
genesis are summarized in Table 3.

11. Signaling Pathways Affecting
Bone Destruction

Bone erosion starts during the early phase of arthritis devel-
opment causing deformity of the articular joints, which
affects quality of patients’ life. Molecular mechanisms under-
lying differentiation and activation of bone-eroding cells,
osteoclasts, are well documented, and several signaling path-
ways are contributing to osteoclast maturation and activation
causing joint destruction (Figure 3).

12. RANKL/RANK Pathway

RANKL (also called TNFSF11, OPGL, TRANCE, and ODF)
and its receptor RANK are indispensable regulators of bone
repair and remodeling processes. Several hormones and
cytokines induce RANKL production in osteoblasts and
synovial fibroblasts. After binding with RANK, RANKL
triggers the recruitment of an adaptor molecule TRAF-6
resulting in the activation of signaling molecules like NF-
kB, c-Jun N-terminal kinase (JNK), AKT/PKB, ERK, Src,
and p38 mitogen-activated protein (MAP) kinases and
the transcription factor, and nuclear factor of activated T

Mediators of Inflammation

cells, calcineurin-dependent 1 (NFATc1) [52]. Hence, the
RANKL/RANK signaling pathway is a potential therapeu-
tic target in osteolytic diseases. Denosumab (RANKL-spe-
cific human monoclonal antibody) is currently used for
treating osteoporosis, osteosarcoma, multiple myeloma,
and bone metastasis [53]. Although denosumab is highly
specific to RANKL and has a good effect on bones, safety
concerns still exist. On the other hand, the RANKL/RANK
pathway is having important functions in osteoblasts as
well. Vesicular RANK, secretion product of matured oste-
oclasts, by binding to osteoblast-derived RANKL facilitates
bone formation by initiating RANKL reverse signaling
leading to the activation of Runt-related transcription fac-
tor 2 (Runx2) [54].

13. NF-«B Signaling Pathway

Initiation of the RANKL/RANK pathway causes NF-xB
activation, which contributes to osteoclast differentiation.
After NF-«B stimulation, several TNF-receptor- (TNFR-)
related factors associate with the cytoplasmic domain of
RANK. Among them, TRAF-6 is indispensable for osteo-
clast formation and activation [55], while NF-«B p50 and
p52 subunits modulate RANKL and TNF-a-induced differ-
entiation of osteoclast precursors. Mice deficient in p50 and
p52 proteins are osteopetrotic. NF-xB-activating upstream
catalytic (IKK-« and IKK-f) and noncatalytic (IKK-y also
known as NEMO) subunits of IxB kinase are also crucial
in the generation of osteoclasts. RelB is the NF-«B-inducing
kinase (NIK) downstream subunit, which is also responsi-
ble for osteoclast differentiation.

14. MAPKs

Mitogen-activated protein kinase (MAPK) lineage consists of
p38-MAP kinases (p38-MAPK «, f3, y, and § isoforms), c-Jun
N-terminal kinases (JNK1-3), and extracellular signal-
regulated kinases (ERK1-2). RANKL stimulation activates
many of these kinases, which regulate different cellular
responses. When a specific inhibitor (SB203580) or a natural
product from teasel for p38-MAPK« and 3 was used, signif-
icant inhibition of osteoclast formation but not its functions
was observed. RANKL-activated p38-MAPKs can directly
phosphorylate STAT1 and regulate the expression of target
genes. In addition, JNKs and their upstream kinase MKK7
are also involved in osteoclastogenesis. However, neither
JNK1 nor JNK2 deficiency led to significant bone defects.
Mice deficient in both JNK1 and JNK2 have embryonic
lethality during midgestation [56]; hence, a conditional
knock-out in the bone marrow might address the importance
of JNKs in osteoclastogenesis. AP-1 and related genes (c-Jun,
JunB, c-Fos, and Fra but not JunD), controlled by JNKs, are
also crucial for osteoclast differentiation and maturation.
ERK is another MAPK subunit getting activated upon
RANKL stimulation, which regulates the survival and differ-
entiation of both osteoclasts and osteoblasts. However, sev-
eral receptor systems in many organs operate via NF-«xB
and MAPK pathways; hence, targeting these pathways might
not be optimal for treating bone damage.
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FiGure 3: Signaling pathways in osteoclast activation. During RA pathogenesis, antigen-presenting cells after uptake of an autoantigen or
pathogenic molecules process and present antigenic determinants on their cell surface in conjunction with arthritis-permissible
HLA/MHC class II molecules, which activate differentiation of T cells into different subphenotypes. The activated T cells secrete various
cytokines like IL-6, IL-7, IL-10, IL-12, IL-17, IL-23, and IFN-y. These cytokines modulate macrophages to secrete various pro- and/or
anti-inflammatory cytokines and other inflammatory mediators. Upon exposure to the inflammatory cytokines, fibroblast-like
synoviocytes express RANKL, which binds with its receptor (RANK) present on the cell surface of activated macrophages initiating the
RANK/RANKL pathway through TRAF 2, 5, and 6 proteins, which leads to the activation of downstream NF-xB, MAPK, NFATcl, and
Src signaling cascades. These factors after translocation initiate the expression of genes like TRAP, CtsK, and MMP-9 in the nucleus,
which promote osteoclastogenesis and bone resorption. TLR: toll-like receptor; TCR: T cell receptor; CtsK: cathepsin K; I-«B: inhibitor of
the NF-xB transcription factor; IL: interleukin; IFN-y: interferon gamma; MAPK: mitogen-activated protein kinase; MHC II: major
histocompatibility complex II; MITF: microphthalmia-associated transcription factor; MMP 9: matrix metalloproteinase 9; NFATc1:
nuclear factor of activated T cells, calcineurin-dependent 1; NF-«B: nuclear factor kappa B; p50 and p65: REL-associated proteins (also
called NF-«B1 and RelA) involved in NF-xB heterodimer formation and nuclear translocation and activation; RANK: receptor activator of
nuclear factor-x¥B; RANKL: receptor activator of nuclear factor «B ligand; Src: intracellular non-receptor tyrosine kinase; TRAF: TNF
receptor-associated factor; TRAP: tartrate-resistant acid phosphatase. c-Jun and c-Fos form the early response transcription factor, AP-1.
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15. NFATcl1

Stimulating with RANKL leads to the induction of several
genes mediating osteoclast differentiation and function,
including cellular fusion, polarization, and secretion of acid
hydrolases. Some of these genes are transcribed by another
key factor, NFATc1 [57], which is a downstream target of
RANKL. NFATcl expression causes osteoclast differentia-
tion and induction of osteoclast-related genes including
TRAP, cathepsin K, and calcitonin receptors in association
with c-Fos. NFATc1-deficient cells are defective in osteoclas-
togenesis. In the absence of RANKL, overexpression of
NFATcl induced osteoclast precursor cell differentiation
into TRAP™ osteoclast-like cells. Moreover, c-Jun signaling
is also critical in the regulation of NFATc1 activation. Trans-
genic mice specifically expressing dominant-negative form of
c-Jun in the osteoclasts exhibit severe osteopetrosis. Thus,
NFATc] acts as an important mediator in coupling RANK
signaling events to osteoclast differentiation.

16. Src Kinase

Src is a protein-tyrosine kinase involved in the cell develop-
ment, division, relocation, and survival. The resorption pro-
cess of osteoclasts depends on their attachment and
movement on the surface of the bones to form a sealing zone
[58]. Targeted interference in c-Src gene expression led to the
development of osteopetrosis, and it is a critical factor in
RANKL-induced activation of protein tyrosine kinase 2
(Pyk2) and avf33 integrin assembly, which is essential for
the adhesion and skeleton organization. Binding of RANK
and RANKL meditates the recruitment of TRAF-6 and c-
Src. Subsequently, TRAF-6 enhances c-Src activation causing
phosphorylation of signaling molecules like E3 ubiquitin-
protein ligase, and Cbl. Src complexes with Pyk2, Cbl, and
ADAP (adhesion and degranulation promoting adaptor pro-
tein, also called SLAP-130 or Fyb). Phosphorylation of these
signaling molecules is a prerequisite for integrin-mediated
osteoclast functions. Hence, targeting c-Src might be a viable
future treatment strategy for osteoporosis and higher bone
resorption observed in RA patients.

17. Conclusions

Interplay between multiple factors engender aberrations in
immune recognition and activation causing initiation of
molecular pathways targeting cartilage and bone. Various
immune and nonimmune cells are crucial during this pro-
cess. Resident and infiltrating cells in the joints proliferate
and secrete proinflammatory cytokines, chemokines, and
matrix lysing enzymes that could destroy the joints leading
to functional loss. Moreover, different signaling cascades
are activated during osteoclast activation and differentiation
that are involved in the bone resorption activity. Hence,
targeting a single effector molecule is insufficient to block
cartilage and bone damage in arthritis. Since RA is an
immune-mediated disorder, therapeutics restoring immune
balance certainly can improve clinical therapy.

17

Additional Points

Key Messages. Rheumatoid arthritis is a multi-factorial syn-
drome involving interactions between genetic, epigenetic
and environmental factors. Initiation events damaging joints
start very early during the autoimmune phase of arthritis
development. Comprehensive knowledge on pathogenesis is
a prerequisite for developing optimal treatment and potential
drugs. Targeting a single effector molecule is insufficient to
block cartilage and bone damage in arthritis. Since rheuma-
toid arthritis is an immune-mediated disorder, therapeutics
restoring immune balance can improve clinical therapy.
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