

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

RESEARCH CORRESPONDENCE

COVID-19 Digestive System Involvement and Clinical Outcomes in a Large Academic Hospital in Milan, Italy

Alessio Aghemo,^{*,‡} Daniele Piovani,^{‡,§} Tommaso Lorenzo Parigi,[‡] Enrico Brunetta,^{||} Nicola Pugliese,[‡] Edoardo Vespa,[‡] Paolo Dario Omodei,[¶] Paoletta Preatoni,[¶] Ana Lleo,^{*,‡} Alessandro Repici,^{‡,#} Antonio Voza,^{**} Maurizio Cecconi,^{‡,‡‡} Alberto Malesci,^{‡,¶} Stefanos Bonovas,^{‡,§} and Silvio Danese,^{‡,§} for the Humanitas COVID-19 Task Force^a

*Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; [‡]Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; [§]IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; ^{II}Department of Internal Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; ^{II}Division of Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; ^{II}Division of Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; [#]Endoscopy Unit, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; *Emergency Department, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; and ^{‡‡}Department of Anaesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy

S ince February 2020, the COVID-19 pandemic has spread to Italy affecting more than 100,000 people. Several studies have reported a high prevalence of gastrointestinal (GI) symptoms, and investigated their potential association with clinical outcomes.¹ The timing, clinical significance, and possible impact on viral spread of GI symptoms presentation have not been fully elucidated. Elevation of liver function tests and other laboratory values has also been reported; however, their prognostic significance has not been clearly established.²

We analyzed a cohort of reverse-transcriptase polymerase chain reaction–confirmed COVID-19 patients³ consecutively admitted to Humanitas Hospital, Milan, Italy, to describe the prevalence of GI symptoms and GI/ liver tests abnormalities, and their association with clinical outcomes.

Methods

Clinical and laboratory data were extracted from electronic medical records. Presence of vomit and diarrhea (defined as passing of 3 or more loose stools per day) as reported at admission or during the week preceding admission were recorded as per electronic medical records. To explore the associations between GI clinical and laboratory parameters with clinical deterioration we used survival model for censored observations. The composite study end point was clinical deterioration defined as intensive care unit (ICU) transfer or death within 20 days of hospital admission. Time to event was defined as the time from hospital admission until the date of event or censoring. We used log-rank tests and Cox regression analysis. Missing data were not imputed. We presented hazard ratios with 95% confidence intervals (CI).

Results

From February 22 to March 30, 2020, 325 reversetranscriptase polymerase chain reaction-confirmed COVID-19 patients had been admitted to the Humanitas Research Hospital. The analysis was restricted to 292 patients, after excluding those who were transferred to the ICU, or died, within the first day. Patients were predominantly males (68.2%) with a mean age of 65.0 ± 14.1 years. Diarrhea (27.1%) was the most frequent GI symptom. Patients' characteristics are summarized in Table 1.

As of March 30, 129 patients (44.2%) had been discharged, and 107 (36.6%) were still hospitalized. Clinical deterioration occurred in 82 patients (28.1%), including 27 (9.2%) patients who were transferred to ICU, and 56 (19.2%) who died.

Among admission parameters, the presence of any GI symptom (ie, diarrhea or vomit), and alkaline phosphatase, total bilirubin, direct bilirubin, and lipase levels were significantly associated with ICU transfer or death in the univariable analyses (Supplementary Table 1). Of these, the occurrence of any GI symptom (adjusted hazard ratio [aHR], 0.47; 95% CI, 0.23–0.97; P = .041), alkaline phosphatase levels (aHR, 1.14; 95% CI, 1.05–1.23, per 100 U/L increase; P = .001) and high lipase

Abbreviations used in this paper: aHR, adjusted hazard ratio; CI, confidence interval; GI, gastrointestinal; ICU, intensive care unit.

Most current article

© 2020 by the AGA Institute 1542-3565/\$36.00 https://doi.org/10.1016/j.cgh.2020.05.011

^aA list of investigators in the Humanitas COVID-19 Task Force is provided in the Supplementary Appendix

	Mean \pm SD or n (%)	Cox proportional hazards analysis					
		Adjusted ^a HR	95% CI	P value			
Demographic characteristics							
Age, y	65.0 ± 14.1	—	—	_			
≥65	161/292 (55.1)						
<65	131/292 (44.9)						
Gender		—	—	—			
Female	93/292 (31.8)						
Male	199/292 (68.2)						
Gastrointestinal symptoms							
Diarrhea	69/255 (27.1)	0.79	0.42-1.46	.45			
Vomit	11/274 (4.0)	_	_	—			
Any gastrointestinal symptom (ie, diarrhea or vomit)	69/245 (28.2)	0.47	0.23–0.97	.041			
Blood biochemistry							
Alanine aminotransferase >50 U/L	54/292 (18.5)	1.11	0.60-2.04	.74			
Aspartate aminotransferase \geq 50 <i>U/L</i>	78/292 (26.7)	1.30	0.81-2.08	.28			
γ -Glutamyl transpeptidase >55 U/L	102/282 (36.2)	1.45	0.91–2.30	.12			
Alkaline phosphatase $>150 U/L$	27/280 (9.6)	1.62	0.87–3.00	.13			
Total bilirubin $>1.2 mg/dL$	31/292 (10.6)	1.39	0.76-2.56	.29			

70/283 (24.7)

16/269 (6.0)

43/288 (14.9)

28/249 (11.2)

Table 1. Association Between Clinical and Laboratory Gastrointestinal Parameters of Hospitalized COVID-19 Patients (n =292) and Clinical Deterioration Leading to ICU Transfer or Death Adjusted by Age and Gender

NOTE. Boldface indicates statistically significant P values.

Cl, confidence interval; HR, hazard ratio; ICU, intensive care unit; SD, standard deviation.

^aAdjusted for age and gender.

Direct bilirubin ≥0.3 mg/dL

Amylase ≥100 U/L

Lipase ≥68 U/L

Indirect bilirubin \geq 1.1 mg/dL

levels (aHR, 2.02; 95% CI, 1.08–3.80; P = .028) remained significant after adjustment for age and sex (Supplementary Table 1). Importantly, the presence of GI symptoms was inversely associated with the risk of clinical deterioration, whereas higher levels of alkaline phosphatase and lipase predicted a poor prognosis.

Discussion

In a cohort of COVID-19 admitted patients, we found a high prevalence of GI symptoms. Interestingly, the presence of diarrhea or vomit was associated with a better prognosis, independently of patient age and sex. It is worth noting that we excluded patients admitted in critical conditions in whom a detailed medical history about GI symptoms was not adequately assessed. Our findings could be explained by a prevalent GI viral localization rather than respiratory. GI tropism of SARS-CoV2 has been demonstrated in a recent study that detected SARS-CoV2 more frequently in the stools of patients presenting with diarrhea.^{4,5}

We also found that elevated lipase and alkaline phosphatase levels were associated with poor prognosis; whether this reflects a greater systemic inflammatory response or an early sign of multiorgan failure needs to be ascertained.⁶ Because angiotensin-converting enzyme-2 receptors are highly expressed by pancreatic islets, a possible direct cytopathic injury seems likely.⁶ The action of Sars-CoV on the pancreas through these receptors can induce acute hyperglycemia and transient type-2-diabetes,⁷ possibly leading to further complications and poor prognosis. The correlation we observed with alkaline phosphatase is intriguing because angiotensin-converting enzyme-2 receptors are also abundantly expressed on endothelial liver cells, which makes liver a potential target for SARS-CoV.⁸ However, liver biopsies of patients with COVID-19 have not shown signs of biliary tract damage or cholestasis, thus we cannot exclude that high alkaline phosphatase reflects bone diseases and systemic frailty.

0.94-2.44

0.51-3.20

0.88-2.72

1.08-3.80

.084

.60

.13

.028

In conclusion, we observed that biochemical elevations of liver and GI tests and GI symptoms are common at presentation in hospitalized patients with COVID-19, with high lipase and alkaline phosphatase levels and the absence of vomit/diarrhea predicting poor clinical outcomes.

Supplementary Material

1.52

1.28

1.54

2.02

Note: To access the supplementary material accompanying this article, visit the online version of *Clinical Gastroenterology and Hepatology* at www.cghjournal.org, and at https://doi.org/10.1016/j.cgh.2020.05.011.

References

 Zhou Z, Zhao N, Shu Y, et al. Journal pre-proof effect of gastrointestinal symptoms on patients infected with COVID-19. 2020. Available at: https://doi.org/10.1053/j.gastro.2020.03.020. Accessed April 6, 2020.

- Zhang C, Shi L, Wang F. Liver injury in COVID-19: management and challenges. Lancet 2020;10:2019–2021. Available at: https:// doi.org/10.1016/S2468-1253(20)30057-1. Accessed April 6, 2020.
- Cecconi M, Piovani D, Brunetta E, et al. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for COVID-19 infection in Lombardy, Italy. J Clin Med 2020; 9:E1548.
- 4. Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. Available at: http://www. ncbi.nlm.nih.gov/pubmed/32142773. Accessed April 6, 2020.
- Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong Cohort and systematic review and meta-analysis. Gastroenterology 2020:pii:S0016-5085(20) 30448-0.
- 6. Wang F, Wang H, Fan J, et al. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterology. Available

at: http://www.ncbi.nlm.nih.gov/pubmed/32247022. Accessed April 6, 2020.

- Yang JK, Lin SS, Ji XJ, et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010;47:193–199.
- Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. https://doi.org/10.1111/ liv.14435. Accessed April 6, 2020.

Reprint requests

Address requests for reprints to: Alessio Aghemo, MD, PhD, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele 20090, Milan, Italy. e-mail: alessio.aghemo@hunimed.eu; fax: (+39) 0282242591.

Conflicts of interest

The authors disclose no conflicts.

Supplementary Appendix. Humanitas Covid-19 Task Force

ACCORNERO	STEFANO
AGHEMO	ALESSIO
ALI	HUSSAM
ANGELINI	CLAUDIO
ARCARI	IVAN
AROSIO	PAOLA
AZZOLINI	ELENA
BACCARIN	ALESSANDRA
	SALVATORE
BADALAMENTI	
BAGGIO	SARA
BARBAGALLO	MICHELA
BARBERI	CATERINA
BARBIC	FRANCA
BARBIERI	VIVIANA
BARBONE	ALESSANDRO
BASCIU	ALESSIO
BOCCIOLONE	MONICA
BOREA	FEDERICA
BORRONI	MARIO
BRESCIANI	GIANLUIGI
BRUNETTA	ENRICO
BULLETTI	CINZIA
CADONATI	CRISTINA
CALABRO'	LORENZO
CALATRONI	MARTA
CALVETTA	ALBANIA ANTONIETTA
CANNATA	FRANCESCO
CANZIANI	LORENZO
CAPRETTI	GIOVANNI LUIGI
CARLANI	ELISA
CARRONE	FLAMINIA
CASANA	MADDALENA
CECCONI	MAURIZIO
CERIOTTI	CARLO
CICCARELLI	MICHELE
CIMINO	MATTEO
CIUFFINI	LEONARDO
COLAIZZI	CHIARA
COLAPIETRO	FRANCESCA
COSTA	GUIDO
COZZI	OTTAVIA
CRAVIOTTO	VINCENZO
CRESPI	CHIABA
CRIPPA	MASSIMO
DA RIO	LEONARDO
DAL FARRA	SARA
D'ANTONIO	FEDERICA
DE AMBROGGI	GUIDO
DE DONATO	MASSIMO
DE LUCIA	FRANCESCA
DE SANTIS	MARIA
DELLE ROSE	GIACOMO
DI PILLA	MARINA
DIPAOLA	FRANCA
DIPASQUALE	ANDREA
DIPASQUALE	ANGELO
DROANDI	GINEVRA
FAZIO	ROBERTA
FERRANTE	GIUSEPPE
FERRARA	ELISA CHIARA
FERRARI	MATTEO CARLO
FERRI	SEBASTIAN
FOLCI	MARCO
FORESTI	SARA
FRANCHI	ELOISA
	LLOIDA

Supplementary Appendix. Continued

FRAOLINI
FUGAZZA
FURFARO
GALIMBERTI
GALTIERI
GAVAZZI
GENERALI
GOLETTI
GUIDELLI
JACOBS
KURIHARA
LAGIOIA
LIBRE'
LLEO
LOIACONO
LUGHEZZANI
MACCALLINI
MAIORINO
MALESCI
MANTOVANI
MARCHETTINI
MARINELLO
MARKOPOULOS
MASETTI
MILANI
MIRANI
MORELLI
MOTTA
MUNDULA
NIGRO
OMODEI
ORMAS
PAGLIARO
PALIOTTI
PARIGI
PEDALE
PEGORARO
PELLEGATTA
PELLEGRINO
PETRIELLO
PICCINI
POCATERRA
POLIANI
PREATONI
PROCOPIO
PUGGIONI
PUGLIESE
RACCA
RANDAZZO
REGAZZOLI LANCINI
REGGIANI
RODOLFI
RUONGO
SACCO
SANDRI
SAVI
SCARFO'
SHIFFER
SICOLI
SOLANO
SOLITANO
STAINER
STELLA
STRANGIO
TAORMINA

ELIA ALESSANDRO FEDERICA PAOLA ALESSIA PIERA FRANCESCA ELENA BENEDETTA GIACOMO FLAVIA HAYATO MICHELE LUCA ANA FERDINANDO GIOVANNI MARTA ALFONSO FRANCESCO ALBERTO RICCARDO DAVIDE ARIANNA NIKOLAOS CHIARA ANGELO MARCO PAOLA FRANCESCA VALERIA MATTIA PAOLO MONICA ARIANNA ROBERTA TOMMASO LORENZO ROSA FRANCESCO GAIA MARTA GENNARO SARA DARIA LAURA PAOLETTA FABIO FRANCESCA LUCA FRANCESCA MICHELE DAMIANO FRANCESCO STEFANO LIDIA CLARA MARIA TERESA MARZIA ISIDE DANA FEDERICO SIMONE VIRGINIA ANNA MATTEO CARLO GIUSEPPE ANTONIO

Supplementary Appendix. Continued

TESTONI	LUCIA
TORDATO	FEDERICA
TRABUCCO	ANGELA
ULIAN	LUISA
VALENTINO	ROSSELLA
VALERIANO	CHIARA
VENA	WALTER
VERLINGIERI	SIMONA
VESPA	EDOARDO
VOZA	ANTONIO
ZANUSO	VALENTINA
ZILLI	ALESSANDRA

Supplementary Table 1. Association of Gastrointestinal Clinical and Laboratory Parameters With Clinical Deteriora	ation
Leading to ICU Transfer or Death in Hospitalized COVID-19 Patients	

	Log-rank test			Inalysis				
Gastrointestinal characteristics at admission	Chi-square (d.f.)	P value	Crude HR	(95% Cl)	P value	Adjusted ^a HR	(95% CI)	P value
Gastrointestinal symptoms								
Diarrhea	2.88 (1)	.089	0.60	0.33– 1.10	.097	0.79	0.42–1.46	.45
Vomit	3.62 (1)	.057	—	—	—	—	—	-
Any gastrointestinal symptom (ie, diarrhea or vomit)	8.53 (1)	.004	0.37	0.18– 0.75	.006	0.47	0.23–0.97	.041
Blood biochemistry Alanine aminotransferase (per 10 <i>U/L</i> increase)	—	—	1.01	0.95– 1.07	.87	1.03	0.98–1.08	.19
Alanine aminotransferase (\geq 50 vs <50 U/L)	0.36 (1)	.55	0.84	0.46– 1.51	.56	1.11	0.60–2.04	.74
Aspartate aminotransferase (per 10 U/L increase)	_	—	1.03	0.99– 1.08	.12	1.04	0.997– 1.09	.065
Aspartate aminotransferase (\geq 50 vs <50 U/L)	1.22 (1)	.27	1.30	0.81– 2.08	.28	1.30	0.81–2.08	.28
γ-Glutamyl transpeptidase (per 100 U/L increase)	_	—	1.16	0.96– 1.41	.13	1.20	0.98–1.46	.074
γ -Glutamyl transpeptidase (\geq 55 vs <55 U/L)	1.11 (1)	.29	1.27	0.81– 2.01	.30	1.45	0.91–2.30	.12
Alkaline phosphatase (per 100 U/L increase)	—	_	1.14	1.06– 1.23	< .001	1.14	1.05–1.23	.001
Alkaline phosphatase (\geq 150 vs <150 U/L)	3.90 (1)	.048	1.83	0.99– 3.39	.055	1.62	0.87–3.00	.13
Total bilirubin (per 1 <i>mg/dL</i> increase)	—	_	1.11	1.00– 1.23	.048	1.12	0.998– 1.25	.054
Total bilirubin (\geq 1.2 vs <1.2 <i>mg/dL</i>)	3.26 (1)	.071	1.70	0.94– 3.08	.079	1.39	0.76–2.56	.29
Direct bilirubin (per 1 mg/dL increase)	—	_	1.16	0.96– 1.40	.12	1.18	0.96–1.44	.11
Direct bilirubin (\geq 0.3 vs <0.3 <i>mg/dL</i>)	9.04 (1)	.003	1.96	1.25– 3.09	.004	1.52	0.94–2.44	.084
Indirect bilirubin (per 1 <i>mg/dL</i> increase)	—	_	1.04	0.63– 1.72	.87	1.08	0.65–1.78	.76
Indirect bilirubin (\geq 1.1 vs <1.1 <i>mg/dL</i>)	0.02 (1)	.88	1.07	0.43– 2.65	.89	1.28	0.51–3.20	.60
Amylase (per 10 U/L increase)	_	—	1.04	0.98– 1.10	.23	1.04	0.98–1.11	.17
Amylase (≥100 vs <100 <i>U/L</i>)	2.52 (1)	.11	1.56	0.89– 2.74	.12	1.54	0.88–2.72	.13
Lipase (per 10 <i>U/L</i> increase)	—	_	1.06	1.00– 1.13	.051	1.07	1.002– 1.15	.042
Lipase (≥68 vs <68 <i>U/L</i>)	4.89 (1)	.027	1.98	1.06– 3.71	.033	2.02	1.08–3.80	.028

NOTE. Boldface indicates statistically significant *P* values. CI, confidence interval; HR, hazard ratio; ICU, intensive care unit; SD, standard deviation. ^aAdjusted for age and gender.