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Sequence-based Association 
Analysis Reveals an MGST1 eQTL 
with Pleiotropic Effects on Bovine 
Milk Composition
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Thomas Johnson1, Christine Couldrey1, Mike Keehan1, Richard G. Sherlock1, Chad Harland1, 
Andrew Scott1, Russell G. Snell2, Stephen R. Davis1 & Richard J. Spelman1

The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for 
secretion into milk. The fat content of milk varies widely both between and within species, and recent 
independent genome-wide association studies have highlighted a milk fat percentage quantitative 
trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been 
proposed to underlie these signals, the causative status of these genes has not been functionally 
confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and 
association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-
coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range 
of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset 
to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL 
underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based 
association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk 
composition regulation, as causally involved in these processes.

Milk lipids comprise the predominant energy source of the developing neonate in most mammalian species. 
There is substantial inter- and intra-species variation in milk fat content1, and in cattle populations, the genetic 
architecture regulating milk fat percentage appears to consist of many quantitative trait loci (QTL) contrib-
uting small effect, with a handful of loci explaining relatively large proportions of the genetic and phenotypic  
variance2,3. Several of the causative genes underlying these larger QTL have now been confirmed, including 
DGAT14, ABCG25, GHR6, and AGPAT67. The existence of a major QTL affecting milk fat percentage on bovine 
chromosome 5 has also been reported in numerous independent studies3,7–11. Although EPS8 and MGST1 have 
been speculated to underlie these effects, the causative status of these genes has not been functionally demonstrated.

Given the economic importance of bovine dairy products and beef as human food sources, considerable 
genetic resources exist for the study of complex traits in Bos taurus. This includes SNP-array panels used for 
genome-wide association studies, and like the evolution of human genotyping platforms, the density of these 
panels has steadily increased over time. Driving this increase in SNP-density is the underlying principal that 
for association mapping to be effective, SNPs must be in sufficient linkage disequilibrium with causal variants 
to discern genetic signal12. In this regard, using genome sequence-derived variant panels provides the ultimate 
resolution, since the association between causative variants and the trait can be tested directly. The cost to conduct 
whole genome sequencing in very large populations is still prohibitively high, however, integrating whole genome 
sequence reference panels with SNP-array data may allow imputation of sequence-resolution genotypes13,14. So 
far, the number of studies demonstrating the use of this strategy has been limited, though recent examples include 
the discovery of putative causative variants in cattle15–17, and human disease18,19.

In the current study, we performed a detailed investigation of a major QTL affecting bovine milk fat percent-
age. Bayesian genome-wide association analysis was conducted in a large population of outbred cows to first 
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estimate the genomic location of the QTL. A reference panel of 556 whole genome sequences was then used to 
impute sequence-resolution genotype data at the chromosome 5 locus, with association analysis revealing a hand-
ful of candidate causal variants for this QTL, and a variety of other milk components. We then utilise high depth 
mammary RNA-sequence data to examine the expression of candidate causative genes for these effects, identify-
ing a large expression QTL (eQTL) for a single gene that is not only highly correlated with the milk composition 
QTL, but harbours the top associated variants within its proximal regions.

Results and Discussion
Genome-wide association analysis identifies a chromosome 5 QTL for milk fat percentage in 
a large population of outbred dairy cattle.  Bayes B association mapping was conducted using 437,255 
SNPs imputed from the Illumina BovineHD BeadChip in an outbred cow population of 42,933 New Zealand 
Holstein-Friesians (HF), Jerseys (J), and HFxJ crossbreeds. The percentage of phenotypic variance explained by all 
fitted SNPs in the Bayes B model was 35.6%. Consistent with previous genome-wide association studies (GWAS) 
of milk fat percentage3,7–11, a major QTL was detected on chromosome 5, with the greatest effect estimated for 
the BovineHD0500026662 SNP (g.93945655G >  T; Fig. 1; Supplementary Table S1 and S2). Notably, this was the 
same lead SNP reported by the subset of previous studies that also used the Illumina BovineHD platform7,9,10. 
Using empirical gene structure information derived from mammary RNA sequence (RNA-seq) data, this SNP 
mapped to intron 1 of MGST1, ~186 kbp downstream of the LMO3 gene, and ~364 kbp upstream of the DERA 
gene. When the genome was partitioned into 1 Mbp windows and the combined effects of SNPs within each 
interval estimated, the chromosome 5 93-94 Mbp window accounted for 2.1% of the genetic variance in milk fat 
percentage, representing the third largest QTL genome-wide (Supplementary Table S2). Of the top five genome-
wide window QTL, all except the chromosome 5 93-94 Mbp locus contained genes with previously demonstrated 
causal roles in milk composition regulation. These were: chromosome 14 1-2 Mbp (DGAT14), chromosome 27 
36-37 Mbp (AGPAT67), chromosome 11 103-104 Mbp (PAEP20), and chromosome 20 31-32 Mbp (GHR6).

Chromosome 5 sequence imputation and accuracy assessment.  Having estimated the location of 
the chromosome 5 QTL, we then imputed sequence-based genotype data into a 10 Mbp interval centred on the 
BovineHD0500026662 SNP for a population of 64,244 animals. This population comprised the 42,933 animals 
used for the original GWAS, and an additional 21,311 animals (of similar breed composition) typed predomi-
nantly using the Super GGP BeadChip. The sequence reference panel consisted of 556 animals at an average of 
15×  genome-wide mapped read depth. These animals were broadly representative of the New Zealand dairy pop-
ulation, where 18,854 of the 64,244 animals targeted for imputation had a sire directly represented in the sequence 
reference, and an additional 28,564 animals had at least one grandsire represented. Variants were called from 
sequence alignments using RTG Core21, yielding 109,517 variants in the 10 Mbp target interval. These variants 
were then imputed into the phenotypic population using Beagle software (v4)22, applying a stepwise imputation 
strategy to integrate data across different genotyping platforms. The imputation strategy and animal populations 
are described in greater detail in Materials and Methods.

Four hundred and six animals targeted for imputation were also subjected to mammary RNA-seq. To esti-
mate the accuracy of imputation, imputed genome sequence-derived genotypes were compared to SNPs called 
directly from the RNA-seq alignments. These data were considered an independent dataset, since only SNP-chip 
genotypes were used for sequence imputation in these animals. RNA-seq derived genotypes were first filtered 
to provide a robust call set of ‘real’ genotypes suitable for concordance calculations (Materials and Methods). 
For the subset of 994 filtered SNPs that mapped to the 10 Mbp imputation interval, 790 were common to the 
genome sequence-derived dataset. For these 790 SNPs, the overall accuracy of imputation was high (median 
minor allele sensitivity (MAS) =  0.99; mean MAS =  0.93; Supplementary Table S3). As expected, more frequent 
variants were more accurately imputed (Fig. 2A), and as reported by others22,23, the Beagle allelic R2 metric was a 
robust indicator of imputation accuracy (where median MAS =  0.99, mean MAS =  0.98 for variants with allelic 
R2 >  0.7; Fig. 2B). Notably, the accuracy of imputation for variants with MAF >  0.20 was also very high (median 
MAS =  0.99; mean MAS =  0.98), of key relevance given the allele frequency of the lead tag-SNP from milk fat 
percentage association analysis (BovineHD0500026662 MAF =  0.27 in the reference population, MAF =  0.41 in 
the RNA-seq cohort). Assuming that the BovineHD0500026662 GWAS tag-SNP was in moderate LD with the 

Figure 1.  Milk fat percentage QTL on chromosome 5. Chromosome 5 Manhattan plot showing the milk 
fat percentage QTL at 93.9 Mbp representing 42,933 cows. The X-axis shows Mbp position on chromosome 
5 according to the UMD3.1 Bos taurus reference assembly, the Y-axis shows the absolute value of the allele 
substitution effect on milk fat percentage as estimated using a Bayes B model.
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underlying QTL, these data suggested that the vast majority of candidate causative variants would be accurately 
imputed in this sample.

Sequence-based association analysis highlights a cluster of candidate causal variants mapping 
to 5′ proximal regions of the MGST1 gene.  For association testing, analysis was restricted to a 2 Mbp 
target interval centred on the top chromosome 5 tag-SNP from GWAS (BovineHD0500026662; chr5:92945655-
94945655). Filtering to remove multi-allelic and low frequency variants (MAF <  0.005) yielded 13,719 SNPs, 863 
indels, 255 multiple nucleotide polymorphisms (MNPs), and 107 ‘mixed’ variants (class combinations) for anal-
ysis. Of these 14,944 variants, 14,448 were derived wholly from genome sequence data, with 496 (3.3%) present 
on one or more of the Illumina BovineHD, BovineSNP50, or Super GGP BeadChip platforms used for physical 
genotyping. Quantifying imputation accuracy as described above, coincident RNA-seq variants in this 2 Mbp 
interval had a median MAS =  0.99, and mean MAS =  0.97 (N =  25 SNP; Supplementary Table 3).

Associations between sequence-variants and milk fat percentage were assessed using pedigree-based mixed 
models in ASReml-R24. Peak significance was observed for a genome sequence-derived SNP g.93945738C >  T 
(P =  1.98 ×  10−292; Fig. 3A,B, Supplementary Table S4), comprising one of a cluster of 17 SNPs in strong link-
age disequilibrium (LD) (R2 >  0.80). Although P-values for this cluster of variants spanned many orders of 
magnitude (Table 1), we considered any one of these as potentially causal, since errors in genotyping, impu-
tation, and phenotyping could potentially obscure the true variant association rankings25. This cluster 
included the Illumina BovineHD SNP-chip variant BovineHD0500026662 (P =  8.89 ×  10−265; R2 =  0.83 with 
g.93945738C >  T), though notably, tagging of the QTL signal was relatively poor for BovineSNP50 chip variants 
(Fig. 3A; smallest P =  5.77 ×  10−60 for Hapmap36414-SCAFFOLD150043_20489 g.93567346G >  A; R2 =  0.27 
with g.93945738C >  T). Based on the MGST1 gene structure derived from mammary RNA-seq data, the clus-
ter of 17 top-associated SNPs were all non-coding variants spanning a 10 kbp interval from intron 1 to 4 kbp 
upstream of the transcription start site (TSS; Fig. 3B). The g.93945738C >  T SNP explained 4.6% of the genetic 
variance and 2.8% of the phenotypic variance in milk fat percentage in the population of 64,139 animals. Relative 
to g.93945738 ‘TT’ individuals, this translated to a 2.3% increase in milk fat percentage per ‘C’ allele.

Fitting the g.93945738 genotype as a covariate in the association models and rerunning the analysis for 
the remaining variants removed most of the association signal in the 2 Mbp interval (Supplementary Table 
S5 & Supplementary Figure S6). Although some residual signal remained, this appeared to be dispersed over 
the broader locus, and may have represented population stratification incompletely accounted for in the 
pedigree-based models, and/or valid association signal from other genes. Wang et al.3 reported mapping of a 
milk fat percentage QTL of large effect in German Holstein-Friesian cattle using the Illumina BovineSNP50 chip, 
locating to a similar position to that reported here. The authors attributed this signal to EPS8 as a candidate gene, 
and based on transcription factor binding site prediction, proposed a putative promoter SNP (g.94553580T >  C) 
as a potential causal mutation for this effect3. Raven et al.9 also reported highly significant effects for this locus 

Figure 2.  Accuracy of genome sequence-resolution imputation. Scatter plots showing imputation accuracy 
(minor allele sensitivity) of imputed sequence variants relative to minor allele frequency (2A), and allelic R2 (2B) 
values. These comparisons used 790 SNPs common to both imputed genome and RNA-seq-derived genotype 
sets, where variants called from the RNA-seq alignments were used to assess sequence imputation accuracy in 
these 406 animals. Red variants shown in panel 2A represent the subset of real (i.e. not imputed) genotypes in 
the genome sequence-derived dataset (70 SNPs from the Illumina BovineHD chip), giving an indication of the 
accuracy of variant calls derived from the RNA-seq-alignments.
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Figure 3.  Association mapping of milk fat percentage. Manhattan plots showing association of sequence 
variants with milk fat percentage in an outbred cow population of 64,139 animals. Panel 3A shows a 2 Mbp 
interval of variants (chr5:92945655-94945655) centred on the SNP of greatest effect from Bayes B GWAS 
(BovineHD0500026662), panel 3B shows a zoomed, 50 kbp view of the locus showing peak association 
(chr5:93920738-93970738). The nine genes annotated to the 2 Mbp locus are indicated, with the zoomed 
panel showing the distribution of associated variants across the MGST1 gene structure. Variants are 
coloured relative to their linkage disequilibrium (R2) relationships with the top variant from sequence-based 
association (g.93945738C >  T), with variants highlighted by the blue box (3B) comprising the cluster of 17 
highly associated, highly correlated SNPs considered as potential functional candidates for the QTL. The top-
associated Illumina BovineHD and SNP50 panel SNPs are indicated by the triangle (BovineHD0500026662), 
and square (Hapmap36414-SCAFFOLD150043_20489) respectively.

Variant Name Chr5 Pos REF ALT Parameter Est

Parameter-adjusted means Pheno 
Var

Geno 
Var

Corr 
Top P-valueGeno_0 Geno_1 Geno_2

Chr5_93945738 93945738 C T − 0.1065 ±  0.0029 4.898 4.792 4.685 2.78 4.57 1 1.98E-292

Chr5_93945991 93945991 A G − 0.1052 ±  0.0029 4.902 4.797 4.692 2.78 4.58 0.93 1.92E-291

Chr5_93948357 93948357 T C − 0.1052 ±  0.0029 4.900 4.795 4.690 2.76 4.54 0.95 6.16E-289

Chr5_93949810 93949810 A G − 0.1051 ±  0.0029 4.901 4.796 4.691 2.77 4.55 0.92 1.19E-288

Chr5_93954748 93954748 C T − 0.1037 ±  0.0029 4.898 4.794 4.691 2.67 4.40 0.92 1.51E-281

Chr5_93954751 93954751 T G − 0.1037 ±  0.0029 4.898 4.794 4.691 2.66 4.40 0.92 2.10E-281

Chr5_93946027 93946027 A T − 0.0973 ±  0.0028 4.901 4.804 4.707 2.47 4.08 0.85 5.73E-266

Chr5_93944937 93944937 C T − 0.1069 ±  0.0031 4.888 4.781 4.675 2.56 4.22 0.83 4.66E-265

BovineHD0500026662 93945655 G T − 0.1068 ±  0.0031 4.888 4.782 4.675 2.56 4.22 0.83 8.89E-265

Chr5_93948718 93948718 C G − 0.0969 ±  0.0028 4.900 4.803 4.707 2.44 4.04 0.85 1.84E-263

Chr5_93948646 93948646 G C − 0.0969 ±  0.0028 4.900 4.803 4.707 2.43 4.03 0.85 3.80E-263

Chr5_93948804 93948804 C T − 0.0969 ±  0.0028 4.900 4.803 4.706 2.43 4.02 0.84 8.21E-263

Chr5_93947989 93947989 A T − 0.0969 ±  0.0028 4.900 4.803 4.707 2.43 4.02 0.85 1.05E-262

Chr5_93947761 93947761 T C − 0.0969 ±  0.0028 4.900 4.803 4.707 2.43 4.02 0.85 1.19E-262

Chr5_93948725 93948725 C G − 0.0969 ±  0.0028 4.900 4.804 4.707 2.42 4.01 0.85 5.10E-262

Chr5_93946570 93946570 A G − 0.0969 ±  0.0028 4.899 4.802 4.706 2.43 4.02 0.86 5.52E-262

Chr5_93946548 93946548 C G − 0.0969 ±  0.0028 4.899 4.803 4.706 2.43 4.01 0.86 1.10E-261

Table 1.   Milk fat percentage association statistics for top 17 sequence variants. Association statistics for 
the cluster of 17 top milk fat percentage-associated variants identified through sequence-based analysis. The 
position and reference and alternate alleles of these SNP variants (UMD3.1) are indicated, with parameter 
estimates shown with standard errors in units of percentage lipid. The genetic and phenotypic variance 
explained by each SNP, along with the parameter-adjusted means for each of the three genotype classes is 
indicated. The linkage disequilibrium R2 value for each SNP relative to the top associated g.93945738C >  T 
variant is shown, with the trait association P-values indicated in the right-most column.
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using the Illumina BovineHD chip. Peak significance was observed for the same intronic MSGT1 variant identi-
fied from Bayesian GWAS in the current study (BovineHD0500026662), though the authors also acknowledged a 
potentially independent signal located nearer EPS89. We did not observe an association peak overlapping EPS8 in 
our dataset, and notably, the candidate mutation g.94553580T >  C proposed to underlie this QTL is polymorphic 
in our sample (MAF of 0.134 in our genome sequence reference). Imputation of the variant yielded an allelic R2 
of 0.88, suggesting the variant was imputed accurately in our population (Fig. 2B; Supplementary Table S4), and 
although the SNP was significantly associated with milk fat percentage in our primary analysis (P =  3.26 ×  10−44), 
fitting the lead g.93945738 MGST1 genotype removed this effect (P =  0.561). These data do not preclude the 
possibility that another downstream, non-segregating QTL exists, but suggest the EPS8 g.94553580T >  C variant 
would be unlikely to underlie such an effect.

Pleiotropy of other milk components.  We have previously noted pleiotropic effects for milk traits in 
cattle, whereby genetic variants co-ordinately impact a diverse range of milk components (e.g. variants in the 
DGAT1 and AGPAT6 fat synthesis enzymes4,7). To look for similar effects, we conducted association analysis 
of milk protein, fat, and lactose yield, milk volume, and milk protein and lactose percentage in the large out-
bred population. Using a refined, 50 kbp interval of sequence-based variants centred on the g.93945738C >  T 
MGST1 SNP (632 variants), significant associations were demonstrated for all milk traits tested (Fig. 4A, Table 2, 
Supplementary Table S7). In the case of milk protein percentage, milk volume, and lactose yield, these effects 
were substantial, with the g.93945738C >  T MGST1 SNP explaining ~2% or more of the genetic variance for each 
trait (Table 2). The high milk fat percentage g.93945738 ‘C’ allele was associated with increased fat yield, protein 
percentage and lactose percentage, whereas decreases were observed in protein yield, lactose yield, and milk vol-
ume. These effects are consistent with the findings of Kemper et al.10, where impacts on a subset of the same milk 
composition traits (of corresponding sign) were also observed at this locus.

All milk composition effects appeared to derive from the same underlying genetic signal, with the same cluster 
of 17 high-ranking milk fat percentage-associated variants also ranking highly among the other milk traits. To 
quantitatively assess these relationships, we performed Spearman’s rank correlation analysis between the P-value 
results lists for these traits and milk fat percentage. This analysis revealed strong correlations between QTLs 
(Fig. 4B), particularly between milk fat and protein percentage (ρ  =  0.92), where these two phenotypes also corre-
sponded to the two most significant QTLs among all traits. These data suggested a common genetic signal driving 
multifaceted changes in milk composition, and further pointed to one of the 17 non-coding MGST1 candidate 
SNPs as likely underpinning these effects.

MGST1 expression associates with milk fat percentage QTL genotype in lactating mammary 
tissue.  The absence of protein-coding polymorphisms from the list of top trait-associated variants suggested 
an expression-based mechanism underlying the milk composition QTLs. To look for underlying expression QTLs 
(eQTL), we used high-depth mammary RNA-seq data representing the same 406 lactating cows used to quantify 
imputation accuracy. Of the nine annotated genes in the 2 Mbp interval of interest, six were appreciably expressed 
(MGST1, DERA, COX6B1, STRAP, SNORA23, and EPS8), with MGST1, COX6B1, and SNORA23 abundantly 
expressed (> 20 fragments per kilobase of exon model per million mapped (FPKM); Fig. 5B). Expression QTL 
mapping was conducted using normalised read counts representing these six genes in a quality-filtered subset 
of 375 animals (Materials and Methods). These models tested 14,971 imputed sequence variants, representing 
slightly more variants than the set used for milk composition analysis (due to differential impacts of MAF filtering 
between populations). Association analysis revealed highly significant cis eQTL for the MGST1 and DERA genes 
(P =  3.16 ×  10−66 and P =  3.31 ×  10−16 respectively; Fig. 5A,C,D; Supplementary Table S8). Notably, no effect on 
expression was apparent for EPS8, with the proposed EPS8 regulatory variant3 g.94553580T >  C un-associated 
with expression (P =  0.22; Supplementary Table S8). The MGST1 and DERA eQTLs explained large proportions 
of the phenotypic and genetic variance in gene expression, with the top associated MGST1 variant explaining 
60.7% and 88.8% respectively, and the top DERA variant explaining 18.8% and 59.1% respectively. Peak signal 
for DERA expression was 500 kbp downstream of the milk composition signals, deriving from a cluster of 10 
variants spanning the first intron, 5′ UTR, and non-coding sequence immediately upstream of the DERA TSS 
(Fig. 5D). Critically, the MGST1 eQTL located to the same position as the milk composition QTLs, and shared the 
same lead SNP (g.93945738C >  T) with the milk fat percentage analysis (Fig. 5E). Manual inspection of sequence 
alignments in animals of opposing eQTL genotype revealed uniform transcript structures with splice sites con-
forming to the Ensembl reference annotation, suggesting a transcriptional (versus splicing) based mechanism to 
the eQTL. As with correlation analyses between the different milk composition QTLs, P-values for the MGST1 
expression and milk fat and protein percentage phenotypes were highly correlated (ρ  =  0.73; Fig. 5E), where the 
g.93945738 ‘C’ allele corresponded to increased MGST1 expression and increased milk fat percentage. These data 
suggested that variants affecting expression of MGST1 were responsible for the differences in milk composition 
demonstrated at this locus, confirming this as the causative gene for these effects.

Trans eQTL analysis of milk composition QTL genotype shows limited co-associated gene 
expression networks.  Unlike the DGAT1 and AGPAT6 fatty-acid synthesis enzymes that underlie other 
major milk production QTLs4,7, the mechanistic explanation for the impact of MGST1 on these traits is unclear. 
The MGST1 gene encodes a glutathione S-transferase that protects against oxidative stress, responsible for con-
jugation of glutathione to reactive intermediates. The enzyme is localised to the mitochondrial membrane and 
endoplasmic reticulum, and known functions include aspects of lipid biology, where MGST1 has been shown 
to reduce lipid peroxidation products in human mammary cell culture26. Whether these protective roles could 
quantitatively impact milk synthesis and secretion, either through reduction of oxidised forms of fatty acids, or 
protection of the secretory cells and their machinery, is unknown. Equally plausible roles might involve signalling 
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functions akin to the roles of other glutathione S-transferase family members27, or mitochondrial-based functions 
relating to the increased metabolic demands of lactation. To attempt to provide insight into these mechanisms, we 
conducted a trans eQTL analysis by looking for genes co-expressed by milk composition/MGST1 eQTL genotype. 
This analysis used ASReml-R to fit similar models to those used for SNP association mapping, in this case testing 
the effect of the g.93945738C >  T genotype on the 9,348 nominally expressed genes in our sample of 375 lactating 
cows. After accounting for multiple testing, this analysis did not reveal any additional, significantly differentially 
expressed genes (Supplementary Table S9). These results suggest that we were either underpowered to detect such 
effects, or that MGST1 is operating at the terminal end of the relevant expression networks. If the increases in fat 
yield and percentage elicited through increases in MGST1 expression indeed derive from its enzymatic role as a 
detoxification enzyme, then this lack of concomitant expression might be anticipated.

Figure 4.  Milk composition and yield effects at the chromosome 5 locus. Manhattan plots (4A) showing 
association of sequence variants for multiple milk composition and yield traits at the MGST1 locus 
(chr5:93920738-93970738; MGST1 gene structure is indicated in each panel). The number of animals 
included in these analyses range from 64,141 to 51,120 between traits (Table 2). Figure 4B shows scatter plots 
of –log10 P-values where the y-axis represents the milk fat percentage association statistic and the x-axes 
represent association for the other milk traits. These plots indicate the rank order of variants relative to milk 
fat percentage, with the strong correlation of signals suggesting a common genetic basis for all traits. Variants 
are coloured according to their linkage disequilibrium (LD) with the top milk fat percentage associated SNP 
g.93945738C >  T, with LD reflecting values calculated within each respective population.
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Reference assembly refinement reveals additional variants at the chromosome 5 milk fat per-
centage locus.  We noted that the cluster of 17 highly associated MGST1 variants were adjacent to a reference 
sequence gap present in both UMD3.1 and Btau_4.6.1 assemblies. To identify potentially functional variants 
located within the 364 bp gap (UMD3.1), we used a sequential re-mapping, gap extension, and de novo assembly 
strategy to reveal an additional 17 variants in the 556 reference animals (Materials and Methods). Following 
the same imputation and association analysis pipeline used previously, none of the gap variants approached the 
significance of the original top 17 variants (milk fat percentage smallest P =  1.12 ×  10−214 c.f. P =  1.62 ×  10−292; 
MGST1 expression smallest P =  3.97 ×  10−40 c.f. P =  3.6 ×  10−66; Fig. 6A; Supplementary Table S10). This sug-
gested these previously hidden variants were unlikely to be the source of the milk fat percentage QTL signal.

Through manual inspection of sequence alignments, we also noted read depth anomalies upstream of the 
MGST1 TSS, and analysis using CNVnator28 software indicated the presence of a large, polymorphic deletion 
(Fig. 6B). Subsequent PCR amplification and sequencing of the putative breakpoints confirmed the presence of an 
8.2 kbp BovB repeat-flanked deletion in a proportion of individuals (Materials & Methods). As an obvious candi-
date mutation for the milk composition and expression QTLs, we next used the genotyping function of CNVnator 
to call genotypes on the manually refined CNV interval. This analysis suggested a biallelic mutation with a MAF 
of 0.15, and identification of a perfectly correlated BovineHD SNP-chip-derived haplotype encompassing the 
deletion (R2 =  1) suggested accurate sequence-based calling of the variant (Materials and Methods). To assess 
phenotypic consequences of the variant, we conducted association analysis of MGST1 gene expression using this 
proxy-haplotype, targeting the RNA-seq cohort since 95% of these animals had been physically genotyped using 
the BovineHD chip. Using a haplotype dosage model identical to those used for SNP-based eQTL mapping, this 
analysis did not support the deletion as the likely causative mutation for MGST1 expression (P =  0.006 c.f. small-
est P =  3.16 ×  10−66; Fig. 6A). Notably, two of the original 17 highly associated SNPs (g.93954748 & g.93954751) 
collocated to the deleted segment. Raven et al.15 also highlighted one of these variants (g.93954751) as the top 
milk fat percentage-associated SNP at the locus in a similar analysis incorporating imputed genome sequence 
data. Although it is unknown whether the 8.2 kbp deletion segregates in both populations, haplotype analysis 
removed these variants as plausible functional candidates in our study given that a). they were located within 
the un-associated CNV, and b). the confounding effect of hemizygous and homozygous deletion states on these 
variants would render their imputed genotypes incorrect. Although it is possible that additional variants that were 
difficult to sequence, call, or impute were overlooked at this locus, overall these data pointed back to 15 of the 
original 17 highly associated SNPs as the most likely functional candidates.

Bioinformatic analyses of candidate causal variants.  To investigate the effect of the 15 top-ranked 
SNP variants on gain or loss of potential transcription factor binding sites, we scored the reference and vari-
ant sequences using Matrix Search for Transcription Factor Binding Sites (MATCH)29 in conjunction with the 
TRANSFAC (Release 7.0) database. Using a combination of MATCH thresholds (Materials and Methods), the 
g.93948718G >  C and g.93949810G >  A SNPs were predicted to impact putative binding sites (Fig. 6C). The 
g.93949810G allele was predicted to result in loss of a binding site for Nkx2-5, however, NKX2-5 transcripts were 
not detected in our mammary gland dataset, suggesting that this is unlikely to underlie the milk composition and 
expression QTLs. The predicted loss of an ESR1 binding site for the g.93948718G allele is of note, as this SNP is 
located in a 10 bp sequence unique to cattle, sheep, and Tibetan antelope (Fig. 6C), but is absent in all other mam-
malian genome assemblies. The ESR1 transcription factor is a nuclear oestrogen receptor critical to mammary 
development and differentiation30, and although its relevance following the onset of milk production is not well 
documented, ESR1 expression increases as the course of lactation progresses31. Although functional testing will 
be essential to pinpointing the individual element underlying these QTLs, these data suggest a plausible candidate 
mutation and transcription factor for future mechanistic investigation.

Phenotype
Animal 

N
Parameter 
Estimate

Parameter-adjusted 
means Pheno 

Var
Geno 
Var P-valueCC CT TT

Fat % 64139 − 0.107 ±  0.0029 4.898 4.791 4.684 2.78 4.57 1.98E-292

Fat Yield (g) 64099 − 3.135 ±  0.3166 738.7 735.6 732.4 0.22 0.89 4.07E-23

Protein % 64141 − 0.031 ±  0.0013 3.817 3.786 3.755 1.10 1.93 1.17E-114

Protein Yield (g) 64105 2.575 ±  0.2392 584.0 586.6 589.1 0.26 1.03 5.20E-27

Lactose % 51120 − 0.003 ±  0.0005 5.147 5.144 5.141 0.10 0.23 1.07E-09

Lactose Yield (g) 51330 7.059 ±  0.466 801.0 808.0 815.1 0.64 2.25 1.01E-51

Milk Volume (L) 64105 0.175 ±  0.0091 15.595 15.770 15.945 0.83 2.70 8.13E-83

Table 2.   MGST1 locus effects on milk composition phenotypes. Association results for the g.93945738C >  T 
variant with milk composition phenotypes are shown, with the number of individuals used for each analysis 
indicated in the ‘Animal N’ column. Parameter estimates (daily values) are displayed with standard errors using 
units of grams for yield traits, and litres for milk volume; parameter-adjusted means are given in the same units. 
The percentage of phenotypic and genetic variance explained by the g.93945738C >  T SNP in each model is also 
indicated, with phenotype association P-values shown in the right-most column.
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Conclusions
We present a detailed analysis of a pleiotropic milk composition QTL on bovine chromosome 5, demonstrating 
large effects for milk fat and protein percentage, milk volume, and milk lactose yield. Integrating large scale 
DNA and RNA sequence datasets, we provide strong evidence for the MGST1 gene underpinning these QTLs, 
highlighting a major MGST1 cis eQTL that shares the same, highly associated sequence variants implicated in 
analyses of milk composition. We report detailed sequence curation of the MGST1 locus, uncovering a number of 
previously obscured variants including an 8.2 kbp deletion variant 5′  of the MGST1 TSS. Despite the outstanding 
biological candidacy of this variant, this deletion appears unlikely to underlie the gene expression and milk com-
position QTLs, though we identify alternative candidate causative polymorphisms as a basis for future functional 

Figure 5.  Expression analysis of the chromosome 5 milk composition locus. Figure 5A shows the same 
2 Mbp milk fat percentage association results represented in Fig. 3A, overlaid with additional eQTL plots for the 
six mammary-expressed genes at this locus. Association results for these six genes share the same y-axis (left) 
and are differentiated by colour. Figure 5B shows an RNA-seq expression histogram of the locus, indicating 
mean read counts for these six genes expressed as an average over all 406 sequenced individuals. Figures 5C,D 
show 50 kbp exploded views of the two statistically significant eQTL, (MGST1 – red, and DERA - yellow), 
with variants coloured according to their linkage disequilibrium with the top milk fat percentage-associated 
SNP g.93945738C >  T. Figure 5E shows the rank order of associated variants between the milk fat percentage 
QTL and MGST1 eQTL, plotting –log10 P-values for each phenotype on the x and y axes respectively. Both 
QTLs share the same lead variant (g.93945738C >  T), part of the cluster of 17 top-ranked variants identified in 
analysis of milk fat percentage (demarcated by the blue box in Figure 5B,E).
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investigation. Most remarkably, confirmation of MGST1 as the causal gene impacting this diverse array of milk 
composition phenotypes offers little clue as to the mechanism of effect. Although MGST1 is known to directly 
bind fatty acids, these activities appear to relate to its role as a detoxification enzyme, so the potential impact on 
milk lipid synthesis and/or secretion is unknown. As such, elucidation of this mechanism may provide insight 
into new mechanisms of lactation biology, and at a practical level, future work to tease apart the molecular contri-
bution of the candidate variants should provide opportunities for animal selection and/or gene editing.

Materials and Methods
Ethics statement.  All animal experiments were conducted in strict accordance with the rules and guidelines 
outlined in the New Zealand Animal Welfare Act 1999. Most data were generated as part of routine commercial 
activities outside the scope of that requiring formal committee assessment and ethical approval (as defined by 
the above guidelines). For the mammary tissue biopsy experiment, samples were obtained in accordance with 
protocols approved by the Ruakura Animal Ethics Committee, Hamilton, New Zealand (approval AEC 12845). 
No animals were sacrificed for this study.

Availability of materials and data.  Primary datasets consisting of relevant genotypes, phenotypes, and 
sequence data representing all reported populations have been deposited into the Dryad digital data repository30, 
and NCBI Short Read Archive (SRP067001).

Animal populations and milk composition analysis.  The animal populations used for milk production 
association analysis consisted of 64,142 female dairy cows located on commercial dairy farms throughout New 
Zealand, forming part of a large phenotypic and genotypic database of animals used for commercial evaluation 

Figure 6.  Variant curation and transcription factor binding site analysis. MGST1 gene expression 
Manhattan plot (6A) using a re-imputed 2 Mbp interval of sequence variants following reference assembly 
refinement and discovery of additional variants at the chromosome 5 milk composition locus. Gap variants 
are indicated by diamonds and coloured according to their linkage disequilibrium with the lead SNP 
(g.93945738C >  T). The 8.2 kbp deletion variant is indicated, with its association representing haplotype-based 
results. Representative genome sequence alignments showing genotype classes of the biallelic deletion are also 
shown (6B). Figure 6C shows the evolutionary conservation of sequence flanking the g.93948718G >  C and 
g.93949810G >  A SNPs with predicted impacts on putative transcription factor binding sites. Bovine sequences 
within these alignments represent the minus strand and thus are reverse orientation to that depicted in Fig. 6A.
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of sire performance. Differences in the number of animals quoted for analysis of different traits reflect impacts of 
genotype and phenotype quality filtering criteria applied for the different traits. All animals were born between 
1998 and 2011, with >  95% of records derived from animals born after 2004. When ‘purebred’ animals were 
defined as having a breed proportion of at least 14/16ths, this population consisted of 20,958 Holstein-Friesians, 
11,704 Jerseys, 30,979 Holstein-Friesian x Jersey crossbreeds, and 501 animals that were more than 4/16ths 
other breeds. Other breed proportions that were also present in these animals included Ayrshire, Brown Swiss, 
Guernsey, Hereford, Milking Shorthorn, and Swedish Red. The concentrations of major milk components were 
measured as part of standard herd-testing procedures using Fourier transform infrared spectroscopy. Most milk 
samples were processed by LIC Testlink (Newstead, Hamilton, New Zealand) using the MilkoScan FT6000 instru-
ment (FOSS, Hillerød, Denmark). For association analyses, milk composition records were restricted to first lac-
tation measurements from October to January inclusive. The 406 animals used for RNA-sequencing consisted of 
215 animals described in a previous study7, and an additional 191 samples of mostly Holstein Friesian ancestry.

DNA Extraction and SNP-chip Genotyping.  Genomic DNA extraction for high-throughput genotyping 
was conducted using ear-punch tissue samples or blood, processed using Qiagen BioSprint kits (Qiagen) or a 
MagMAX system (Life Technologies). The former extraction method was performed by GeneMark (Hamilton, 
New Zealand), with the latter performed by GeneSeek (Lincoln, NE, USA). For whole genome sequencing, DNA 
was extracted using phenol-chloroform-based protocols, using semen samples from males, and blood or ear 
punch tissue samples from females. All high throughput genotyping was conducted by GeneSeek (Lincoln, NE, 
USA), with animals typed across a range of platforms including the GeneSeek Genomic Profiler BeadChip (Super 
GGP; GeneSeek/Illumina; N =  26,878), the Illumina BovineSNP50 BeadChip (Illumina; N =  36,266), or the 
Illumina BovineHD BeadChip (Illumina; N =  1,038). Most (N =  377) of the 406 RNA-seq animals were typed 
using the BovineHD BeadChip, with the remainder (N =  29) typed using the BovineSNP50 platform.

Whole genome sequencing.  Whole genome sequencing was conducted on 556 individuals, consist-
ing of 285 animals from an experimental crossbreed pedigree7,31,32, and a collection of 271 outbred sires and 
dams representing the wider commercial dairy population of New Zealand. Outbred individuals were selected 
for sequencing based on specific phenotypes of interest, or their representativeness of the population struc-
ture found in New Zealand. Using the same breed criteria outlined above, the sequenced animals consisted of 
137 Holstein-Friesians, 100 Jerseys, 318 Holstein-Friesian x Jersey crossbreeds, and 1 Ayrshire. Whole genome 
sequencing has been described previously33; briefly, 100-bp paired-end sequencing was performed by Illumina 
FastTrack using the Illumina HiSeq 2000 instrument. Sequencing was conducted in several phases with libraries 
prepared and sequenced using Illumina PCR-based protocols and v2 chemistry (N =  25 samples), and PCR-free 
libraries in conjunction with v3 chemistry (N =  531 samples). A range of read depths were targeted resulting in a 
total mapped yield of > 8 tera-bases (see ‘Genome sequence informatics’ section below).

Genome sequence informatics.  Read-mapping and variant calling.  Paired-end FASTQ data were aligned 
to the Bos taurus UMD3.1 genome assembly using BWA MEM 0.7.834, with duplicates marked using Samtools 
rmdup 0.2.0-rc1121. This yielded an average of 15×  mapped read depth with a median of 8×  for the 556 samples 
(with depth ranging from 5×  to 161× ). RTG Core 3.3.235 was then used to call variants for the chromosome 5 
10 Mbp interval of interest (chr5:88945655-98945655), yielding 109,517 variants (using default filtering criteria).

Locus-specific assembly refinement.  To determine the sequence of the 364 bp reference gap in MGST1 intron 1, 
reads representing this gap were identified by a sequential re-mapping and gap extension strategy in two unre-
lated animals. De novo assembly of the reads resulted in a non-reference consensus sequence of 410 bp, which was 
confirmed by PCR and Sanger sequencing (see ‘PCR and targeted sequencing’ section below). A modified ref-
erence sequence was then derived by replacing the 346 gap N’s with the consensus sequence. For each of the 556 
genome-sequenced animals, all reads that were unmapped, not mapped as proper pairs, or were properly mapped 
to a 1 Mbp interval spanning the gap (chr5:93430000-94430000), were then re-mapped to the gap-filled reference 
using BWA36, with duplicates marked (Picard MarkDuplicates v1.8937) and indel realignment performed (GATK 
indel realigner 3.1.7;38). RTG Core was then used to identify 17 new variants in this gap for the 556 animals, using 
identical variant calling criteria to that applied for analysis of whole genome assemblies.

Sequence imputation.  Sequence-based genotypes representing the 556 reference animals were imputed 
into the phenotypic population of 64,244 cows (animals with milk composition phenotypes and/or RNA-sequence 
data) using Beagle v422. Imputation was conducted in a step-wise manner, where target animals with Super GGP 
and BovineSNP50 genotypes were first imputed to the BovineHD variant set. Variants on the Super GGP that 
were not in the BovineHD variant set were concatenated to the imputed BovineHD set to form a combined scaf-
fold of 31,673 chromosome 5 variants common to all animals. Genotype likelihoods from RTG (GL metrics) were 
then used to phase the sequence, and subsequently impute the 109,517 sequence variants into the target popula-
tion. For imputation of the 17 new variants identified through reference assembly refinement (see ‘Sequence map-
ping and variant calling’ section above), the entire 10 Mbp target region was re-imputed (N =  109,534 variants) to 
enable direct comparison of association statistics between variants.

RNA Sequencing.  High-depth mammary RNA-seq was conducted using tissue samples from 406 lactat-
ing cows, representing three subgroups biopsied at different points through time. Sampling details for 215 of 
these animals has been described previously7, representing two cohorts comprising 27 HFxJ and 188 mostly HF 
animals. For the remaining 191 animals, five were sampled as part of the above study7, but were not previously 
included in that analysis. The remaining 186 samples were all taken in December 2013, representing mostly HF 
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cows in their third or fourth lactation at mid-lactation (approximately 120 days post calving), producing an aver-
age milk yield of 18.4 ±  4.8 (SD) kg/d.

Mammary tissue samples were obtained by needle biopsy and total RNA extracted by NZ Genomics Limited 
(NZGL; Auckland, New Zealand) using methods described previously7,39. Sequencing of the 186 animals sampled 
in December 2013 was performed by the Australian Genome Research Facility (AGRF; Melbourne, Australia) 
using the Illumina HiSeq 2000 instrument, with libraries prepared using the TruSeq Stranded Total RNA Sample 
Prep Kit (Illumina) with ribosomal RNA depletion using the Human/Mouse/Rat Ribo-Zero kit (Epicentre/
Illumina). All samples were sequenced using a 100 bp paired-end protocol and multiplexed at two samples per 
lane.

RNA sequence informatics.  Read-mapping, expression definitions, and PCA filtering.  Sequence data rep-
resenting all 406 animals was mapped to the UMD 3.1 genome using Tophat2 (version 2.0.12)40, locating an 
average of 88.9 million read-pairs per sample. Cufflinks software (version 2.1.1)41 was used to quantify expressed 
transcripts using the Ensembl genebuild release 72, yielding fragments per kilobase of exon model per million 
mapped (FPKM) expression values. Genes were considered nominally expressed if they had non-zero FPKM 
values in at least 75% of samples, and had a mean expression of 0.5 FPKM or greater, yielding 9,348 ‘expressed’ 
mammary genes. Expression data were also processed using DESeq (v1.14.0)42, outputting read counts using the 
‘variance stabilising transformation’ (VST) function to render data suitable for linear model analysis. Using these 
values, individuals were then filtered to remove genome-wide expression outliers based on principle component 
analysis. Following the guidelines proposed by Ellis et al.43, individuals greater than three standard deviations 
from the mean in any of the first six principal components were removed prior to eQTL analyses (375 animals 
retained).

RNA-Seq variant calling.  For accuracy assessment of imputed genome sequence data (see ‘Imputation accu-
racy assessment’ section below), SNP variants were called on the same Tophat2-derived alignments used for 
expression analysis using SAMtools (v0.1.19), excluding non-primary reads and reads which failed quality filters. 
Variants were filtered post-calling to retain variants with a) quality scores greater than 100; and b) an average 
depth per animal of at least five reads. Genotypes for individual animals were set to missing for calls with fewer 
than 10 reads. This variant set was also filtered to remove SNPs with fewer than 10 alternative alleles called, and 
fewer than 400 alleles called in total.

Imputation accuracy assessment.  Prior to comparison with imputed genome sequence data, RNA-seq 
variants were quality-filtered to derive a robust ‘true-positive’ dataset. Starting with the full RNA-seq dataset 
of 406 cows, there were 3477 RNA-seq variants in the chr5:88945655-98945655 10 Mbp interval of interest. 
Applying filters for minimum per genotype and per individual call rates of 90%, a MAF threshold of 0.02, and 
a Hardy-Weinberg equilibrium threshold of P = 1 ×  10−6 yielded 994 variants and 386 cows for comparison. 
For imputed sequence data, a MAF filter of 0.005 was applied in accordance with the criteria used for associa-
tion analysis. This filter yielded 69,160 variants with a 790 variant intersect with the RNA-seq-derived call-set 
(Supplementary Table S3). Genotype concordance, minor allele sensitivity, and minor allele discrepancy was 
then quantified for these SNPs, based on frequency-centric interpretations of the non-reference sensitivity and 
non-reference discrepancy definitions implemented in the Genome Analysis Toolkit44.

Genetic association analysis.  Bayesian genome-wide analysis.  Genome-wide association analysis of 
milk fat percentage was performed using GenSel software (Version 4.53R)45. This analysis used a population 
of 42,933 cattle largely overlapping with those described in a previous study7, and were a subset of the animals 
used for imputed sequence association analysis. Animals were typed across a range of SNP-chip platforms (see 
‘DNA Extraction and SNP-chip Genotyping’ section above), and imputed using 712,164 SNPs from the Illumina 
BovineHD BeadChip from a reference population of 796 animals. Pairwise LD-based pruning was performed 
using Plink software (v1.0746) implementing the following parameters: window size =  250, step size =  50, 
R2 >  0.99999. These data were also filtered to exclude SNPs below a minor allele frequency of 0.001, yielding 
437,255 SNPs for further analysis. Markers were fitted simultaneously by running a Bayes B model47 with a pi 
value of 0.998. This model was run for 50,000 iterations and included a burn-in of 20,000 iterations, with pi and 
genetic and residual variance priors first estimated by running Bayes Cpi for 20,000 iterations. R-inverse weights 
were applied according to the reliability of the phenotype, and covariates for birth year and breed were included 
in the models. Breed was fitted as the proportions of NZ Holstein-Friesian ancestry, overseas Holstein-Friesian 
ancestry and Jersey ancestry where the breed proportions were derived from data stored on the New Zealand 
National Dairy Cattle Database. This database includes all known pedigree and breed sixteenths for the majority 
of New Zealand diary animals since the 1940s. In addition to considering effects for individual markers, the 
genome was also partitioned into 1 Mbp windows and the combined effects of SNPs within these intervals were 
estimated. Supplementary Table S2 summarises the top 50 genome-wide results for these windows.

Sequence-based association analyses of milk composition.  Associations between SNPs and the milk fat percentage 
phenotype were quantified by restricted maximum likelihood (REML) using pedigree-based mixed models in 
ASReml-R24. Each SNP was fitted in a separate model, with SNP treated as a quantitative variable based on the 
number of allele copies. Pedigree relationships were accounted for by fitting a pedigree-based relationship matrix. 
Covariates were also included for the proportions of NZ Holstein-Friesian ancestry, US Holstein-Friesian ances-
try, Jersey ancestry, and heterosis effects. The proportion of phenotypic variance explained by each SNP for each 
phenotype was calculated using (2p(1-p)a2)/t, where p is the frequency of the A allele, a is the estimated allele 
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substitution effect, and t is the total phenotypic variation. Similarly, the proportion of genetic variance explained 
by each SNP was calculated using (2p(1-p)a2)/g, where g is the total genetic variance.

For computational efficiency, association analysis of milk fat percentage was restricted to a 2 Mbp interval 
centred on the top chromosome 5 tag-SNP identified through Bayesian GWAS (chr5:92945655-94945655). This 
interval contained 24,283 variants, and additional filters to remove variants with a MAF <  0.005 (N =  8,807), 
and multiallelic variants (N =  532), yielded 14,944 variants for analysis. Following reference assembly refine-
ment and discovery of new variants within the MGST1 sequence gap, re-imputation and filtering using the same 
criteria above yielded 14,985 variants. Analyses for the other milk composition traits (fat yield, protein percent 
and yield, lactose percent and yield, and milk volume) used a further refined, 50 kbp interval of filtered sequence 
variants. This interval was centred on the top associated MGST1 sequence SNP g.93945738C >  T (chr5:93920738-
93970738), yielding 632 variants for analysis. Significance of tests were assessed using a Bonferroni correction 
for multiple hypothesis testing (alpha =  0.05). For analysis using the 2 Mbp interval of variants, a threshold of 
P <  3.34 ×  10−6 was used, for analysis using the 50 kbp interval, a threshold of P <  7.91 ×  10−5 was used.

Gene expression analyses.  Analysis of gene expression traits was conducted using ASReml-R24, using the same 
pedigree-based mixed models applied for analysis of milk composition traits, with the addition of a fixed effect for 
biopsy year to account for the differences in cohorts/sequencing facilities used for the three sequencing submis-
sions. For cis eQTL mapping in the 2 Mbp milk fat percentage interval, these models used VST-normalised read 
counts representing the six nominally expressed genes. A total of 14,971 imputed sequence variants were assessed 
in 375 PCA-filtered individuals (see ‘Read-mapping, expression definitions, and PCA filtering’ section above). 
This variant set was also restricted to biallelic variants with a MAF >  0.005. Similar models were tested for trans 
eQTL analysis, extending the number of phenotypes tested to all expressed genes (N =  9,348), but restricting 
analyses to the g.93945738C >  T SNP only. For cis eQTL analyses, a multiple testing threshold of P <  3.31 ×  10−6 
was used (single phenotype, 15,114 variants); for trans eQTL analyses, a threshold of P <  5.35 ×  10−6 was used 
(9,348 phenotypes, single genotype).

QTL correlation analysis.  Rank correlation analysis of variant P-value results lists was conducted to provide 
insight into whether co-locating QTL possessed the same underlying genetic signal. Use of this method has been 
described previously7, and assumes that pleiotropic QTL will produce similar patterns of association for a given 
set of variants, as reflected by the relative ranking of the variants’ association statistics. For the current analysis, 
a 50 kbp window of sequence variants centred on the top milk fat percentage and MGST1 expression-associated 
SNP g.93945738C >  T (chr5:93920738-93970738; N =  632 variants) was used to quantify Spearman’s rank corre-
lation coefficients. Correlation analyses were performed between milk fat percentage and MGST1 expression, and 
the six other milk composition traits (Supplementary Tables S5 and S7).

CNV analysis.  Following observation of read depth anomalies upstream of the MGST1 gene, we performed 
read depth-based CNV analysis of the implicated region using CNVnator v0.328. A bin size of 150 bp was selected 
based on the average read depth and read depth distribution of the sequenced samples. Breakpoints of the ~8 kbp 
putative CNV were confirmed by PCR (see ‘PCR and targeted sequencing’ section below), with CNVnator then 
used to call genotypes on all genome-sequence reference animals (N =  556) using a 7 kb interval nested within 
the deleted segment. Assigned copy numbers were manually visualised revealing a tri-modal distribution strongly 
suggestive of a biallelic deletion. To assess the accuracy of the CNVnator-derived deletion calls, we examined 
the haplotype structure of the locus in the 182 genome-sequence reference animals that had also been geno-
typed using the Illumina BovineHD BeadChip. Comparison of CNVnator-assigned calls and BovineHD geno-
types revealed a perfectly predictive 95 kb haplotype (Supplementary Table S11), supporting the integrity of the 
sequence-based calls. To test the variant for association with MGST1 expression, this haplotype was used to con-
duct haplotype-based eQTL analysis in the RNA-seq cohort, using models identical to those used for SNP-based 
analyses.

PCR and targeted sequencing.  Investigation of sequences representing the MGST1 refer-
ence gap and CNV boundaries was performed by PCR and Sanger sequencing. For the reference gap, 
CACAGAGTTGGACACGACTGA (F1) and CAGTGTTAACCACATTGTTCTTG (R1) primers (Supplementary 
Fig. S12) were designed to amplify the 364 bp ‘N’ sequence (chr5:93942388-93942751) using Kapa 2G robust 
enzyme in conjunction with the Kapa GC-rich buffer (Kapa Biosystems). Cycling conditions were: 95 °C for 3 min; 
and 35 cycles of 95 °C for 30 sec, 59 °C for 30 sec, 72 °C for 30 sec. Amplification of the gap yielded a single band 
of anticipated size based on de novo assembly of short read data (see ‘Locus-specific assembly refinement’ section 
above), with Sanger sequencing confirming a non-reference gap sequence of 410 bp. For analysis of the CNV 
junctions, PCR products were designed to span the breakpoints apparent from whole-genome sequence align-
ments (Supplementary Fig. S12), using the following primers: F2 TCGAAAGGCTGGCACTGACAACGA, R2 
GCAGCTGCAGTAGCACATAT, F3 TGGCTGAGTAATACTGATCTGCC, R3 TCCCCACTTTCCCCTTTACT. 
These reactions used the Kapa 2G HS enzyme in conjunction with the Kapa GC-rich buffer (Kapa Biosystems) 
and used the following cycling parameters: 95 °C for 3 min; and 35 cycles of 95 °C for 30 sec, 56 °C for 30 sec, 72 °C 
for 90 sec. Sequencing of the junctions revealed a 8,202 bp deletion abridging two ART2A RTE-BovB repeat frag-
ments. An identical 129 bp consensus sequence within these flanking fragments made the precise breakpoints 
unresolvable, though occurred somewhere between the chr5:93951990-93952118 and chr5:93960192-93960320 
fragments. The presence and/or absence of amplification products for the F2/R2 and F2/R3 junction products 
was also used to genotype 13 whole genome–sequenced bulls of representative CNVnator-called genotype classes, 
confirming concordance between PCR and sequence-based calls. All Sanger sequencing was performed using the 
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Applied Biosystems 3130 ×  L instrument (Life Technologies/Applied Biosystems) at the University of Auckland 
DNA Sequencing Facility (Auckland, New Zealand).

Conservation analysis and transcription factor binding site predictions.  Gain or loss of putative 
transcription factor binding sites at the 15 top SNP loci was predicted using MATCH29 in conjunction with the 
TRANSFAC (Release 7.0) database, using the ‘vertebrates’ matrix group with default cut-off to minimise false 
negatives. The liver-specific binding profile was selected due to being the most lipogenic tissue of the prede-
fined tissue profiles. Predictions were also performed with cut-off settings to minimise the sum of false positive 
and false negative error rates. Binding sites with core match scores exceeding 0.995 under both conditions, and 
core motifs overlapping the SNP locus were retained for conservation analysis. Evolutionary conservation was 
assessed by retrieving orthologous sequences from 100-species alignments from UCSC48, and/or local alignment 
for selected species obtained with ClustalW49.
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