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Abstract 

Background:  Cervical cancer is frequently detected gynecological cancer all over the world. This study was designed 
to develop a prognostic signature for an effective prediction of cervical cancer prognosis.

Methods:  Differentially expressed genes (DEGs) were identified based on copy number variation (CNV) data and 
expression profiles from different databases. A prognostic model was constructed and further optimized by stepwise 
Akaike information criterion (stepAIC). The model was then evaluated in three groups (training group, test group and 
validation group). Functional analysis and immune analysis were used to assess the difference between high-risk and 
low-risk groups.

Results:  The study developed a 5-gene prognostic model that could accurately classify cervical cancer samples into 
high-risk and low-risk groups with distinctly different prognosis. Low-risk group exhibited more favorable prognosis 
and higher immune infiltration than high-risk group. Both univariate and multivariate Cox regression analysis showed 
that the risk score was an independent risk factor for cervical cancer.

Conclusions:  The 5-gene prognostic signature could serve as a predictor for identifying high-risk cervical cancer 
patients, and provided potential direction for studying the mechanism or drug targets of cervical cancer. The inte-
grated analysis of CNV and mRNA expanded a new perspective for exploring prognostic signatures in cervical cancer.

Keywords:  Cervical cancer, Copy number variations, Differential expressed genes, Prognostic signature, 
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Background
Human papillomavirus (HPV) vaccine uptake could pre-
vent the incidence of cervical cancer, but according to 
global cancer statistics, in 2020 there were 13.3 per 100 
000 women suffering from cervical cancer, and 604 127 

new cases were diagnosed [1]. Surgery and chemotherapy 
are the main strategies for treating cervical cancer, and 
the International Federation of Gynecology and Obstet-
rics (FIGO) has also developed a staging system for per-
sonalized therapy [2]. Patients classified as having a low 
risk recurrence by FIGO can still develop metastasis [3], 
which will inevitably increase the difficulties of treat-
ment. Therefore, discovery of efficient predictor may help 
predict the prognosis and guide personalized treatment 
of cervical cancer.

In the recent years, various biomarkers, such as 
immune genes [4], long non-coding RNAs [5, 6], microR-
NAs [7, 8] and histone genes [9], have been discovered to 
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evaluate the prognosis of cervical cancer patients. Up to 
now, prognostic signature based on copy number varia-
tions (CNVs) has not been investigated before. A number 
of studies have demonstrated that CNVs are involved in 
tumorgenesis in many cancer types, such as lung cancer 
[10], leukaemia [11] and breast cancer [12]. In a pan-can-
cer research, Shao et al. revealed a close relation between 
CNVs and gene expression enriched in oncogenic path-
ways [13]. Advances in gene microarray technology ena-
ble us to detect duplications or deletions from focal to 
chromosomal associated with cancer development using 
various databases.

Tumor microenvironment (TME) plays a critical role in 
cancer cell proliferation, metastasis and immune escape. 
Particularly, to a large extent, the efficacy of immuno-
therapy is determined by TME [14]. Immunotherapy is a 
potentially effective strategy for cervical cancer patients 
with metastasis. Immune checkpoint blockade such 
as programmed death receptor-1 (PD-1) and CTLA-4 
inhibitors has been seen as re-activators for T cell acti-
vation [15]. Currently, there are ongoing clinical trials 
exploring immune checkpoint inhibitors for aggressive 
cervical cancer.

In this study, cervical cancer samples were obtained 
from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases, where TCGA 
and GSE44001 datasets containing expression data and 
sequencing data were downloaded. We constructed a 
prognostic signature for cervical cancer patients accord-
ing to combined data of CNVs and mRNAs. The effec-
tiveness of the prognostic signature was validated using 
TCGA and GSE44001 datasets. The signature was robust 
in dividing patients into high-risk and low-risk groups, 
which showed distinctly different overall survival (OS). A 
nomogram was proposed based on the prognostic signa-
ture to satisfy a convenient clinical use. In addition, TME 
of high-risk and low-risk groups was described for under-
standing immune infiltration in the two groups. The 
current prognostic signature manifested a robust per-
formance through comparison with previously reported 
signatures.

Methods
Data source
The workflow of constructing a prognostic model for 
cervical cancer was shown in Fig. 1. The data of cervical 

Fig. 1  The workflow of constructing a prognostic model for cervical cancer
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cancer samples were downloaded from TCGA (https://​
portal.​gdc.​cancer.​gov/) database and GEO (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) database on August 30, 2021. 
TCGA dataset included RNA sequencing (RNA-seq) 
data, CNV data and clinical information. GSE44001 from 
GEO included expression profiles. 10 normal samples of 
cervix uteri containing expression profiles were down-
loaded from GTEx database (https://​www.​gtexp​ortal.​
org/) on August 30, 2021.

Data preprocessing
For TCGA dataset, samples without clinical informa-
tion, survival status (dead and alive) or survival time were 
excluded. Primary solid tumor and normal solid tissue 
were retained. “RemoveBatchEffect” function in limma R 
package [16] was used to remove batch effects between 
TCGA and GTEx datasets (Supplementary Figure S1). 
For GSE44001 dataset, samples without survival status 
were excluded. Probe ID was converted to gene sym-
bol. One probe containing multiple genes was excluded. 
When one gene had multiple probes, averaged expression 
value of these probes was selected. Finally, 291 samples 
were remained in TCGA dataset, which were grouped by 
survival status (220 alive and 71 dead), T stage (T1-137, 
T2-67, T3-16, T4-10, TX-61), N stage (N0-128, N1-55, 
NX-108), M stage (M0-107, M1-10, MX-174), stage 
(I-159, III -64, III-41, IV-21, X-6), grade (G1-18, G2-129, 
G3-116, G4-1, GX-27), age (139 samples ≤ 45  years and 
152 samples > 45 years) and HPV status (positive-9, nega-
tive-167, NA-115). In GSE44001 dataset, 300 samples 
were remained with 262 alive and 38 dead samples. The 
clinical information of these samples was displayed (Sup-
plementary Table S1).

Identification of differentially expressed genes (DEGs)
DEGs were obtained from differential CNVs and differ-
ential genes. For CNV data, bedtoolsr R package [17] was 
applied to transform CNV segments to genes, and CNVs 
in tumor samples and normal samples were calculated. 
The differential CNVs were identified by Chi-square 
test with P < 0.05. For expression profiles, limma R pack-
age was used to identify DEGs between normal samples 
in GTEx dataset and tumor samples in TCGA dataset 
(P < 0.01, |fold change (FC)|> 1.5). Finally, the intersection 
of genes in differential CNVs and DEGs in the expression 
profiles was the gene set of DEGs.

Analysis of GO function and KEGG pathways
WebGestaltR package [18] was applied to analyze Gene 
Ontology (GO) function and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. WebGestaltR is 
a popular tool supporting various functional categories 
and databases when performing enrichment analysis. 

GO function includes molecular function, cellular com-
ponent and biological process. Only the top 10 enriched 
terms or pathways were visualized.

Construction of a prognostic model
TCGA dataset was randomly divided into training group 
and test group at a ratio of 1:1. The suitable division was 
selected under the conditions of similar distribution of 
two groups in ages, genders, survival status, follow-up 
time and similar number of samples of binary classifi-
cation for expression profiles. Finally, 146 samples in 
training group and 145 samples in test group were deter-
mined. Chi-square test showed no significant difference 
between two groups (P > 0.05, Supplementary Table S2). 
Moreover, on the univariate Cox regression analysis of 
genes in training and test groups, a similar distribution 
of their P values was displayed, indicating that the clas-
sification of two groups was reliable (Supplementary Fig-
ure S2). GSE44001 was set as an independent validation 
group.

Survival coxph function in survival R package was used 
to perform univariate Cox regression analysis in training 
group, and P < 0.05 was set to screen DEGs. StepAIC in 
MASS package [19] was applied for model optimization. 
The AIC of the model decreased by decreasing variables 
one by one, with a lower AIC reflecting a more opti-
mized model. The prognostic model was defined as risk 
score = coefficient 1* gene expression 1 + coefficient 2* 
gene expression 2 + … + coefficient n* gene expression 
n, where coefficients were obtained from the result of 
univariate Cox regression analysis. Risk score was con-
verted to z-score to classify samples into high-risk and 
low-risk groups through z-score = 0. TimeROC R pack-
age [20] was used to show receiver operating characteris-
tic (ROC) curves, and area under ROC curve (AUC) was 
calculated to evaluate the prediction of the prognostic 
model. Kaplan–Meier survival analysis was employed to 
analyze the survival, the differences of which in the two 
risk group were analyzed by log-rank test.

Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data (ESTIMATE)
ESTIMATE is a method that can evaluate the fraction 
of stromal and immune cells based on gene expression 
signatures through single sample gene set enrichment 
analysis (ssGSEA) [21]. The method calculates three 
enrichment scores, that is, stromal score, immune score 
and ESTIMATE score, where ESTIMATE score is the 
combined score of stromal score and immune score.

Microenvironment Cell Populations‑counter (MCP‑counter)
MCP-counter calculates the enrichment score of 10 
immune-related cells (CD3 T cells, CD8 T cells, cytotoxic 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gtexportal.org/
https://www.gtexportal.org/
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lymphocytes, B lymphocytes, NK cells, monocytic line-
age, myeloid dendritic cells, neutrophils, endothelial cells 
and fibroblasts) across mRNA mixtures in tumor tissue 
[22]. This tool enables to estimate relative abundance of 
immune-related cells based on a series of cell markers in 
a complex tumor microenvironment.

Single sample gene set enrichment analysis
GSVA R package was used to conduct ssGSEA for deter-
mining enrichment score of a gene set in one sample [23]. 
With this method, the abundance of gene expression can 
be calculated and compared between different groups. 
TME was analyzed using ssGSEA to obtain the enrich-
ment of 28 immune cells.

Construction of a nomogram
Visualization of a nomogram allows a direct predic-
tion of overall survival based on a series of risk factors. 
We included the risk factors with hazard ratio (HR) > 1 
(P < 0.05) from multivariate Cox regression analysis. Each 
risk factor was assigned with a score, and total points of 
risk factors corresponded to survival chance of 1-year, 
3-year and 5-year period.

Decision curve analysis (DCA)
To objectively compare the different factors in survival 
prediction, DCA, which enables a standard comparison 
for evaluating performance of predictive factors in clini-
cal decision based on net benefit, was introduced here to 
evaluate the cost performance of nomogram, risk score 
and other clinical features. The methodology is com-
monly used in evaluating predictive models for clinical 
use [24, 25].

Statistical analysis
R (version 3.4.2) software was used to conduct all statisti-
cal analysis and bioinformatics analysis. P < 0.05 was con-
sidered as significant. Statistical methods were presented 
in the corresponding figure legends. All parameters were 
defined as default if there was no specific descriptions.

Results
Identification of DEGs based on CNV data and expression 
profiles
For CNV data in TCGA dataset, we analyzed the 
CNV of each sample by comparing with normal sam-
ples, and 6608 differential CNVs containing 6608 
genes were screened (P < 0.05). 788 DEGs including 
268 up-regulated and 520 down-regulated genes were 
identified (P < 0.01 and |FC|> 1.5, Fig.  2). A Venn dia-
gram was plotted for discovering the common genes 
between 6608 genes from differential CNVs and 788 
DEGs (Supplementary Figure S3). Functional analysis 

on 255 intersected DEGs annotated 282 terms of bio-
logical processes and 86 terms of cellular components 
(P < 0.05, Fig.  3A and B, Supplementary Table S3), but 
no molecular function was significantly enriched. We 
found that cell cycle-related terms, such as chromo-
some segregation and nuclear division, were signifi-
cantly enriched. In addition, 12 KEGG pathways were 
significantly annotated, and the top 10 enriched path-
ways were shown (P < 0.05, Fig.  3C). Several pathways 
related to cell signaling and cell proliferation, such as 
cell cycle, gap junction, leukocyte transendothelial 
migration and cell adhesion molecules, were enriched.

Construction of a prognostic model based on 255 DEGs
Based on 255 DEGs identified from CNV data 
and mRNA data, we attempted to develop a prog-
nostic model for cervical cancer. Univariate Cox 
regression analysis was conducted to detect genes signif-
icantly associated with prognosis. Totally 11 genes were 
screened (Supplementary Table S4), and then stepAIC 
was used to reduce the number of genes for construct-
ing an optimal model. Finally, 5 genes (APOD, ARMCX1, 
GALNT3, HK2 and HLF) remained, and the prognostic 
model was defined as follow:

Risk score =—0.238*APOD + 0.462*ARMCX1 + 0.503*
GALNT3 + 0.406*HK2 -0.407*HLF.

The distribution of these 5 genes were reflected in a 
genome map, with APOD in chromosome 3, ARMCX1 
in chromosome X, GALNT3 and HK2 in chromosome 
2, and HLF in chromosome 17 (Supplementary Fig-
ure S4). The expression of the 5 genes in TCGA sam-
ples was significantly changed compared with normal 
samples, specifically, APOD, ARMCX1 and HLF were 
down-regulated, and GALNT3 and HK2 were up-regu-
lated (Supplementary Figure S5). We also found an obvi-
ous correlation between the expression of three genes 
(ARMCX1, GALNT3 and HK2) and CNV (Supplemen-
tary Figure S6).

Evaluation of the 5‑gene prognostic model
Firstly, we randomly divided 291 samples from TCGA 
dataset into two groups, with 146 samples as a training 
group and 145 samples as a test group (Supplementary 
Table S2). The risk score for each sample was calculated 
according to the expression of 5 prognostic genes. Risk 
score was converted to z-score, and z-score = 0 was set 
as a cut-off to classify samples into high-risk and low-risk 
groups in the training group (Fig.  4A). It was observed 
that samples of dead status were more enriched in high-
risk group, and that the expression level of 5 genes were 
significantly distinct between two risk groups. ROC anal-
ysis revealed a high AUC of 1-year (0.81), 3-year (0.76) 
and 5-year (0.74) OS prediction (Fig. 4B), indicating the 
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effectiveness of the prognostic model. Kaplan–Meier sur-
vival analysis also showed a significant classification of 
high-risk group with 66 samples and low-risk group with 
80 samples (P = 0.0041, HR = 2.98, 95%CI = 2.01–4.41, 
Fig. 4C).

The prediction of the prognostic model was further 
evaluated in the test group, and the model manifested 
the similar results when compared with the training 
group (Supplementary Figure S7). 145 samples were 
neatly classified into high-risk and low-risk groups, 
with a favorable AUC of 1-year (0.69), 3-year (0.68) and 
5-year (0.76). Survival analysis showed that the risk score 
could classify patients into two groups with distinct OS 
(P = 0.0044, Supplementary Figure S7C). The distribu-
tion of risk score for total samples in TCGA dataset was 
shown (Fig. 5). 143 samples and 148 samples were classi-
fied into high-risk and low-risk groups, respectively, with 
differential OS (P = 0.00013, HR = 2.06, 95%CI = 1.61–
2.63, Fig.  5C). Furthermore, we included an independ-
ent dataset (GSE44001) to validate the robustness of the 

5-gene prognostic model, and obtained similar results 
that the samples were significantly divided into high-risk 
and low-risk groups with distinctly different prognosis 
(P = 0.0059, Supplementary Figure S8). Therefore, the 
5-gene prognostic model was effective in distinguishing 
high-risk and low-risk for cervical cancer patients.

Risk score is associated with clinical features
To assess the relation between risk score and clinical fea-
tures, we evaluated the distribution of risk score in dif-
ferent clinical features (Supplementary Figure S9). There 
was a higher proportion of alive samples in low-risk 
group (P < 0.05, Supplementary Figure S9A). Although 
no significant difference was observed among different 
stages, a higher proportion of samples was observed in 
advanced cancer stages (Supplementary Figure S9B-E). In 
different ages, genders and HPV status, there was no dif-
ferential distribution of risk score (Supplementary Figure 
S9F and G).

Fig. 2  A volcano plot of up-regulated (yellow) and down-regulated (blue) genes identified from expression profiles. The vertical dotted line 
indicates |FC|= 1, and the horizontal dotted line indicates P = 0.01. FC, fold change
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Moreover, we analyzed if risk score could classify 
patients into high-risk and low-risk groups with different 
clinical features. The results manifested that risk score 
was also robust in sample classification into high-risk 
and low-risk groups in different clinical features, includ-
ing age > 45 and age ≤ 45, T1 and T2 stages, N0 and N1 
stages, M0 stage, stage I and II, stage III and IV, grade 1 
and 2, grade 3 and 4, and HPV-positive (P < 0.05, Fig. 6).

To assess the independence of the 5-gene prognostic 
signature in clinical use, we applied univariate and mul-
tivariate Cox regression analysis on TCGA dataset. Uni-
variate Cox regression analysis revealed that T stage, N 
stage, M stage, stage and risk type were the risk factors 
for cervical cancer patients (P < 0.05, Fig.  7A). From the 
data of multivariate Cox regression analysis, T stage, 
N stage and risk score were considered as risk factors 

(Fig. 7B). High HR of risk type was presented in the uni-
variate and multivariate Cox regression analysis, with 
HR = 2.58 (P < 0.0001, 95%CI = 1.56–4.28) and HR = 6.21 
(P = 0.044, 95%CI = 1.05–36.7), respectively.

Constructing a nomogram based on risk score
To satisfy a convenient clinical use, we developed a nom-
ogram that can directly exhibit the prognostic model to 
predict prognosis. Three risk factors (T stage, N stage 
and risk score) selected based on the results of multi-
variate Cox regression analysis and TCGA samples were 
included to construct a nomogram (Fig.  8A). Each risk 
factor can obtain a score, and total points indicates the 
death rate of 1-year, 3-year and 5-year survival. Predicted 
OS was corrected then by the observed OS (Fig.  8B). 

Fig. 3  Analysis of GO function and KEGG pathways. A-C The top 10 enriched terms of biological process A, cellular component B and KEGG 
pathways C. P value was presented as – log10 (P value). Dot size represents the number of genes enriched in one term
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Furthermore, DCA was used to evaluate the efficiency of 
the nomogram, and we found that the nomogram could 
more accurately assist clinical decision than other predic-
tors in prognosis prediction (Fig. 8C).

Differential immune features between high‑risk 
and low‑risk groups
Tumor microenvironment plays an important role in 
cancer development and immune escape, therefore 
we analyzed the relation between immune infiltra-
tion and risk score through ESTIMATE, MCP-counter 
and ssGSEA. ESTIMATE revealed that low-risk group 
had higher stromal score and immune score than high-
risk group, indicating high immune infiltration in low-
risk group (P < 0.01, Fig.  9A). The MCP-counter results 
showed that T cells, B lineage and myeloid dendritic 
cells contributed to a higher enrichment in low-risk 
group, while neutrophils and endothelial cells were 
higher-enriched in high-risk group (P < 0.05, Fig.  9B). 

Additionally, we evaluated 28 types of immune cells 
obtained from a previous study through ssGSEA [26]. 
Activated B cells, immature B cells, activated CD8 T 
cells, effector memory CD8 T cells and myeloid-derived 
suppressor cells (MDSC) had significantly high enrich-
ment score in low-risk groups (P < 0.05, Fig. 9C), which 
suggested a more activated immune response in low-
risk group than high-risk group. Moreover, we assessed 
the expression of 47 immune checkpoints obtained 
from Danilova et al. [27]. 24 of 47 immune checkpoints 
exhibited differential expression between high-risk and 
low-risk groups (P < 0.05, Fig. 9D), meaning that the dif-
ferential expression of these immune checkpoints may 
result in differential immune response.

Functional pathways related to risk score
To evaluate the relation between risk score and enrich-
ment of functional pathways, we used ssGSEA to calcu-
late the enrichment score of KEGG pathways for each 

Fig. 4  The performance of the 5-gene prognostic model in training group. A The survival status and expression of 5 genes of each sample ranked 
by risk score. The expression level was converted to z-score. Red indicates z-score > 0 and relatively high expression, while green indicates z-score < 0 
and relatively low expression. B ROC curve of predicting 1-year, 3-year and 5-year survival. C Kaplan–Meier survival curve of high-risk and low-risk 
groups. Log-rank test was performed. AUC, area under ROC curve. CI, confidence interval. HR, hazard ratio
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sample in TCGA dataset. Pearson correlation analysis 
revealed that 17 KEGG pathways were enriched and 
correlated with risk score (P < 0.05, correlation coeffi-
cient > 0.25), and most of them were related to metabo-
lism (Fig.  10). 8 KEGG pathways, such as galactose 
metabolism, focal adhesion, ERBB signaling pathway and 
adherens junction, were positively correlated with risk 
score, and 9 KEGG pathways, such as oxidative phospho-
rylation, drug metabolism cytochrome p450 and tyrosine 
metabolism, were negatively correlated with risk score 
(Fig. 10).

Comparison with other prognostic models
Previous studies have proposed a series of prognostic sig-
natures for cervical cancer, we finally included four other 
prognostic models that used the same TCGA dataset 
and whose number of genes were close to our signature. 
To ensure a comparable standard, the method used in 
the current research was applied to calculate risk score 

for each TCGA sample using the four prognostic mod-
els. Kaplan–Meier survival curves and ROC curves of 
four models were plotted (Fig. 11). These four prognos-
tic models could clearly divide samples into high-risk 
and low risk groups with distinctly different prognosis 
(P < 0.05). Compared with our prognostic signature, a 
5-gene signature by Ju et al. had the highest AUC (0.75, 
95%CI = 0.65–0.84) of 5-year prognosis (Fig.  11A and 
B), and an 8-gene signature by Xie et  al. had the high-
est AUC (0.77, 95%AUC = 0.68–0.86) of 1-year progno-
sis (Fig. 11G and H). However, our 5-gene signature was 
relatively more accurate in predicting 1-year, 3-year and 
5-year prognosis, with an AUC of 0.74, 0.72 and 0.74 
respectively (Fig. 5B and C).

Discussion
In the present study, we proposed a 5-gene prognos-
tic signature based on integrated analysis of CNV 
data and expression profiles. The 5-gene signature 

Fig. 5  The performance of the 5-gene prognostic model in TCGA dataset. A The survival status and expression of 5 genes of each sample ranked by 
risk score. The expression level was converted to z-score. Red indicates z-score > 0 and relatively high expression, while green indicates z-score < 0 
and relatively low expression. B ROC curve of 1-year, 3-year and 5-year survival predicting. C Kaplan–Meier survival curve of high-risk and low-risk 
groups. Log-rank test was performed. AUC, area under ROC curve. CI, confidence interval. HR, hazard ratio
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can effectively classify cervical cancer patients into 
high-risk and low-risk groups with distinctly differ-
ent prognosis, and it showed a robust performance in 
both TCGA and GSE44001 datasets. This work was 
the first attempt to report a prognostic signature based 
on combined data of CNVs and mRNAs. Differential 
gene expression and CNV were both present in the 5 
prognostic genes, therefore, expression level and CNV 

detection may both serve as detective means for cervi-
cal cancer theoretically. CNVs are more convenient to 
be detected compared with mRNA expression, there-
fore, detecting CNVs of the 5 prognostic genes could 
serve as a preliminary screen of high-risk cervical can-
cer patients.

Risk score can be calculated according to the expres-
sion of 5 prognostic genes (APOD, ARMCX1, GALNT3, 

Fig. 6  Kaplan–Meier survival curves of high-risk and low-risk groups in different clinical features including ages A-B, T stage C-D, N stage E–F, 
M stage G-H, stage I-J, grade K-L and HPV status M–N in TCGA dataset. Log-rank test was performed. Blue represents low-risk group and yellow 
represents high-risk group. Log-rank test was performed
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HK2 and HLF), which emerged as an independent risk 
factor in Cox regression analysis. For a convenient use in 
clinical practice, we constructed a nomogram based on 
risk score for predicting patients’ survival chance. DCA 
evaluation showed a better performance of the nomo-
gram than risk score. Thus, the nomogram was recom-
mended as a predictive measurement for prognosis 
prediction of cervical cancer patients.

We further studied the 5 prognostic genes, and they 
were found to be associated with cancers reported in 
the previous research. APOD is one of apolipoproteins 
(APOs) that bind lipids and transport them to vari-
ous tissues during lipid metabolism. A series of APOs 
have been illustrated to be associated with cancer 
development [28]. For example, APOA family, espe-
cially APOA1, has been considered as an independent 

predictor for progressing cancers such as non-small cell 
lung adenocarcinoma, ovarian cancer, colorectal cancer 
and prostate cancer [28]. APOD is associated with high 
density lipoprotein (HDL), and is identified as a pre-
dictive biomarker hepatocellular carcinoma [29]. Low 
expression level of APOD is predictive of unfavorable 
prognosis in many cancer types, for instance, colorec-
tal cancer [30], ovarian cancer [31] and breast cancer 
[32]. However, APOD is high-expressed in other cancers 
such as melanoma [33] and renal cell cancer [34]. In our 
study, APOD was lower-expressed in high-risk group 
as compared with low-risk group, suggesting that low-
expressed APOD was associated with unfavorable prog-
nosis of cervical cancer.

ARMCX1 (also known as ALEX1) belongs to 
ARMCX family clustered in X chromosome, which 

Fig. 7  Univariate A and multivariate B Cox regression analysis of clinical features and risk score in TCGA dataset. Log-rank test was performed. CI, 
confidence interval. HR, hazard ratio
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could regulate protein–protein interaction. Evidence 
has shown that ARMCX family is involved in tumor-
genesis and tumor progression through oncogenic 
pathways such as WNT signaling pathway [35, 36]. 

ARMCX1 is identified as a prognostic biomarker in 
ovarian cancer [37], colorectal cancer [38] and also 
in cervical cancer [39]. Zeng et  al. observed a higher 
expression of ARMCX1 in cervical cancer tissues than 

Fig. 8  A nomogram based on risk score and TCGA dataset for clinical use. A A nomogram based on risk score, N stage and T stage. 1-year, 3-year 
and 5-year OS was predicted as death rate. B Correction of predicted OS in 1-year, 3-year and 5-year period. C DCA curve of nomogram, risk score, T 
stage and N stage. Vertical axis represents the net benefit of before and after receiving treatment. Grey line indicates that all samples were positive 
and received treatment. Black line indicates that all samples were negative and received no management
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normal cervical tissues [39]. Similarly, our study found 
that ARMCX1 was high- expressed in high-risk group 
with poor prognosis.

GALNT3 is an enzyme for O-glycosylation, and 
down-regulation of GALNT3 has been reported to be 
associated with poor prognosis of lung adenocarcinoma 

[40], colorectal cancer [41], and pancreatic cancer [42, 
43]. Conversely, high expression of GALNT3 is detected 
in oral squamous cell carcinomas [44] and ovarian can-
cer [45]. Here in cervical cancer, we observed up-regu-
lated GALNT3 compared with normal cervical tissues, 
particularly in high-risk group. Wang et al. discovered 

Fig. 9  The relation between risk score and tumor immune microenvironment analyzed in TCGA dataset. A ESTIMATE score, stromal score and 
immune score analyzed by ESTIMATE measurement. B Enrichment score of 10 immune cells calculated by MCP-counter. C Enrichment score of 28 
immune cells calculated by ssGSEA. D Enrichment score of 47 immune checkpoints in high-risk and low-risk groups. Student t test was performed. 
*P < 0.05, **P < 0.01, ***P < 0.001
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that knockdown of GALNT3 is correlated with cell 
adhesion molecules β-catenin and E-cadherin in ovar-
ian cancer, which supported the invasion of epithelial 
ovarian cancer.

HK2 is a hexokinase with a critical role in glycolysis. 
Studies have found that HK2 is overexpressed in many 
cancer types, and that the inhibition of HK2 expres-
sion can inhibit cancer cell proliferation [46, 47]. Con-
sistently, in this study, HK2 was also overexpressed in 
cervical cancer tissues and its high expression was asso-
ciated with poor OS. Previously, knockdown of HK2 
in cervical cancer cells has been observed to inhibit 
expression of AKT and mTOR, which are involved in 
cancer progression [48]. Such a finding supported that 
HK2-related pathway can serve as a potential target for 
treating cervical cancer. Hepatic leukemia factor (HLF) 
is considered as an oncogenic transcript factor, and its 
high expression correlates with favorable prognosis 

in many cancers such as glioma [49] and non-small 
cell lung cancer [50]. This study also found that high 
expression of HLF was associated with a better progno-
sis of cervical cancer.

Overall, we proposed a 5-gene prognostic signature 
in which each component gene was closely related to 
various cancers. In addition, we assessed the TME of 
high-risk and low-risk groups, and detected a significant 
difference between them, indicating that these genes 
may participate in the modulation of immune infiltra-
tion. Compared with high-risk group, low-risk group 
manifested higher immune infiltration, especially acti-
vated B cells and CD8 T cells, suggesting that low-risk 
group had a more activated anti-tumor response and 
therefore may result in a favorable prognosis. In com-
parison with other prognostic signatures calculated by 
the same methodology, our 5-gene signature showed the 
highest AUC. However, the signature established based 

Fig. 10  KEGG pathways significantly associated with risk score. A Pearson correlation analysis between risk score and KEGG pathways with 
correlation coefficient > 0.25. Yellow represents positive correlation and blue represents negative correlation. Chi-square test was performed. B 
Enrichment of 17 KEGG pathways significantly associated with risk score. Yellow represents relatively high enrichment score and blue represents 
relatively low enrichment score
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on bioinformatics analysis requires further validation in 
clinical practice.

Conclusions
In conclusion, this study developed a novel prognos-
tic signature with a robust performance in different 
datasets. The study provided the first comprehensive 
assessment of prognostic genes according to the rela-
tion between CNVs and cervical cancer. In addition 
to predictive ability for cervical cancer prognosis, the 
5 prognostic genes emerged as new targets for fur-
ther understanding the mechanisms of cervical cancer 
development.
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