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A B S T R A C T   

As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral 
infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, 
viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. 
Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA 
viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential 
for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels 
supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout 
the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach 
for specific antiviral therapy, which has drawn a lot of attention in the recent years, 

would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize 
some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 
pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the 
hope of employing this strategy for near-future clinical application.   

1. Introduction 

A Severe respiratory illness was lately reported in Wuhan, Hubei 
province, China. Metagenomic RNA sequencing of bronchoalveolar 
lavage fluids identified a novel virus strain belonging to the family 
Coronaviridae, named as SARS-CoV-2, and the resultant disease was 
termed Coronavirus Disease 2019 (COVID-19). By conducting phylo-
genetic analysis on the complete viral genome, the virus strain was 
shown to be most closely (75–80 % nucleotide similarity) related to a 
group of severe acute respiratory syndrome (SARS)-like coronaviruses 
(subgenus Sarbecovirus, genus Betacoronavirus) previously found in 
bats in China [1,2]. 

According to the COVID-19 Situation Report-209 published by the 
World Health Organization (WHO), a total of 8 21,294,845 confirmed 
cases and 761,779 deaths have been identified globally until 16 August 
2020 [3]. However, there is still no antiviral drug proven effective for 
definitive treatment of COVID-19, underpining the need for further 

studies to find an effective and safe treatment for the disease. 
Eukaryotic viruses have been shown to induce large-scale changes in 

host cellular metabolism. Most viruses evaluated to date trigger aerobic 
glycolysis, which is also known as the Warburg effect. Numerous tested 
viruses also induce glutaminolysis and fatty acid (FA) synthesis. These 
alterations of carbon source usage by infected cells can provide specific 
cellular substrates for viral particles, enhance available energy for viral 
replication and virion production, thereby creating viral replication 
niche, while augmenting infected cell survival [4]. 

A better appreciation of the metabolic alterations required for each 
virus replication may provide the basis for developing novel therapeutic 
strategies aimed at targeted inhibition of specific metabolic pathways. 

RNA virus (RV) infection induces anabolic reprogramming of the 
host cell metabolism by 1) Inducing PI3K-mediated trafficking of 
glucose transporter 1 (GLUT1)-containing vesicles to the host cell 
membrane, thereby increasing glucose uptake. Also, overexpression of 
GLUT1 has been found to give rise to increased PPP intermediates 2) 
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Upregulating both glycolysis and glycogenolysis which provide TCA 
cycle intermediates required for anabolic lipogenesis. 3) Activating the 
PPP that results in enhanced levels of nucleotides supporting viral 
replication [5]. 

Since SARS-CoV-2 is also an RV [6], it is therefore expected to induce 
the same metabolic reprogramming as other RVs for replication in the 
host cell. Thus, targeting these metabolic pathways could be applied to 
treat this infection. There is evidence reflecting upregulated glycolysis, 
PPP and TCA cycle following coronavirus infection [7–16]. Therefore, in 
the current review, we first summarize some of the virus-induced 
metabolic adaptations and then, based on this information as well as 
SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for 
this calamitous world-spreading virus with the hope of employing this 
strategy for near-future clinical application. 

2. Viruses harness host cell metabolism 

A plethora of strategies have been adopted by viruses to ensure the 

undistributed supply of macromolecules and suit the host cell meta-
bolism according to their specific demands. The high turnover of bio-
molecules linked with virion production as well as simultaneous 
activation of cellular defense mechanisms brings about a highly anabolic 
state that is often associated with upregulated uptake of extracellular 
carbon sources (like glucose and glutamine) as well as their redirection 
to metabolic pathways vital for viral replication including lipogenesis 
and nucleotide synthesis [5]. 

It has been demonstrated that viruses employ strategies as diverse as 
the activation of cytosolic signaling, including PI3K [17] and CaMK-
K1/AMPK [18,19] or transcriptional regulation like activation of Myc 
[20,21], SREBP [16,22–25] and ChREBP [26]. The current data point to 
a dichotomy between RNA and DNA viruses when delving into their 
respective strategies of host cell manipulation. That is to say, while DNA 
viruses have been found to control key metabolic pathways at the 
transcription level [20,21,26], RNA viruses seem to shape host-cell 
metabolism through post-transcriptional modifications [17], that are 
in concordance with the pace of the respective replication cycles (Fig. 1). 

Fig. 1. a) Rhinovirus, as an RNA virus (RV), 
post-transcriptionally modulates the host cell 
metabolism. Infection with this virus induces 
anabolic reprogramming of the host cell meta-
bolism by 1) Inducing PI3K-mediated traf-
ficking of GLUT1-containing vesicles to the host 
cell membrane thereby increasing glucose up-
take. Also, overexpression of GLUT1 has been 
found to result in increased PPP intermediates 
2) Upregulating both glycolysis and glycogen-
olysis which provides TCA cycle intermediates 
required for anabolic lipogenesis 3) Activating 
the PPP which results in enhanced levels of 
nucleotide that support viral replication. RV: 
rhinovirus; PI3K: phosphatidylinositol 3-kinase; 
GLUT: glucose transporter; TCA: tricarboxylic 
acid cycle. b) Schematic overview representing 
metabolic targets of some DNA viruses. Various 
DNA viruses activate particular anabolic meta-
bolic programs following infecting the host 
cells, to finally support viral replication and 
virion maturation. Dashed arrows show a virus 
induced activation of the respective metabolic 
pathway or a transcription factor activation. 
TCA: tricarboxylic acid cycle; α-KG: α-ketoglu-
tarate; SREBP: sterol regulatory element- 
binding protein; ChREBP: carbohydrate- 
response element-binding protein; GLUT: 
glucose transporter; HCMV: human cytomega-
lovirus; HSV-1: herpes simplex virus-1; KSHV: 
Kaposi’s sarcoma-associated herpesvirus; 
VACV: vaccinia virus.   
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Host cell FA synthesis machinery has proven substantial for viral 
genome replication, virion production, and morphogenesis. Numerous 
viruses instigate the formation of phosphatidylinositol 4-phosphate/ 
cholesterol-enriched membranes to create viral replication complexes 
(VRCs) at the interface of the host endoplasmic reticulum (ER). Gener-
ation of secluded membranes that protect viral nucleic acids from im-
mune surveillance (for example, cytosolic pattern recognition receptors) 
and encompass an optimal environment for viral replication, requires 
the accumulation of sterols at the VRCs of RNA viruses [27,28]. VRC 
formation critically relies on the host cell’s sterol synthesis reprogram-
ming by recruiting the phosphatidylinositol-4 kinase III beta and 
oxysterol-binding protein (PI4KB–OSBP) axis. Thus, perturbation of 
cellular cholesterol homeostasis dampens viral replication [29–33]. 

This information highlights the pivotal role of lipogenesis for sus-
tained viral propagation and that targeting of lipogenesis could pave the 
way for effective inhibition of viral replication. 

There is evidence reflecting upregulated glycolysis, PPP, and TCA 
cycle following coronavirus infection, including: 

HCoV-229E could be regarded as a model coronavirus for compre-
hensive characterization of the host cell lipid response following coro-
navirus infection. Glycerophospholipids and FAs of HCoV-229E-infected 
cells are significantly elevated and the linoleic acid to arachidonic acid 
metabolism axis is notably perturbed [34]. In the mitochondria, FAs are 
synthesized from the precursor molecules acetyl-CoA, malonyl-CoA, and 
malonate, and their elongation into FAs requires ATP and NADPH [35, 
36]. Proteomic analysis conducted on infectious bronchitis virus (IBV) 
coronavirus particles has identified some proteins involved in the 
glycolytic pathway including glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), aldehyde dehydrogenase 9 family, member A1 
(ALDH9A1) and alpha-enolase, which had been previously identified in 
other viral particles including HIV-1, human cytomegalovirus (HCMV), 
moloney murine leukemia virus (MMLV), Kaposi’s sarcoma-associated 
herpesvirus (KSHV) and avian influenza virus (AIV) [37–42]. Lip-
idomic analysis has also extended our understanding of the metabolic 
reprogramming following HCoV [34] and MERS-CoV infections [16,34]. 
Yan at al. found a considerable rearrangement of the cellular lipid 
profile as indicated by the accumulation of phospholipids and FAs 
(saturated and unsaturated) upon HCoV infection. These researchers 
claimed that the Coronaviridae specifically fine-tunes the host lipid 
profile to accomplish optimal viral replication [34]. These findings were 
confirmed by a recent report on the pharmacologic targeting of sterol 
regulatory element-binding proteins (SREBP) by AM580 (as a specific 
inhibitor) as a promising strategy to inhibit MERS-CoV infection [16]. 
Impeding the proteolytic processing of SREBP using AM580 resulted in 
the inhibition of multiple post-viral-entry steps, including decreased 
intracellular lipid droplet formation, reduced palmitoylation of viral 
proteins as well as reduced double-membrane vesicle (DMV) formation 
[16]. 

It has been demonstrated that PI3K/AKT/mTOR and ERK/MAPK 
signaling pathways have important roles in MERS-CoV infection and 
might represent new drug targets for therapeutic intervention [43]. 
PI3K-dependent trafficking of GLUT1-containing vesicles to the cell 
membrane, leads to increased glucose uptake and metabolism [5]. 

3. Metabolic interventions in COVID-19 

Coronaviruses are pandemic viruses able to cause lethal lung injuries 
and death from acute respiratory distress syndrome (ARDS) [44]. ARDS 
characterized by severe hypoxemia, is generally accompanied by 
oxidative injury, uncontrolled inflammation, and damage to the 
alveolar-capillary barrier [45,46]. Enhanced oxidative stress is a key 
insult in pulmonary injury including ARDS, as one clinical manifestation 
of acute respiratory failure with considerably high morbidity and mor-
tality [47]. Therefore, oxidative stress is a dangerous aspect of this 
infection. Increased extracellular oxidative stress, as a consequence of 
“cytokine storm”, results in ARDS which is the key pathologic cause for 

the high mortality rate of this pandemic infection. 
On such a basis, metabolic intervention in COVID-19 is suggested to 

follow two main goals: 1) Inhibition of virus replication 2) Inhibition of 
oxidative stress. 

A possible strategy for achieving the first goal is: "targeting lipo-
genesis" that is required for virus packaging. This goal could be achieved 
in 3 ways a) downregulating glycolysis to inhibit pyruvate production 
(in a way other than inhibiting GLUT activity like GLUT1, because they 
are required to keep the PPP active) and entry into the TCA cycle thereby 
decreasing lipogenesis. Normally, glycolysis is needed to provide addi-
tional intermediates of TCA cycle for anabolic lipogenesis; b) mito-
chondrial targeting to decrease TCA flux; c) direct inhibition of cellular 
lipogenesis. 

Possible strategies for achieving the second goal include: a) Upre-
gulating the PPP and b) scavenging of extracellular ROS produced 
during infection (especially at alveolar spaces) 

Regarding a) upregulating the PPP; 
Intracellular oxidative stress contributes to coronavirus infectivity 

and increases its replication in lung epithelial cells. As demonstrated by 
recent studies, glucose-6-phosphate dehydrogenase (G6PD)-deficient or 
G6PD-knockout cells (with decreased intracellular redox power as a 
result of decreased NADPH) exhibit a higher susceptibility to corona-
virus infection. Indeed, intracellular oxidative stress provides a proper 
milieu for coronavirus replication [48]. Also, these cells show a lower 
capacity to mount antiviral responses [49]. In fact, another reason 
convincing us to propose targeting of oxidative stress as a therapeutic 
strategy for coronavirus infection, relates to the previously published 
reports on the association of G6PD deficiency with coronavirus infec-
tivity (HCoV-229E). As stated before, RNA viruses, in general, upregu-
late PPP which provides adequate nucleotides levels and redox power 
(NADPH) for sustained viral replication. Several studies, notwith-
standing, made us look at this pathway (in the case of coronaviruses) 
somehow different and take our general view away of total beneficial 
effects of this pathway for coronavirus replication. As it is 
well-established, oxidative phase of PPP, whose key and rate-limiting 
enzyme is G6PD, plays a pivotal role in providing cells with sufficient 
redox power via NADPH production. Thus, cells lacking this key PPP 
enzyme have lower capacities to counteract oxidative stress. On the 
other hand, it has been shown that G6PD-deficient cells have a higher 
susceptibility to HCoV-229E (causative coronavirus of SARS) infection. 
In a study carried out by Wu et al. in 2008, G6PD-deficient and 
G6PD-knockdown cells showed much higher viral gene expression as 
well as viral particle production upon infection with HCoV-229E. These 
phenomena were associated with a higher production of oxidants, rep-
resenting oxidative stress in host cells as an important factor for coro-
navirus infectivity. Furthermore, these researchers demonstrated that 
antioxidant agents could ameliorate increased viral infection of 
G6PD-deficient cells. This study provides the evidence that redox status 
of host cells plays an important role in viral infectivity [48]. Concordant 
with this report, these researchers in 2015 tried to delineate the un-
derlying mechanism of this interesting phenomenon. They showed that 
in normal cells, viral infection triggers IκB degradation and hence NF-κB 
translocation that promotes antiviral responses and inhibits viral repli-
cation. But, regarding G6PD-deficient cells, they found a fall in the 
NADPH/NADP+ ratio, which results in the upregulation of HSCARG 
protein as an NADPH sensor. This protein negatively affects the NF-κB 
signaling pathway, which is responsible for the expression of the anti-
viral genes: tumor necrosis factor-alpha (TNF-α) and GTPase myxovirus 
resistance 1 (MX1). Therefore, its upregulation in G6PD-deficient cells 
results in impaired antiviral response and, as a consequence, enhanced 
HCoV-229E replication [49]. PPP is the prime cellular antioxidant de-
fense system [50]. PPP, derived from glycolysis at the first committed 
step of glucose metabolism, is indispensable for ribonucleotides syn-
thesis and is also a major source of NADPH. NADPH is required for 
efficient scavenging of ROS. Indeed, increased PPP can be considered as 
a cellular mechanism to cope with intracellular oxidative stress as a 

K. Mansouri et al.                                                                                                                                                                                                                              



Biomedicine & Pharmacotherapy 131 (2020) 110694

4

result of elevated ROS levels. Therefore, upregulating this pathway and 
keeping it active in this infection seems essential to reduce the detri-
mental effects of ROS. 

Another evidence indicating the advantage of increased PPP activity 
in this infection is related to the autophagy process. Autophagy is sug-
gested to play a key role in the replication of coronaviruses [51]. RNA 
replication of the coronavirus mouse hepatitis virus (MHV) in the host 
cell cytoplasm is performed on DMVs. Prentice E et al. reported that 
autophagy is required for the formation of DMV-bound replication 
complexes in MHV-infected cells; and that DMV formation markedly 
increased the efficiency of replication [51]. Besides, an increased 
autophagy has been attributed to a reduced intracellular redox power. 
G6PD inhibition has been shown to induce ER stress, which is respon-
sible for autophagy flux deregulation. G6PD blockade is shown to result 
in a constant increase in autophagosome formation independently from 
mTOR status [52]. Concordantly, PPP inhibition is suggested to lead to 
autophagy induction. Thus, keeping this pathway active or upregulating 
it, as suggested in our paper, may play a role in reducing autophagy to 
prevent viral replication.In addition, chloroquine phosphate, which has 
apparent efficacy against non-severe COVID-19, restrains virus replica-
tion via blocking autophagy [53]. Chloroquine increases the pH in host 
cell lysosomes, and this way copes with viruses’ attempts for acidifying 
the lysosomes. Lysosome acidification is required to form autophago-
somes that cells use to eat themselves [54]. Chloroquine can restrain 
virus replication via blocking autophagy [55]. 

Nevertheless, we should keep in mind that increased NADPH as a 
result of upregulated PPP may be a double-deck sword as NADPH has a 
dual activity. In addition to serving as a fuel for the antioxidant system, 
NADPH can exert pro-oxidant effects by acting as a substrate for NADPH 
oxidases (NOXs) thereby causing lung injuries and favoring SARS-CoV-2 
infectivity. On the other hand, polymorphonuclear leukocytes (PMNs) 
and macrophages, upon infiltrating the inflamed regions through the 
microvascular blood vessels, can secrete cytotoxic factors including 
proinflammatory cytokines and ROS. These mediators contribute to the 
endothelial and epithelial dysfunction leading to fluids leakage from the 
circulation into the interstitial space and alveoli [56]. Studies have 
shown that an excess of glucose entry can be diverted through the PPP, 
which provides additional substrates for NOX thereby resulting in a 
pro-oxidant environment that exacerbates inflammation [57]. Thus, 
increased PPP flux, through providing additional substrates for NOX 
enzymes, can bring about a pro-oxidant environment aggravating 
inflammation. Also, NOX1 and NOX2 deletion gives rise to a dramatic 
decrease in ROS production by macrophages [56]. Accordingly, target-
ing of NOX represents a proper strategy to not only decrease oxidative 
stress in the host cells but also mitigate the capacity of macrophages and 
other inflammatory cell,s for ROS production. On such a basis, it is 
recommended to utilize a medication that not only upregulates PPP and 
provides high NADPH levels to counteract oxidative stress but also 
concomitantly prevents NADPH entry into the mentioned pro-oxidant 
pathway via NOX inhibition. 

As mentioned above, PPP inhibition leads to autophagy induction. 
Thus, keeping this pathway active or upregulating it, as suggested in this 
study, may play a role in reducing autophagy to prevent viral 
replication. 

3.1. Glycolysis intervention in COVID-19 

As stated, glycolysis intervention aims at lipogenesis down-
regulation. Lipogenesis is required for virus packaging. Glycolysis 
intervention inhibits pyruvate production and entry into the TCA cycle, 
thereby decreasing lipogenesis. Normally, glycolysis is needed to pro-
vide additional intermediates of the TCA cycle for anabolic lipogenesis; 

As in other viruses, lipids have critical roles in the life cycle of 
coronaviruses [34]. Lipids play crucial roles at different stages of the 
virus life cycle. First, lipids can act as direct receptors or entry cofactors 
for non-enveloped and enveloped viruses at the cell surface or the 

endosomes [58,59]. Second, lipids and lipid synthesis have key roles in 
both the formation and function of VRCs [60,61]. Third, lipid meta-
bolism can produce the required energy for efficient viral replication 
[62]. Furthermore, lipids can dictate the appropriate cellular distribu-
tion of viral proteins as well as the trafficking, packaging, and release of 
virus particles [63,64]. Thus, the host lipid biogenesis metabolic path-
ways play essential roles in modulating virus propagation. 

3.1.1. Glycolysis inhibitors 
As outlined in Table 1 [18,65–146], our knowledge on the particular 

changes induced by a given virus has led to numerous strategies for 
targeting viral replication in cell culture and in vivo models. Therefore, 
given its very well-established and favorable side effect profile, ascorbic 
acid (vitamin C) in particular seems to be a promising compound. 

3.1.1.1. Vitamin C (ascorbic acid). Vitamin C or ascorbic acid at high 
doses has shown alterations in metabolic pathways involving increased 
upstream glycolysis and PPP metabolites and decreased downstream 
glycolysis metabolites. Thus, this vitamin can be considered as a 
glycolysis inhibitor [147]. 

Vitamin C, by lowering viral infectivity, can be used as an inacti-
vating agent for DNA and RNA viruses [148,149]. Additionally, ascorbic 
acid can detoxify viral products that cause pain and inflammation [150]. 
It has been shown that high dose intravenous (IV) injection of vitamin C 
is effective against viral infections including the common cold (rhino-
virus) [151]; influenza [152,153]; zika [154]; and chikungunya [155, 
156]. Oral supplementation with vitamin C (at doses over 3 g) also 
appears to be capable of both preventing and treating respiratory and 
systemic infections [157]. 

Two families of transport proteins, including GLUTs and sodium- 
dependent vitamin C transporters (SVCTs) 1 and 2, mediate vitamin C 
uptake. GLUTs, mainly GLUT1 and GLUT3, transport dehydroascorbic 
acid (DHA) into cells while SVCTs transport reduced vitamin C directly 
into the cells (Fig. 2) [158,159]. 

3.2. TCA intervention in COVID-19 

The TCA cycle provides the fuel acetyl-CoA for the process of lipo-
genesis [46] that is crucial for sustained viral propagation. Therefore, 
targeting lipogenesis could pave the way for effective inhibition of viral 
replication. 

3.2.1. TCA inhibitors 
As shown in Table 2 [21,160–207], there are many Krebs cycle in-

hibitors with antiviral properties. Here, metformin, according to its 
well-established and favorable side effect profile and antiviral activity 
[208–215], seems to be a promising compound. 

3.2.1.1. Metformin. As a drug with pleiotropic effects, metformin par-
ticipates in glucose homeostasis, mostly through inhibiting liver glucose 
production [216]. Also, 0ne study found that metformin was signifi-
cantly associated with reduced mortality from COVID-19 [217]. Met-
formin, by lowering the flow of glucose- and glutamine-derived 
metabolic intermediates into the TCA cycle leads to decreased citrate 
production and de novo lipid biosynthesis. Metformin acts directly on 
mitochondria to restrain TCA cycle activity and oxidative phosphory-
lation, leading cells to accept less glucose-derived carbon that favors 
lactic acid production [218]. Metformin brings about energetic stress in 
cells by inhibiting the complex I of the electron transport chain in 
mitochondria. This causes decreased NADH oxidation and TCA flux 
resulting in low levels of TCA metabolites. Therefore, metformin indi-
rectly inhibits cellular lipogenesis (Fig. 3) [219]. 

On the other hand, metformin also directly hinders lipogenesis. 
Direct anti-lipogenic activities of metformin are mediated through in-
hibition of key metabolic enzymes including ATP citrate lyase (ACLY), 
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acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) complex, 3-hy-
droxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA) [220]. Of 
note, metformin hinders ROS production by suppressing NOX activity 
[221]. This is a key characteristic with respect to our proposed treatment 
protocol for COVID-19, as high cellular NADPH levels (as a result of 
upregulated PPP), by acting as NOX substrate, not only can result in 
oxidative stress and promote viral replication in the infected cell but also 
potentiates ROS production by the recruited inflammatory cells at the 
alveolar spaces contributing to ARDS. 

4. Inhibition of COVID-19 related oxidative stress 

Acute organ failure, particularly pulmonary failure (ARDS), is the 
major mechanism for COVID-19 related fatality [222,223]. Substan-
tially increased oxidative stress owing to the rapid release of cytokines 
and free radicals, etc. is the hallmark of ARDS that results in cellular 
injury, organ failure, and death [44]. Therefore, early intake of high 

Table 1 
Glycolysis inhibitors.  

Inhibitor Target virus 

2-DG Phosphoglucose- 
isomerase 

RV 
HIV 
HCMV 

STO-609 
Compound C 
AICAR 

CaMKK 
AMPK 
AMPK 

HCMV 

Oxamate Lactate-dehydrogenase KSHV 
VU0359595 PLD-1 HIV 
Phloretin GLUT1 Zika virus (ZIKV) 
Quercetin GLUT1 H5N1, hepatitis C virus 

(HCV), HBV, influenza A 
virus (IAV) H1N1, DENV-2, 
HSV-1, polio-virus type 1, 
Pf-3, RSV, ZIKV, EV71, HIV 

STF31 GLUT1 – 
WZB117 GLUT1 – 
Fasentin GLUT1 – 
Apigenin GLUT1 ASFV, EV71, HSV-1 and 

HSV-2, influenza, hepatitis 
C virus, virus, hand, foot, 
and mouth disease virus 

Genistein GLUT1 B virus, HSV-1, Arenavirus, 
H1N1, H9N2, ASFV, human 
immunodeficiency type 1 
virus 

Oxime-based GLUT1 
inhibitors 

GLUT1 – 

Pyrrolidinone derived 
GLUT1 inhibitors 

GLUT1 – 

DNA-damaging 
anticancer agents 

GLUT3 – 

GSK-3 inhibitors GLUT3 – 
Ritonavir GLUT4 HIV/AIDS 
Silibinin GLUT4 hepatitis C virus, HSV-2, 

HBV, dengue virus, 
influenza virus, togaviruses 
(Chikungunya virus and 
Mayaro virus) 

3-(3-Pyridinyl)-1-(4- 
pyridinyl)-2-propen-1- 
one] 3PO 

PFKFB3 – 

N4A PFK2 – 
YZ9 PFK2 – 
PGMI-004A PGAM1 – 
MJE3 PGAM1 – 
TT-232 PKM2 – 
Shikonin/alkannin PKM2 HIV type 1, AdV3, H1N1 
FX11 LDHA – 
3-bromopyruvate (3BP) hexokinase II – 
Dichloroacetate (DCA) PDHK1 – 
Diarylsulfonamide 

(DASA-58) (DASA) 
PDHK1 – 

Oxamic acid LDH – 
NHI-1 LDH A – 
PFK158 PFKFB3 – 
2-deoxyglucose (2-DG) HK HSV-1 
Sodium fluoride (NaF) enolase influenza virus A/PR8/34 

(H0N1), poliomyelitis virus 
Acidification of blood 

combined with the 
addition of NaF and 
EDTA 

enolase – 

sodium 
fluoride–potassium 
oxalate (NaF–KOx) 

enolase – 

arsenate compounds glyceraldehyde-3- 
phosphate 
dehydrogenase 

– 

Sorbinil aldose reductase 
inhibitor 

– 

Galloflavin lactate dehydrogenase 
inhibitor 

– 

Lonidamine mitochondrial HK2 – 
hexokinase II –  

Table 1 (continued ) 

Inhibitor Target virus 

combination 3-BrOP and 
rapamycin 

combination MGCD265 
and erlotinib 

hexokinase II Reactivation of hepatitis B 
virus after withdrawal of 
erlotinib 

Dihydroartemisinin pyruvate kinase M2 – 
AZD8055 mTOR – 
Ethanol hexokinase and alpha- 

glycerophosphate 
dehydrogenase 

flu virus, the common cold 
virus, and HIV 

Arenaemycin 
(pentalenolactone) 

glyceraldehyde 3- 
phosphate 
dehydrogenase 

– 

Sorafenib multikinase Rift Valley Fever virus, HCV 
virus, Sindbis virus and 
chikungunya virus, EEEV, 
hepatitis B virus 

1-methyl-tryptophan Indoleamine 2,3- 
dioxygenase 

MHV-A59, HIV, HBV, HCV, 
herpes, CMV 

Iodoacetate glyceraldehyde-3- 
phosphate 
dehydrogenase 

Sendai virus, progeny virus, 
potato virus X 

Iodoacetamide glyceraldehyde-3- 
phosphate 
dehydrogenase 

bovine leukemia virus, 
tobacco mosaic virus, 
Rauscher leukemia virus, RS 
virus, poliovirus, psittacosis 
virus, Cricket paralysis virus 

Ascorbic Acid blocked the energy flux * 
LY294002 PI3K hepatitis C virus 
Pt3glc and LY294002 PI3K – 
mannoheptulose glucokinase inhibitor – 
iodoacetic acid glyceraldehyde-3- 

phosphate 
dehydrogenase 

VSV, Sendai virus, HSV-1 

Malonate succinate 
dehydrogenase 

influenza and herpes 
viruses, measles virus 

FTS HIF1α expression EMC-D virus 
Lactate PI3K – 
FK866 NAMPT – 
6-AN G6PD vaccinia virus 
Oxythiamine TKTL1 – 
pentalenolactone glyceraldehyde-3- 

phosphate 
dehydrogenase 

HSV-1, HSV-2, Vac-IHD, 
Vac-DIE, NDV, VSV, WEE 

Compound C AMP-activated protein 
kinase 

HCMV 

FUT-175 complement inhibitor – 
Luteolin HEK2 dengue virus, influenza A 

virus, HIV-1, Hepatitis B 
virus, pseudorabies virus, 
Epstein-Barr virus, Japanese 
encephalitis virus, 
Chikungunya virus 

Quinoline 3-sulfonamides LDHA –  
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dose antioxidants, especially vitamin C, plays a crucial role in the 
management of such patients. Hence, in the case of coronavirus 
epidemic, all those in the leadership and those providing direct assis-
tance patients are recommended to rapidly and bravely apply high dose 
IV vitamin C. 

Increased oxidative stress, as a consequence of “cytokine storm,” 
results in ARDS as the key pathologic cause for the high mortality rate of 
this pandemic viral infection. Cytokine storm-induced ARDS is the key 
pathoenic event responsible for the death of these patients [44]. IV 
vitamin C is suggested to effectively cope with cytokine storm-induced 
oxidative stress (Fig. 4) [224].Vitamin C is a pivotal component of the 
antioxidant system in cellular response [225].As a matter of fact, high 
dose IV vitamin C has been applied clinically successfully in viral ARDS 
as well as in influenza. Fowler et al. reported a 26-year-old woman 
developing viral ARDS due to rhinovirus and enterovirus-D68 [226] 
Hemila et al. reported that vitamin C makes ICU stay shorter according 
to their 2019 meta-analysis of 18 clinical studies published in the journal 
Nutrients [227]. In their report, vitamin C shortened ICU stay by 97.8 % 
in a subgroup of 1766 patients. Marik and colleagues reported their use 
of IV vitamin C in 47 sepsis ICU cases. They found a considerable 
decrease in the mortality rate in the group of patients receiving IV 
vitamin C [228]. 

In patients receiving mechanical ventilation, dietary antioxidants 
(vitamin C and sulforaphane) have been shown to decrease oxidative 
stress-induced acute inflammatory lung injury [229]. Other antioxidants 
(like curcumin) have also shown promising anti-inflammatory poten-
tials in pneumonia [230]. 

Based on these reports, targeting the recalcitrant COVID-19 related 
oxidative stress with high dose antioxidants (like vitamin C) seems a 
logical step in the immediate management of this catastrophic 
pandemic, without the lengthy waiting for pathogen-specific drugs and 
vaccines. Also, metformin has been shown to decrease ROS and nitric 
oxide (NO) levels and increase the antioxidant system, such as super-
oxide dismutase (SOD) [231]. 

Vitamin C serves as a mild pro-oxidant capable of producing free 
radicals and, as a result, induces mitochondrial biogenesis. Mitochon-
drial biogenesis enhances the metabolic enzymes needed for glycolysis 
and oxidative phosphorylation, and hence creates a greater 

mitochondrial metabolic capacity. As shown by a study exploring the 
effects of azithromycin and doxycycline on the mitochondrial biogen-
esis, low doses of these antibiotics were able to inhibit mitochondrial 
biogenesis [232]. Also, azithromycin and doxycycline exhibit antiviral 
activities [233–241]. 

5. Conclusion 

The pandemic outbreak of the novel coronavirus SARS-CoV-2 in 
2020 vigorously necessitates as urgent finding of effective therapeutic 
agents as possible [242]. At present, there is no definite and effective 
treatment for SARS-CoV-2 infection. Acute organ failure, especially 
pulmonary failure (acute respiratory distress syndrome or ARDS), is the 
key pathogenic mechanism governing SARS-CoV-2 fatality. Significantly 
increased oxidative stress due to the rapid release of free radicals and 
cytokines, etc. is the hallmark of ARDS, resulting in cellular injury, 
organ failure, and finally death [222,223]. Also, according to the recent 
publications concerning the higher susceptibility of G6PD-deficient cells 
to coronavirus (HCoV-229E) infectivity, oxidative stress in host cells 
provides a proper milieu for coronavirus replication [48]. Therefore, 
reducing ROS levels in patients with COVID-19 seems a therapeutic 
strategy against this disease. Another therapeutic strategy is to prevent 
virus replication. A therapeutic approach incorporating both of these 
aspects can be considered optimal treatment. 

Vitamin C, with its antioxidant properties, is known to reduce ROS. 
But can it stop the virus replication? 

We propose the use of vitamin C for COVID-19 treatment to not only 
directly counteract the deleterious and dangerous effects of augmented 
oxidative stress responsible for ARDS in the extracellular space (alveolar 
space), but also hinder glycolysis and instead upregulate PPP and 
intracellular NADPH for creating a higher cellular redox status with the 
aim of lowering SARS-CoV-2 infectivity, as oxidative stress has been 
elucidated to promote coronavirus infectivity. Also, due to the very 
recent report on the autophagy-inducing effect of G6PD blockade that 
causes increased viral replication, we assume that PPP upregulation is 
likely to cope with SARS-CoV-2 replication through this autophagy- 
mediated mechanism, too. But further researches in the future remain 
to fully shed light on this facet of coronavirus infection. Early use of high 

Fig. 2. Effects of vitamin C on intracellular redox metabolism and glucose metabolism.  
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dose antioxidants, especially vitamin C, therefore, plays a key role in the 
management of these patients. In a study, modest quantities of supple-
mental vitamin C (200 mg of vitamin C daily) led to an 80 % reduction in 
death among severely ill, hospitalized respiratory disease patients 
[227]. Infants with viral pneumonia administered with vitamin C have 
shown reduced mortality [243]. In a subgroup of 1766 patients, mod-
erate doses of vitamin C shortened ICU stay by 97 % [227]. The major 
danger with SARS-CoV-2 infection is disease progression to SARS and 
pneumonia. Since the 1940s, medical doctors have successfully used 
vitamin C against viral pneumonia [244]. 

To replicate, RNA viruses upregulate both glycolysis and glycogen-
olysis, providing their host cells with TCA intermediates required for 
anabolic lipogenesis. The novel emerged coronavirus, SARS-CoV-2, 
which has thus far spread from China throughout the world with fatal 
outcomes, is an RNA virus as well [6]. Also, evidence points to a higher 
PPP flux following RNA virus infections [245], as is the case in the 
rhinovirus infection, which results in the production of higher nucleo-
tide levels supporting viral replication. On such a basis, inhib-
ition/modulation of these metabolic pathways could contribute to the 
inhibition of viral replication. But, concerning coronaviruses, direct and 
clear data on the exact status of this metabolic pathway in the infected 
cell is scarce. Rather, recent data highlights the contributing role of 
intracellular oxidative stress to coronavirus infectivity, further bringing 
into question the exact role/status of this pathway during coronavirus 
infection. From this point of view, PPP upregulation, by providing 
higher NADPH levels and potentiating intracellular redox power, is 
suggested to impair coronavirus replication. But how does SARS-CoV-2 
itself manipulate this pathway in the lung epithelial cells? The response 
hides behind the meticulous evaluation of the PPP following 
SARS-CoV-2 infection warranting more in-depth investigations in this 
regard. However, based on the reported pathogenic role oxidative stress 
plays in promoting coronavirus infection, we suggest upregulated PPP in 
the infected host cells as a therapeutic mechanism. 

Vitamin C inhibits glycolysis, which is a metabolic pathway used by 
cells to convert glucose into energy. As stated, RNA viruses for sustained 
replication increase glycolysis and glycogenolysis, thereby providing 
TCA intermediates required for anabolic lipogenesis [245]. Thus, 
despite the blockade of the glycolysis pathway by vitamin C, other 
pathways linked with the TCA cycle (like catabolism of some amino 
acids) are still open. Therefore, in addition to vitamin C (which indi-
rectly downregulates the TCA cycle), inhibition of viral replication re-
quires another substance that can block the TCA cycle. 

We propose upregulated PPP could exert antiviral effects in SARS- 
CoV-2 infection. Since increased levels of ROS play an important role 
in this viral infection, an increased flux of PPP in this infection is 
regarded as a therapeutic strategy. RNA virus-infected cells immediately 

Table 2 
TCA inhibitors.  

Inhibitor Enzymes VIROUS 

H2O2 Aconitase, 
α-Ketoglutarate 
dehydrogenase 

rabies virus, plant virus,, 
influenza A and B, 
rhinoviruses 1A, 1B, and 
type 7, adenovirus types 3 
and 6, adenoassociated 
virus type 4, myxoviruses, 
respiratory syncytial virus 
strain Long, and 
coronavirus strain 229E 

AG-120 (Ivosidenib) IDH1 – 
AG-221 IDH2 – 
Novartis-530 IDH1 – 
FX 11 LDH-A – 
Dichloroacetate (DCA) PDK – 
miR-26a PDHX Influenza A virus, Feline 

Herpesvirus 1, respiratory 
syndrome virus 

miR-146b-5p PDHB human papilloma virus 
16, dengue virus (DENV) 

miR-370 PDHB hepatitis B virus, 
Japanese encephalitis 
virus 

miR-137 ASCT2 – 
miR-183 IDH2 vesicular stomatitis virus 

(VSV) 
miR-181a IDH1 LCMV 
fumarate PHD2 – 
succinate PHD2 – 
2-hydroxyglutarate α-KG-dependent 

dioxygenases 
– 

Alloxan mitochondrial aconitase, 
Succinic dehydrogenase 

– 

Thioredoxin succinate dehydrogenase 
and fumarase & ATP- 
citrate lyase 

H9N2 avian influenza 
virus 

6-diazo-5-oxo-L- 
norleucine 

glutaminolysis mumps and vesicular 
stomatitis viruses, human 
parainfluenza virus type 2 
(HPIV-2), NSV 

CB-839 GLS adenovirus, HSV-1, and 
influenza A 

CPI-613 PDH and KGDHC – 
enasidenib (AG-221) IDH2 – 
AG-881 IDH1 and IDH2 – 
AG-221 IDH2-R140 and IDH2- 

R172 
– 

Oxalomalate oxoglutarate 
dehydrogenase, 
aconitate hydratase and 
isocitrate dehydrogenase 

– 

gamma-hydroxy-alpha- 
oxoglutarate 

oxoglutarate 
dehydrogenase, 
aconitate hydratase and 
isocitrate dehydrogenase 

– 

glyoxylic acid pyruvic oxidase and 
tentatively as 
α-oxoglutaric oxidase 
and succinic oxidase 

– 

Fluoroacetate aconitase influenza virus 
3-BrPA isocitrate 

dehydrogenase, 
α-ketoglutarate 
dehydrogenase and 
succinate dehydrogenase 

– 

Sodium malonate succinate dehydrogenase – 
Sodium arsenite pyruvate dehydrogenase WT or NS1 mutant 

viruses, PEDV 
Metformin and 

phenformin 
mitochondrial complex 1 * 

D-malate Fumarase – 
Citrate Fumarase – 
D-tartrate Fumarase hepatitis C virus NS5A 
L,a-hydroxy-beta- 

sulfopropionate 
Fumarase –  

Table 2 (continued ) 

Inhibitor Enzymes VIROUS 

Maleate Fumarase Influenza Viruses, Dengue 
virus 

mesaconate Fumarase – 
Transaconitate Fumarase – 
Succinate Fumarase – 
Malonate Fumarase – 
Adipate Fumarase – 
Glutarate Fumarase – 
Glycine Fumarase – 
Arsenoso compounds Pyruvic oxidase, choline 

dehydrogenase, succinic 
dehydrogenase 

– 

Hematin Succinic dehydrogenase – 
Cyanide succinate dehydrogenase – 
Copper ions Succinic dehydrogenase influenza A virus 
Maleic acid Succinic dehydrogenase aphthous fever virus 
Sodium 

diethyldithiocarbamate 
(DDC) 

Succinic dehydrogenase HIV and AIDS  
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upregulate glucose uptake in a PI3K-dependent manner. In parallel, 
infected cells augment the expression of the PI3K-regulated GLUT1 [17]. 
The point to consider in blocking the glycolysis pathway is to use an 
inhibitor that does not inhibit GLUT1, because we need this transporter 
to keep the PPP active. 2-deoxyglucose (2-DG) appears to be a promising 
compound in this regard, given its well-established and favorable side 

effect profile and antiviral properties. 2-DG has no antioxidant property 
compared to vitamin C. Rather, it induces oxidative stress [246] 
Therefore, vitamin C as an antioxidant and an inhibitor of the glycolysis 
pathway with concomitant effects on PPP upregulation, could be a good 
choice for the treatment of this viral infection. 

As the PPP upregulates, the production of ribonucleotides required 

Fig. 3. TCA cycle intervention by metformin.  

Fig. 4. Impaired function of alveolar epithe-
lium and microvascular endothelium in ARDS. 
Microvascular blood vessels allow elevated 
infiltration of polymorphonuclear leukocytes 
(PMNs) and macrophages into the inflamed re-
gion followed by increased release of cytotoxic 
factors including proinflammatory cytokines 
and ROS. These released mediators contribute 
to the endothelial and epithelial dysfunction 
leading to fluids leakage from the circulation 
into the interstitial space and alveoli. Com-
bined, these events result in pulmonary edema 
and impaired gas exchange.   
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for virus replication increases. Since the virus relies on host cell lipo-
genesis for its replication, targeting lipogenesis is speculated to inhibit 
virus replication even in the presence of large amounts of ribonucleo-
tides. In this regard, inhibition of lipogenesis via Krebs cycle blockade 
seems conceivable. As mentioned above, TCA cycle blockade is required 
for the inhibition of viral replication. Metformin is introduced for this 
purpose. Metformin, not only decreases mitochondrial TCA cycle in-
termediates but also directly inhibits lipogenesis [219,220]. Since 
metformin suppresses NOX activity, its intake would cicumvent the 
potential hazardous impacts of high intracellular NADPH levels (due to 
upregulated PPP) in terms of generating higher ROS (contributing to the 
detrimental function of proinflammatory cells) and creating intracel-
lular oxidative stress (contributing to increased SARS-CoV-2 infectivity 
in the host cell), as well. On the other hand, vitamin C is a mild 
pro-oxidant. Therefore, it can produce free radicals and, as a result, in-
duces mitochondrial biogenesis. This can act in favor of SARS-CoV-2 
replication by providing the cell with a higher number of factories in 
charge of TCA cycle flux and consequently lead to increased lipogenesis. 
To avoid the effect, we propose a strategy to both inhibit mitochondrial 
biogenesis and hamper mitochondrial protein translation. The use of 
azithromycin or doxycycline (or both) at low doses (that spares anti-
biotic resistance) has been shown to prevent mitochondrial biogenesis. 
Alsoas off-target side effects, azithromycin and doxycycline can inhibit 
large and small mitochondrial ribosomes, respectively [232]. Addi-
tionally, these antibiotics also possess antiviral activities [233–241]. 

A combination of vitamin C, metformin and doxycycline/azi-
thromycin, is suggested to serve as an effective treatment for this 
infection. As these compounds are non-toxic, we hope that this thera-
peutic strategy can be applied with minimal side effects. It is worth 
mentioning that, applying this strategy for the treatment of stormy and 
fatal outbreaks of this pandemic virus in the world is still in the hy-
pothesis level, and final corroboration is in dire need of supportive 
clinical evidence. 
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