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We aimed to develop a newmethod to convert T1-weighted brain MRIs to feature vectors, which could be used
for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases
and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images
based onAtlas grid (GAIA), inwhich the local intensity alteration, caused by pathological (e.g., ischemia) or phys-
iological (development and aging) intensity changes, aswell as by atlas–imagemisregistration, is used to capture
the anatomical features of target images.
As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple
stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary
progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a
test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training
dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall,
discriminant scores of the test images accurately categorized these test images to the correct disease categories.
Images without typical disease-related anatomical features were misclassified. The proposed method is a prom-
ising method for image feature extraction based on disease-related anatomical features, which should enable
users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Conventional structural MRI still plays a leading part in clinical diag-
nostic radiology, providing vast amounts of anatomical information.
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There are numerous clinical hallmarks and signs that can be depicted
by structural MRI, which are well established after more than 30 years
of clinical application. Currently, clinical MR images are interpreted by
radiologists and stored electronically in the picture archiving and com-
munication system (PACS) with the radiology reports. A text-based
image searching of PACS enables the retrieval of stored images with
the clinical information and radiology report. This searching capability
dramatically improved daily clinical practice by saving time and effort
to collect images from a patient to evaluate disease progression and
the efficacy of treatments, and to collect images from a specific clinical
condition to investigate the common anatomical phenotype depicted
by MRI. However, to further aid in clinical use, an image-based search,
in which the patient's image is submitted to PACS as a “keyword,”
ved.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.nicl.2013.08.006&domain=pdf
http://dx.doi.org/10.1016/j.nicl.2013.08.006
mailto:koishi@mri.jhu.edu
http://dx.doi.org/10.1016/j.nicl.2013.08.006
http://www.sciencedirect.com/science/journal/22131582


203Y.-Y. Qin et al. / NeuroImage: Clinical 3 (2013) 202–211
and past images with similar anatomical phenotypes are identified, and
a statistical report about the diagnosis and prognosis is provided, would
be far more informative. This type of image searching is called content-
based image retrieval (CBIR), which is an anticipated technology in
medical imaging (El-Kwae et al., 2000; Greenspan and Pinhas, 2007;
Muller et al., 2005; Orphanoudakis et al., 1996; Rahman et al., 2007;
Robinson et al., 1996; Sinha et al., 2001; Unay et al., 2010). Although
the CBIR is a promising technology, to date, the application to PACS is
limited (Muller et al., 2004; Sinha and Kangarloo, 2002), because of
the difficulty of extracting features from the stored images, especially
for brain MRI, which consists of numerous anatomical structures with
highly varying intensity, volume, and shape among diseases and even
among normal individuals. One of the solutions is to apply image quan-
tification technologies, which has been the subject of extensive research
in the last two decades (Ashburner and Friston, 1999; Chiang et al.,
2008; Good et al., 2001; Mazziotta et al., 2001; Smith et al., 2006;
Verma et al., 2005; Wright et al., 1995; Yushkevich et al., 2008; Zhang
et al., 2006). These analyses have been mostly designed for traditional
group-based studies, in which strict inclusion criteria and age-
matched controls were essential, but often incompatible, with clinical
practicewhere an individual image, not a group of diseases, is the target
of the analysis. The concept of group analysis assumes consistent loca-
tions of abnormalities, which does not hold for clinical situations with
heterogeneous patient populations and image quality. There are dis-
eases with lesions that are not seen in the normal brain, such as stroke
and brain tumors, and diseaseswith atrophy in a specific set of anatom-
ical structures, such as Alzheimer's disease. To localize the disease-
related pathological changes seen in brain MRI, transformation-based
image analysis methods are often employed. However, the lesions
with abnormal intensity or the space-occupying lesions often cause sig-
nificant misregistration of brain structures after image transformation.
The brain with severe atrophy, such as that seen in Alzheimer's disease,
is also problematic in terms of the transformation accuracy. There are
methods to overcome such inaccuracy by using specific approaches,
such as lesion-masking (Andersen et al., 2010; Ripolles et al., 2012) or
a disease-specific template (Liao et al., 2012; Mandal et al., 2012;
Wang et al., 2012) (e.g., http://www.loni.ucla.edu/Atlases/), but it is
still difficult to quantify various types of diseases in the samemethodo-
logical framework. In addition, most of these methods use image con-
trast to guide the transformation, and therefore, are sensitive to the
variation in contrast not only due to the anatomical abnormalities, but
also to the differences in scanner and image parameters.

In this study, we attempt to solve this widely known problem in
transformation-based analysis by introducing an approach named the
“Gross feature recognition of Anatomical Images based on Atlas grid
(GAIA),” for image feature extraction (Fig. 1). In GAIA, images are co-
registered to the atlas using linear transformation, followed by intensity
measurement for themultiple areas in the atlas space. The overall shape
and size are only roughly adjusted to that of the atlas, leaving residual
misregistrations inmost of the anatomical areas. Themeasured intensi-
ty of each area represents a combination of the local intensity alteration,
caused by pathological (e.g., ischemia) or physiological (development
and aging) intensity changes, as well as by atlas–image misregistration,
which are recorded as unique anatomical features in a quantitative stan-
dardizedmatrix. Since the goal of CBIR is to retrieve images based on an-
atomical similarity, our ultimate interest is not how accurately images
can be warped, but how to extract imaging features that can separate
a specific diagnostic group from other conditions. This motivated us to
use the GAIA as a method for the image recognition applied to a pool
of clinical MRIs with a mixture of various diseases.

As a proof of concept, the GAIAwas applied tomultiple stages of neu-
rodegenerative diseaseswith knownmacroscopic anatomical alterations,
such as Alzheimer's disease (AD) (Dickerson et al., 2009; Du et al., 2007;
Lerch et al., 2005), Huntington's disease (HD) (van den Bogaard et al.,
2012), primary progressive aphasia (PPA) (Mesulam et al., 2012), and
spinocerebellar ataxia type 6 (SCA6) (Eichler et al., 2011). We focused
on 3D T1-weighted images scanned by magnetization-prepared rapid
gradient recalled echo (MPRAGE), since this sequence is already widely
used in clinical practice, especially when neurodegenerative diseases
are suspected. To extract features specific to each of the diseases, we
first applied a principal component analysis (PCA) followed by linear dis-
criminant analysis (LDA) to a training dataset. The resultant feature
vectorswere subsequently applied to the test dataset collected frommul-
tiple scanners to test the accuracy of image categorization based on the
GAIA.

2. Methods

2.1. Participants and image acquisitions

A de-identified database consisting of T1-weighted images scanned
with a magnetization-prepared rapid gradient recalled echo (MPRAGE)
sequence, collected through four independent clinical research studies
(Faria et al., 2013; Jung et al., 2012; Oishi et al., 2011; Unschuld et al.,
2012), was analyzed retrospectively. The Institutional Review Board ap-
proved each study, and written, informed consent was obtained. The
demographic features, scan parameters, and abbreviations are summa-
rized in Table 1.

2.1.1. AD, mild cognitive impairment (MCI), and the cognitively normal
(NC) control group

Twenty five probable-AD patients who met the NINCDS/ADRDA
criteria (McKhann et al., 1984), with a clinical dementia rating (CDR) of
1; 25 aMCI patients who met the criteria for amnestic MCI (Petersen,
2004) with a CDR = 0.5; and 25 NC participants with a CDR = 0,
were included. There were no differences among these groups with re-
gard to age, race, education, and the occurrence of vascular conditions
(Mielke et al., 2009). After three years of follow-up, six MCI patients
had converted to AD and were defined as MCI converters (MCI_c);
three NC participants had converted to AD and were defined as NC con-
verters (NC_c). The diagnosis and neuropsychiatric evaluations [CDR, the
Alzheimer's Disease Assessment Scale — cognitive portion (ADAS-cog),
theminimental state examination (MMSE), and the geriatric depression
scale (GDS)] were performed at the time of the MRI scan.

MPRAGE sequences were acquired using a 3 T scanner (Gyroscan
NT, Philips Medical Systems) located in the Kennedy Krieger Institute.
The scan parameters were: repetition time (TR) 6.9 ms; echo time
(TE) 3.2 ms; inversion time (TI) 846.3 ms; matrix 256 × 256 × 170;
and field of view (FOV) 240 mm × 240 mm × 204 mm, zero-filled to
256 mm × 256 mm × 204 mm (protocol-1).

2.1.2. HD and the control group
Sixty-four participants positive for CAG expansion in Huntingtin and

twenty-seven control subjects negative for CAG expansion were includ-
ed. Among those positive for CAG expansion, thirteen participants were
early symptomatic (HD_es) and 51 participants were asymptomatic, in-
cluding 22whowere close to onset (HD_cto; less than 10 years to the es-
timated onset of the motor symptom) and 19 who were far from onset
(HD_ffo; more than or equal to 10 years to the estimated onset of the
motor symptom), based on the CAG-repeat length of the mutated
Huntingtin allele and age (Langbehn et al., 2004). Disease burden score
(DBS) was calculated as ([CAG-repeat length − 35.5] × age) (Penney
et al., 1997). TheMontreal Cognitive Assessment (MoCA)was performed
to screen for mild cognitive dysfunction on the day of scanning. None of
the participants had a history of diagnosed mood, obsessive compulsive,
or psychotic disorder or substance abuse.

MPRAGE sequenceswere acquiredusing a 3 T scanner (Intera, Philips
Medical Systems) located in the Kennedy Krieger Institute. Two different
protocols were used, including protocol-2: TR 8.4 ms; TE 3.8 ms; TI
826 ms; matrix 256 × 256 × 150; FOV230 mm × 230 mm × 135 mm,
zero-filled to 256 mm × 256 mm × 135 mm; and Flip angle = 8°;

http://www.loni.ucla.edu/Atlases/


Fig. 1.GAIAprocedure. All images are co-registered to the atlas space using affine transformation. The atlas segmentationmap (colored contour) is overlaid on the co-registered image. The
mean intensity of each of 177 parcels is calculated and ranked by the order of mean intensity. Namely, the area with highest intensity is ranked #1 and the area with lowest intensity is
ranked #177. Note that the intensity includes information about both misregistration and intensity mismatch between the atlas and the target image. For example, parcels with cerebro-
spinal fluid contamination (e.g., parcel 4) and with low intensity change, such as the periventricular cap (yellow arrows, parcel 3), were ranked lower than those of the atlas. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and protocol-3: TR 8.0 ms; TE 3.7 ms; TI 811 ms; matrix 256 ×
256 × 150; and FOV 256 mm × 256 mm × 150 mm.
2.1.3. SCA6 group and the control group
Twenty-four patients with genetically diagnosed SCA6 and eight con-

trols were enrolled. The duration of disease was defined from the first
self-reported symptomof ataxia. The Scale for the Assessment and Rating
of Ataxia (SARA) was performed for the evaluation of ataxic symptoms.

MPRAGE sequences were acquired using a 3 T scanner (Intera,
Philips Medical Systems) located in the Kennedy Krieger Institute. The
scan parameters were: TR 10.33 ms; TE 6.0 ms; TI 964.8 ms; matrix
256 × 256 × 140; and FOV 212 mm × 212 mm × 151 mm, zero-
filled to 256 mm × 256 mm × 151 mm (protocol-4).
2.1.4. PPA group
Fifty seven participants with PPA, diagnosed on the basis of having a

predominant and progressive deterioration in language in the absence
of major change in personality, behavior, or cognition other than praxis
for at least two years (Mesulam, 1982), and a control group without
neurological symptoms, were included. PPA patients were classified as
one of the variants of PPA according to recent guidelines (Gorno-
Tempini et al., 2011), including non-fluent variant (PPA_NFv), semantic
variant (PPA_Sv), and logopenic variant (PPA_Lv). Participants with
only anomia and dysgraphia, and who did not meet the criteria for
any of these variants, were categorized as unclassified PPA (PPA_U).
All participants completed the Western Aphasia Battery (WAB)
(Shewan and Kertesz, 1980) within one month before the MRI scans.

MPRAGE sequences were acquired using two 3 T scanners. The
one located in the Kennedy Krieger Institute (Achieva, Philips Medical
Systems) was used for protocol-5: TR 8.4 ms; TE 3.9 ms; TI 849.4 ms;
matrix 256 × 256 × 140; and FOV 212 mm × 212 mm × 140 mm,
zero-filled to 256 mm × 256 mm × 154 mm. The other located in the
Johns Hopkins Hospital (Achieva, Philips Medical Systems) was used
for protocol-6: TR 6.6 ms; TE 3.1 ms; TI 821 ms; matrix 256 ×
256 × 120; and FOV 230 mm × 230 mm × 120 mm, zero-filled to
256 mm × 256 mm × 120 mm.

The MRIs from AD, HD_es, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, PPA_U,
and the control groups of each study were pseudo-randomly assigned
to either training or test datasets. MRIs from NC_c, MCI, MCI_c,
HD_cto, and HD_ffo were assigned as a test dataset.

2.2. Image processing

All images were re-sliced to 1 mm isotropic resolution
(181 × 217 × 181 matrix), bias corrected, and skull-stripped to
generate the “prepared” images by using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/). The intensity histogram peaks of the cerebrospinal
fluid (CSF), the gray matter (GM), and the white matter (WM) of the
“prepared” images were adjusted to match those of the JHU-MNI atlas
(http://cmrm.med.jhmi.edu/) using a nonlinear histogram matching
routine implemented in DiffeoMap (www.mristudio.org). After intensi-
ty correction, 12-parameter affine transformation of AIR (Woods et al.,
1998), implemented in DiffeoMap, was applied to the prepared images
to co-register each participant's image to the atlas. The parcellationmap
of the JHU-MNI atlas was overlaid on the co-registered images to mea-
sure the mean intensity of the 177 areas. The measured intensity was
converted to the rank order using the standard competition ranking.
Namely, a structure with the highest intensity was ranked #1 and the
lowest intensity was ranked #177. This conversion was performed to
ameliorate the differences in intensity profile among different scan pro-
tocols,whichmight remain even after the bias and intensity corrections.

The novelty of the GAIA is the use of parcellation maps to measure
the degree of misregistration and structural intensity mismatch,
which have been regarded as errors to be excluded in traditional
transformation-based image analysis. Although the overall shape and
size are roughly adjusted to that of the atlas after affine transformation,
there are residualmisregistrations inmost anatomical areas (Fig. 1). For
example, if a given image has an enlargement in the lateral ventricle, the
area defined as the caudate in the atlas is occupied by the enlarged
ventricle, which results in lower intensity in this area because of the
contamination of the cerebrospinal fluid (parcel 4 of Fig. 1), and
hence, this results in a relative lowering of the rank order in this parcel
(rightmost column of Fig. 1). If the image contains lesions with altered
intensity, such as the periventricular cap, this also lowers the intensity
of the corresponding area (parcel 3 of Fig. 1), which also results in a rel-
ative lowering of the rank order in this parcel. Our hypothesis is that
the rank order, which represents a combination of the atlas-image
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Table 1
Demographic features and scan parameters.

AD group Training dataset Test dataset

AD (n = 12) NC (n = 10) NC_c
(n = 3)

AD
(n = 9)

MCI
(n = 18)

MCI_c
(n = 6)

NC
(n = 10)

I. Age (years) 76.4 ± 5.1 72.8 ± 8.5 77.7 ± 8.7 74.6 ± 8.1 74.4 ± 5.5 78.7 ± 2.7 76.8 ± 4.1
Sex (M:F) 10:2 4:6 2:1 7:2 13:5 4:2 4:6
Education (years) 15.8 ± 4.2 15.1 ± 2.2 14.7 ± 2.3 15.3 ± 3.0 15.4 ± 3.1 16.3 ± 3.4 17.4 ± 2.7

II. MMSE 22.2 ± 2.8 29.2 ± 1.5 27.7 ± 1.5 21.2 ± 3.3 27.1 ± 2.1 24.3 ± 1.0 29.3 ± 0.9
ADAS-cog 18.4 ± 4.3 11.0 ± 2.1 8.7 ± 2.1 20.7 ± 8.1 12.2 ± 4.9 14.8 ± 4.9 10.8 ± 1.8
CDR-rating 1.2 ± 0.5 0 0.2 ± 0.3 1.0 ± 0.4 0.5 ± 0.1 0.5 0
CDR-sum 6.9 ± 2.9 0 0.2 ± 0.3 5.4 ± 2.1 1.3 ± 0.8 1.6 ± 0.6 0
GDS 1.5 ± 1.9 1.0 ± 1.2 0.3 ± 0.6 2.8 ± 2.1 1.4 ± 1.1 0.5 ± 0.8 1.4 ± 2.5

III. Scan parameters Protocol-1: 3.0 T Philips Intera MR scanner-MPRAGE-1.2; TR/TE (ms): 6.9/3.2; matrix: 256 × 256 × 170; FOV: 256 mm × 256 mm × 204 mm, zero-
filled to 256 mm × 256 mm × 204 mm; voxel size (mm3): 1 × 1 × 1.2

HD group Training dataset Test dataset

HD_es
(n = 9)

NC
(n = 14)

HD_es
(n = 4)

HD_cto
(n = 22)

HD_ffo
(n = 29)

NC
(n = 13)

I. Age (years) 50.8 ± 8.9 37.4 ± 9.8 51.0 ± 6.2 45.5 ± 8.2 37.5 ± 9.7 39.7 ± 9.8
Sex (M:F) 4:5 9:5 2:2 12:10 7:22 8:5
Education (years) – 17.4 ± 2.1 (n = 9) – 14.5 ± 2.7 (n = 10) 14.9 ± 1.9 (n = 16) 16.1 ± 3.3 (n = 8)
CAG-repeat 42.3 ± 1.7 (n = 4) – 43.5 ± 0.7 (n = 2) 44.0 ± 3.5 42.0 ± 1.9 –

II. MoCA – 26.6 ± 1.9 (n = 9) – 26.0 ± 2.3 (n = 7) 26.0 ± 1.7 (n = 13) 27.8 ± 1.6 (n = 5)
III. Scan parameters Protocol-2: 3.0 T Philips Intera MR scanner-MPRAGE-0.9; TR/TE (ms): 8.4/3.8; matrix: 256 × 256 × 150; FOV: 230 mm × 230 mm × 135 mm, zero-

filled to 256 mm × 256 mm × 135 mm; flip angle: 8°; voxel size (mm3): 0.9 × 0.9 × 0.9
Protocol-3: 3.0 T Philips Intera MR scanner-MPRAGE-1.0; TR/TE (ms): 8.0/3.7; matrix: 256 × 256 × 150; FOV: 256 mm × 256 mm × 150 mm; voxel
size (mm3): 1 × 1 × 1

SCA6 group Training dataset Test dataset

SCA6
(n = 12)

NC
(n = 4)

SCA6
(n = 12)

NC
(n = 4)

I. Age (years) 64.3 ± 6.1 55.3 ± 5.9 60.0 ± 6.0 58.3 ± 3.3
Sex (M:F) 2:10 1:3 2:10 2:2

II. SARA 11.0 ± 12.3 – 8.2 ± 8.3 –

III. Scan parameters Protocol-4: 3.0 T Philips Intera MR scanner-MPRAGE-1.1; TR/TE (ms): 10.3/6; matrix: 256 × 256 × 140; FOV: 212 mm × 212 mm × 151 mm, zero-
filled to 256 mm × 256 mm × 151 mm; voxel size (mm3): 0.8 × 0.8 × 1.1

PPA group Training dataset Test dataset

PPA_Sv
(n = 9)

PPA_NFv
(n = 5)

PPA_Lv
(n = 11)

PPA_U
(n = 4)

NC
(n = 12)

PPA_Sv
(n = 9)

PPA_NFv
(n = 4)

PPA_Lv
(n = 11)

PPA_U
(n = 4)

NC
(n = 12)

I. Age (years) 65.1 ±
6.6

69.2 ±
11.0

67.3 ± 6.4 68.8 ±
7.8

61.7 ±
8.3

64.8 ± 6.3 70.8 ±
9.6

68.0 ± 5.9 64.8 ±
6.8

58.6 ±
6.3

Sex (M:F) 5:4 1:4 4:7 1:3 6:6 6:3 1:3 3:8 1:3 6:6
II. WAB_AQ 86.1 ±

7.0
(n = 4)

84.1 ±
10.2
(n = 3)

84.6 ±
13.3
(n = 9)

97.3 ±
0.9
(n = 2)

– 82.5 ±
12.4
(n = 4)

93.2 ±
5.6
(n = 3)

86.0 ±
10.6
(n = 6)

96.7 ±
1.6
(n = 2)

–

III. Scan parameters Protocol-5: 3.0 T Philips Achieva MR scanner-MPRAGE-1.1; TR/TE (ms): 8.4/3.9; matrix: 256 × 256 × 140; FOV: 212 mm × 212 mm × 154 mm,
zero-filled to 256 mm × 256 mm × 154 mm; voxel size (mm3): 0.8 × 0.8 × 1.1
Protocol-6: 3.0 T Philips Achieva MR scanner-MPRAGE-1.0; TR/TE (ms): 10/6; matrix: 256 × 256 × 120; FOV: 230 mm × 230 mm × 120 mm, zero-
filled to 256 mm × 256 mm × 120 mm; voxel size (mm3): 0.9 × 0.9 × 1

Notes: AD = Alzheimer's disease, NC = normal control, MCI = mild cognitive impairment, MCI_c = MCI_converters, NC_c = NC_converters, HD = Huntington's disease, HD_es =
HD early symptomatic, HD_cto = HD close to onset, HD_ffo = HD far from onset, SCA6 = spinocerebellar ataxia type 6, PPA = primary progressive aphasia, PPA_NFv = non-fluent
variant of PPA, PPA_Sv = semantic variant of PPA, PPA_Lv = logopenic variant of PPA, PPA_U = unclassified PPA.
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segmentation and intensity disagreements, could be used to capture the
anatomical features specific to the target image.
2.3. Normalization of the ranking

Training dataset: The rank (Rtrainij) of image i, area j was further
converted to a z-score: Ztrainij = (Rtrainij - RNC j ) / σNCj, where RNC j

represents the mean rank and σNCj represents the standard deviation
of the area j of normal control images assigned to the training dataset.
This resulted in a 102 (number of training data) × 177 (number of
areas) matrix with Ztrainij in each element. A portion of this matrix in-
cluding only normal control images (40 × 177matrix)was also created
to investigate the effects of age and gender.

Test dataset: The rank (Rtestkj) of image k, area j was further
converted to a z-score: Ztestkj = (Rtestkj - RNC j ) / σNCj. This resulted
in a 170 (number of test data) × 177 matrix with Ztestkj in each
element.

2.4. Extraction of age- and gender-related features using a control subset of
the training dataset

PCA was applied to the 40 × 177 matrix of Ztrainij to investigate
correlations between extracted principal components (PCs) and age or
gender. If significant correlations were identified, the PCA-derived ei-
genvectors were applied to the 102 × 177 matrix of Ztrainij and the
170 × 177 matrix of Ztestkj, from which the PCs with significant corre-
lations were removed. This resulted in Ztrainil and Ztestkl, in which l
ranges from 1 to m, which is the number of PCs without significant ef-
fects of age and gender. Spearman's rank correlation coefficient was ap-
plied for the evaluation, in which a corrected p b 0.05 (false discovery
rate) was considered a significant correlation.



Fig. 2. Effects of age and gender on the T1-weighted image. The effects of age and gender
are color-coded on the 177 areas of the atlas space. The red represents positivelyweighted
areas and the blue represents negativelyweighted areas.Weights are relative, and have no
applicable units. The images are in radiological convention (R represents the right side).
The effect of age was mostly identified around the ventricles. The effect of female gender
was found in the left superior temporal, bilateral middle occipital, bilateral subgenual an-
terior cingulate, and the right prefrontal areas, which were positively weighted, and the
left inferior temporal, left precentral, andbilateral superior parietal areas,whichwere neg-
atively weighted. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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2.5. Extraction of disease-specific features using a training dataset

PCA was applied to the 102 × 177 matrix of Ztrainij to extract PCs that
could explain N95% of the total variance. Subsequently, LDAwas applied to
the PCs to extract typical appearances for specific disease categories. The
eight statuses (NC, AD, HD_es, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, and
PPA_U) were used to label the training dataset. If significant effects of age
or gender existed, LDA was also applied to the 102 × m matrix of Ztrainil.
These procedures resulted in eight feature vectors that represented
disease-specific anatomical features extracted from the training dataset.

2.6. Evaluation of GAIA using the test dataset

The eight feature vectors derived from the training dataset were ap-
plied to the test dataset (the 170 × 177 matrix of Ztestkj and the
170 × mmatrix of Ztestkl) to calculate the discriminant scores of 13 sta-
tuses (NC, NC_c, AD, MCI, MCI_c, HD_es, HD_cto, HD_ffo, SCA6, PPA_Sv,
PPA_NFv, PPA_Lv, and PPA_U) for each participant. A one-way analysis
of variance was used to test the differences in the 13 statuses, and to
test the differences in NC scores from five different scan protocols (pro-
tocols 1–5 in Table 1). The group differences in the discriminant scores
were assessed using independent-sample t tests, in which p b 0.05 was
considered significant. Receiver operating characteristic (ROC) curve
analysis was performed to assess the classification of each disease
group using discriminant scores. The correlations of discriminant scores
with clinical scores were analyzed by using the Spearman's rank corre-
lation tests, in which p b 0.05 was considered significant. Statistical
analyses were performed on SPSS 18/20 (IBM Corp., NY, USA).

3. Results

3.1. Effects of age, gender, and scan parameters

Thirty-nine PCs were extracted from the 40 × 177 matrix of Ztrainij.
Significant correlations were identified between the first PC and age
(Spearman's rho = 0.73, p = 8.9 × 10−8), and the 16th PC and gender
(Spearman's rho = 0.39, p = 1.2 × 10−2) (Fig. 2). Therefore, we creat-
ed Ztrainil and Ztestkl (l: 1, 2,…, 37) in which the first and 16th PC were
removed. With the effect of age and gender, the NC scores significantly
differed among protocols 1–5, with the F (4, 35) = 3.648 and p =
1.4 × 10−2. After removing the effects of age and gender, there was
no significant difference in the NC scores among protocols 1–5 (F (4,
35) = 1.217 and p = 3.2 × 10−1).

3.2. Extraction of disease-specific features

From the Ztrainij derived from the training dataset, PCA extracted 54
PCs that could explain N95%of the total variance. LDAwas applied to the
54 PCs to extract eight feature vectors that could calculate discriminant
scores for seven disease statuses and for normal status (Fig. 3A). PCA
and subsequent LDA were also applied to the Ztrainil to extract feature
vectors without the effects of age and gender (Fig. 3B).

3.3. Evaluation of GAIA using the test dataset

Discriminant scores of eight clinical statuses were calculated based
on the trained feature vectors. Note that a higher discriminant score
represents a closer match to the typical disease-related feature.

The NC group had a significantly higher NC score than the patient
groups (p = 1.7 × 10−4) (Fig. 4A). The difference still remained after
the effects of age and gender were removed (p = 1.9 × 10−2)
(Fig. 4A). The area under the ROC curve (AUC) indicated that the ability
of the NC score to correctly discriminate between the NC group and the
non-NC group was significant for both with and without effects of age
and gender (Table 2, I). Although NC individuals were cognitively and
neurologically normal, those with low NC scores had atrophy in the
brain (Fig. 5A).

The AD scores of the AD and MCI groups were significantly higher
than those of the non-AD non-MCI group (p = 1.6 × 10−9 and
4.0 × 10−2). The AD scores of the MCI_c group tended to be higher
than those of the other groups, but did not reach statistical significance
(p = 1.4 × 10−1). After removing the effects of age and gender, the AD
scores were still significantly higher in the AD group (p = 1.1 × 10−7),
but not in theMCI andMCI_c groups (p = 2.0 × 10−1 and 1.8 × 10−1).
The AUC indicated that the ability of the AD score to correctly discrimi-
nate between the AD orMCI group and the non-AD non-MCI groupwas
significant. In the AD group, the significance still remained after remov-
ing the effects of age and gender, but not in the MCI group (Table 2-II).
Medial temporal atrophy,which is typically seen in AD patients, was not
apparent on AD imageswith a low AD score (Fig. 5B). Therewere signif-
icant correlations between the AD score andMMSE, the ADAS, the CDR-
rating, and the CDR-sum of box scores, but not between the AD score
and GDS. After removing the effects of age and gender, the AD score
still correlated with the MMSE, the ADAS, the CDR-rating, and the
CDR-sum of box scores (Table 3, I).

The HD scores of the HD groups (HD_es, HD_cto, and HD_ffo) were
significantly higher than those of the non-HD group (p = 0.9 × 10−2,
2.3 × 10−4, and 2.2 × 10−4). After removing the effects of age and
gender, HD scores were still higher in the HD_cto and HD_ffo groups
(p = .003 and .002), but the tendency toward higher HD scores for
the HD_es group did not reach statistical significance (p = .096). The
AUC indicated that the ability of the HD score to correctly discriminate
between the HD group (HD_es, HD_cto, and HD_ffo) and the non-HD
group was significant. This significance remained after removing the
effects of age and gender, except in HD_es, which was slightly below



Fig. 3.Color-coded feature vectors of eight clinical statuses.The feature vectors are color-coded on the 177 areas of the atlas space. The red represents positivelyweighted areas and the blue
represents negativelyweighted areas.Weights are relative, and have no applicable units. The images are in radiological convention (R represents the right side). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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statistical significance (Table 2, III). Atrophy in the striatum, which is
typically seen in HD patients, was not apparent in HD images with a
low HD score (Fig. 5C). HD score did not correlate with MoCA score.

The SCA6 scores of the SCA6 group were significantly higher than
those of the non-SCA6 group (p = 3.1 × 10−15). After removing the ef-
fects of age and gender, the SCA6 score was still significantly higher in
the SCA6 group (p = 1.2 × 10−8). The AUC indicated that the ability
of the SCA6 score to correctly discriminate between the SCA6 group
and the non-SCA6 group was significant. The significance remained
after removing the effects of age and gender (Table 2, IV). Atrophy in
the cerebellum, which is typically seen in SCA6 patients, was only
seen in the upper half of the cerebellum in SCA6 images with a low
SCA6 score (Fig. 5D). The SCA6 score, with the effects of age and gender,
was correlated with the SARA score, but the significance was less after
removing the effects of age and gender (Table 3, III).

The PPA_Sv score of the PPA_Sv group was significantly higher than
that of the non-PPA_Sv group (p = .001). The PPA_NFv score of the
PPA_NFv group was significantly higher than that of the non-PPA_NFv
group (p = 2.0 × 10−7). The PPA_Lv score of the PPA_Lv group was
significantly higher than that of the non-PPA_Lv group (p = .001).
The PPA_U group had a tendency toward higher PPA_U scores than
those of the non-PPA_U group, but this did not reach statistical signifi-
cance (p = 0.162). After removing the effects of age and gender,
these four PPA scores were all significantly higher in PPA groups
(p = .001, 4.1 × 10−5, .006, and .019). The AUC indicated that the abil-
ity of the PPA score to correctly discriminate between the three PPA
groups (PPA_Sv, PPA_NFv, and PPA_Lv) and the non-PPA groupwas sig-
nificant. The significance remained after removing the effects of age and
gender. However, the discrimination of the PPA_U group from the non-
PPA_U group was not significant, either with or without the effects of
age and gender (Table 2, V–VIII). Typical anatomical features, such as at-
rophy in the left fronto-temporal area (PPA_Sv), atrophy in the left fron-
tal operculum (PPA_NFv), and atrophy in the left temporo-parietal area
(PPA_Lv), were not apparent in PPA_Sv, PPA_NFv, and PPA_Lv images
with low PPA scores (Fig. 5E–G). The WAB repetition scores correlated
with the PPA_NFv scores only after removing the effects of age and gen-
der (Table 3, IV–VII), but a significant correlation was not identified be-
tween the WAB AQ score and any of the PPA scores.

4. Discussion

GAIA employs mismatches between a target image and the refer-
ence atlas to extract anatomical features. The most striking aging effect
was found in the periventricular area, probably due to ventricular en-
largement, as previously reported (Juva et al., 1993; Wang et al., 2013).
The effect of gender is also in agreement with the results of past studies
(Chen et al., 2007; Coffey et al., 1998; Thambisetty et al., 2010).

Rank order was used to quantify the intensity profile. For T1-
weighted images, the intensity of the cerebrospinal fluid is always
lower than that of gray andwhitematter, and thewhitematter intensity
is always higher than that of gray matter. The comparison of NC scores
among five different protocols indicated the robustness of the GAIA-
based approach against protocol variability.

The feature vectors extracted from the training dataset agreed with
known pathological hallmarks. The medial temporal lobe and the pari-
etal lobe were negatively weighted in AD, the basal ganglia were posi-
tively weighted in HD, the cerebellum was negatively weighted in
SCA6, the left temporal area was negatively weighted in PPA_Sv, the
left frontal operculum and the insular were negatively weighted in
PPA_NFv, and the left parieto-temporal area was negatively weighted
in PPA_Lv, regardless of the effects of age and gender. Note that with
GAIA, the rank of the areas with cortical atrophy decreases because of
the inclusion of the dark cerebrospinal fluid signal, and the lenticular
nuclei with atrophy were ranked higher because of the inclusion of
the surrounding bright white matter signal.

Several features were observed in GAIA-based image scoring. First,
the discriminant scores indicated “How close the target image was to
the typical anatomical feature of the disease.” As indicated in Fig. 5,



Fig. 4. Bar charts of eight discriminant scores (A: NC score, B: AD score, C: HD score, D: SCA6 score, E: PPA_Sv score, F: PPA_NFv score, G: PPA_Lv score, and H: PPA_U score) from thirteen
statuses (from left to right a: NC, b: NC_c, c: AD, d: MCI, e: MCI_c, f: HD_es, g: HD_cto, h: HD_ffo, i: SCA6, j: PPA_Sv, k: PPA_NFv, l: PPA_Lv, and m: PPA_U), with effects of age and gender
(upper chart) and without effects of age and gender (lower chart). Asterisks (*) represent a status that should be discriminated by the discriminant score.

Table 2
Results of ROC analyses.

With effect of age and gender Without effect of age and gender

Cut-off
(≥)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

95%CI
(%)

p Cut-off
(≥)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

95%CI
(%)

p

I. NC score NC −2.5 76.9 58 71.4 ± 4.9 61.8–80.9 .000b −2.2 74.4 48.9 61.2 ± 5.0 51.5–71.0 .033a

II. AD score NC_c −33.3 100 45.5 64.7 ± 8.7 47.6–81.7 0.384 −9.5 100 48.5 59.5 ± 6.5 46.7–72.3 0.574
AD −11.2 88.9 90.1 92.3 ± 3.6 85.1–99.4 .000b −5.3 100 85.7 93.1 ± 2.2 88.9–97.3 .000b

MCI −34.3 83.3 44.7 65.4 ± 6.0 53.6–77.2 .033a −10.7 94.4 32.2 60.5 ± 6.4 48.0–73.1 0.145
MCI_c −39.9 100 29.3 62.4 ± 11.7 39.4–85.4 0.303 −0.5 50 96.3 69.1 ± 13.4 42.9–95.3 0.112

III. HD score HD_es −12.6 100 77.1 88.3 ± 4.1 80.2–96.3 .009b −3.9 100 54.8 77.0 ± 7.9 61.6–92.4 0.065
HD_cto −15.7 63.6 74.3 72.6 ± 6.0 60.8–84.4 .001b −1.3 50 86.5 69.3 ± 6.4 56.7–81.9 .004b

HD-ffo −23.2 86.2 55.3 72.0 ± 4.5 63.3–80.8 .000b −4.2 75.9 56 67.7 ± 5.2 57.6–77.8 .003b

IV. SCA6 score SCA6 −8.5 100 91.1 97.4 ± 1.2 94.9–99.8 .000b −1.8 91.7 88.6 94.1 ± 2.1 90.0–98.2 .000b

V. PPA_Sv score PPA_Sv −13.7 88.9 97.5 94.6 ± 3.9 0.0–100.0 .000b −7 88.9 91.9 94.7 ± 2.7 89.4–100.0 .000b

VI. PPA_NFv score PPA_NFv −10.3 100 89.8 97.3 ± 2.3 0.0–100.0 .001b −3.8 100 86.1 95.3 ± 3.0 0.0–100.0 .002b

VII. PPA_Lv score PPA_Lv −13.3 72.7 74.8 78.7 ± 6.1 66.7–90.6 .001b −6.5 81.8 71.1 78.6 ± 5.6 67.7–89.5 .002b

VIII. PPA_U score PPA_U −10.6 50 92.2 66.0 ± 16.6 33.3–98.6 0.276 −0.6 50 98.2 71.1 ± 14.3 43.0–99.1 0.15

a The asymptotic significance is less than 0.05.
b The asymptotic significance is less than 0.01.
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Fig. 5. Test images with the highest discriminant score (upper two rows) and the lowest discriminant score (lower two rows). A: Ventricular enlargement was prominent in the NC par-
ticipant with the lowest NC score. B: The AD participant with the highest AD score showed prominent atrophy in themedial temporal area (yellow arrows), whichwas not seen in the AD
participantwith the lowest AD score. C: TheHDparticipantwith the highest HD score (HD_es) showed prominent atrophy in the basal ganglia (yellow arrows), whichwas not seen in the
HD_ffo participant with the lowest HD score. D: The SCA6 participant with the highest SCA6 score showed prominent atrophy in the cerebellum (yellow arrows). Cerebellar atrophywas
found only in the upper half of the cerebellum in the SCA6 participant with the lowest SCA6 score. E: The PPA_Sv participant with the highest PPA_Sv score showed prominent atrophy in
the anterior part of the left temporal lobe (yellow arrows), which was only mildly seen in the PPA_Sv participant with the lowest PPA_Sv score. F: PPA_NFv participant with the highest
PPA_NFv score showed prominent atrophy in the left perisylvian areas (yellow arrows), which was only mildly seen in the PPA_NFv participant with the lowest PPA_NFv score. G: The
PPA_Lv participant with the highest PPA_Lv score showed prominent atrophy in the left parieto-temporal area (yellow arrows), which was only mildly seen in the PPA_Lv participant
with the lowest PPA_Lv score. H: The PPA_U participant with the highest PPA_U score showed only mild ventricular enlargement. However, prominent atrophy in the anterior part of
the temporal area (yellow arrows), similar to that in the PPA_Sv, was seen in the PPA_U participantwith the lowest PPA_U score. Images are in radiological convention. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

209Y.-Y. Qin et al. / NeuroImage: Clinical 3 (2013) 202–211
the discriminant scores were not suitable to detect diseases in their
early stage with only subtle anatomical alterations, or with atypical an-
atomical features. Second, AD, SCA6, PPA_Sv, and PPA_NFv were well
discriminated from each other, whichwas expected from previous pub-
lications (Dolek et al., 2012; Laakso et al., 1998; Marigliano et al., in
press). Congruent with the past studies that used morphometry (Xu
et al., 2000), the AD score had limited power to separate MCI and
MCI_c groups from non-AD, non-MCI groups. The AD, SCA6, and
PPA_NFv scores correlated with functional scales, similar to the correla-
tions between hippocampal volume and cognitive scales (Arlt et al.,
2013; Troyer et al., 2012), between cerebellar volume and ataxia scales
(Eichler et al., 2011; Jacobi et al., 2012; Jung et al., 2012), and between
regional volumes and WAB subsets (Amici et al., 2007). This indicated
that GAIA-based feature recognition is comparable to that based on
morphometry. Third, the disease separation was generally better
when the effects of age and gender were accounted for, probably be-
cause the age of the AD, MCI, MCI_c, and PPA groups was higher than
that of the SCA6 and HD groups. Last, the performance of the discrimi-
nant scores was not satisfactory for the disease categories that included
various histopathological diagnoses, or those with an atypical pheno-
type. MCI includes early AD and MCI without AD pathology (Albert,
2011). The histopathological diagnosis of PPA_Lv is usually AD
(Kirshner, 2012; Rabinovici et al., 2008), which might partially explain
the relatively high PPA_Lv score inADandMCI_c, but the clinical pheno-
type is different from that of commonAD. PPA_U is, by definition, amix-
ture of unclassified cases of PPA, which lacks common anatomical
features.
While the GAIAwas intended to be used as a tool for anatomical fea-
ture recognition, the natural extension is an automated image-based
diagnosis. For such a diagnostic application, the GAIA needs to give dis-
criminant scores with sufficiently high sensitivity and specificity for the
diagnosis of individual patients. The ROC analysis demonstrated sub-
stantially high sensitivity and specificity for AD, HD_es, SCA6, PPA_Sv
and PPA_NFv, suggesting the potential for a diagnostic application.
However, given the fact that there are patients with less typical or atyp-
ical anatomical features (Fig. 5), GAIA alonemight be insufficient for the
clinical evaluation. One possibility for a future clinical application is a
probabilistic evaluation of a single patient based on anatomical feature
similarity. Namely, GAIA could be used to sort stored clinical cases
with anatomical features similar to a target image, to calculate the prob-
ability of a given clinical condition, such as diagnosis, prognosis, or re-
sponsiveness to treatment. Anatomical features extracted by GAIA
could also be combined with other clinical information, such as age,
gender, symptoms, medical history, risk factors, results of physical ex-
aminations, and other neurological evaluations, to simulate physicians'
decision-making. Since the effectiveness of combining image and non-
image information to form a classification of AD andMCI has been dem-
onstrated (Zhang et al., 2011), the GAIA might be a promising tool to
extend the application of multimodal classification to a cohort that con-
sists of multiple diseases and conditions. The exploration of the applica-
bility of GAIA to clinical diagnosis support will be an important future
direction.

In this study, GAIA was based on linear transformation, which does
not require computationally extensive non-linear transformation. It is



Table 3
Correlations between discriminant scores and clinical scales.

With effect of age and
gender

Without effect of age
and gender

n r p
(2-tailed)

n r p
(2-tailed)

I. AD score MMSE 36 − .363a .030a 36 − .478b .003b

ADAS 36 0.228 0.013a 36 0.322 0.009b

CDR-rating 36 .447b .006b 36 .388a .020a

CDR-sum 36 .483b .003b 36 .458b .005b

GDS 36 0.158 0.358 36 0.103 0.548
II. HD score MoCA 20 −0.102 0.668 20 0.066 0.781
III. SCA6
score

SARA 12 .745b .005b 12 0.519 0.083

IV. PPA_Sv
score

WAB AQ 15 −0.2 0.475 15 −0.411 0.128
WAB fluency 15 −0.261 0.347 15 −0.504 0.055
WAB sequential
command

15 −0.041 0.884 15 −0.202 0.471

WAB repetition 15 0.247 0.374 15 0.036 0.898
V. PPA_NFv
score

WAB AQ 15 0.161 0.576 15 0.375 0.168
WAB fluency 15 0.05 0.859 15 0.061 0.829
WAB sequential
command

15 0.174 0.535 15 0.225 0.421

WAB repetition 15 0.502 0.057 15 0.564 0.029a

VI. PPA_Lv
score

WAB AQ 15 −0.286 0.302 15 −0.475 0.074
WAB fluency 15 −0.006 0.984 15 −0.426 0.113
WAB sequential
command

15 −0.128 0.649 15 −0.358 0.191

WAB repetition 15 −0.338 0.218 15 −0.382 0.16
VII. PPA_U
score

WAB AQ 15 0.186 0.508 15 0.268 0.334
WAB fluency 15 0.233 0.402 15 0.46 0.085
WAB sequential
command

15 0.119 0.672 15 0.252 0.365

WAB repetition 15 −0.255 0.36 15 −0.073 0.797

a Correlation is significant at the 0.05 level (two-tailed).
b Correlation is significant at the 0.01 level (two-tailed).
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possible to combine GAIA with non-linear transformation. As the
nonlinearity of the transformation increases, the accuracy of atlas-
based structural definition also increases. However, the transformation
results become highly sensitive to intensity abnormalities, potentially
leading to unpredictable outcomes. The combination of GAIA and
nonlinear transformation and the effect of the degree of nonlinearity
are, thus, important directions for future research. TheGAIA found char-
acteristic anatomical features for each disease category, which has been
previously reported bymorphometric studies. Please note that conven-
tional morphometry studies are based on manual delineation of pre-
selected structures, or voxel-based analyses, which lead to voxel-
based patterns specific to each disease on a study-specific (customized)
template, while GAIA applies a single generic atlas and simple linear
transformation for all disease models, making it an ideal tool for CBIR
of a large clinical database.

This study has limitations. In this proof-of-concept study, only
neurodegenerative diseases with well-known neuroanatomical fea-
tures were included. To test the applicability of GAIA as a tool for CBIR,
rigorous evaluation must be performed on much larger datasets, as
well as on diseases with no or subtle neuroanatomical features
(e.g., psychiatric diseases), diseases with substantial alterations in
image intensity (e.g., stroke), diseases with space-occupying lesions
(e.g., tumor), and patients with multiple diseases. Care should be taken
to interpret the discriminant scores, since the scores are purely based on
imaging features and do not necessarily reflect the histopathological or
etiological background. Further investigations about the applicability of
this method to other imagemodalities or tomultimodal image recogni-
tion will be essential.

In summary, amethod to convert T1-weighted brainMRIs to feature
vectors, based on local atlas–image segmentation disagreement, can ac-
curately categorize test images with typical disease-related anatomical
features.
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