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Abstract: Ischemic stroke is one of the most common cerebrovascular diseases and is the

leading cause of disability all over the world. It is well known that cerebral blood flow (CBF) is

disturbed or even disrupted when ischemic stroke happens. The imbalance between demand and

shortage of blood supply makes ischemic stroke take place or worsen. The search for treatments

that can preserve CBF, especially during the acute phase of ischemic stroke, has become a

research hotspot. Animal and clinical experiments have proven that remote ischemic condition-

ing (RIC) is a beneficial therapeutic strategy for the treatment of ischemic stroke. However, the

mechanism bywhich RIC affects CBF has not been fully understood. This review aims to discuss

several possible mechanisms of RIC on the cerebral hemodynamics in ischemic stroke, such as

the improvement of cardiac function and collateral circulation of cerebral vessels, the protection

of neurovascular units, the formation of gas molecules, the effect on the function of vascular

endothelial cells and the nervous system. RIC has the potential to become a therapeutic treatment

to improve CBF in ischemic stroke. Future studies are needed to highlight our understanding of

RIC as well as accelerate its clinical translation.

Keywords: remote ischemic conditioning, cerebral hemodynamics, ischemic stroke, cerebral

blood flow

Introduction
Ischemic stroke is a common kind of cerebrovascular disease with high morbidity,

mortality, and disability rates. More than 10 million people worldwide suffer from

ischemic stroke each year.1 It becomes a socio-economic problem when it is more

prevalent among a younger age group, with resultant permanent disability, cognitive

and motor disorders, and dementia. This brings ischemic stroke to the attention of

scientists who are endeavoring to search for advanced clinical treatments to improve

the prognosis of patients with ischemic stroke. Remote ischemic conditioning (RIC)

offers practical value: it is effective, noninvasive, economical, and convenient. It has

thus been researched intensively by cardiovascular disease specialists for many years; it

has also begun to be an object of study in cerebrovascular disease.

The normal function of the brain is based on the stable CBF and cerebral

autoregulation. Several studies reveal the fact that RIC can affect cerebral hemo-

dynamics in ischemic stroke.2,3 The mechanism by which RIC influences cerebral

hemodynamics is beyond full comprehension and needs our further exploration.

Table 1 shows experimental and clinical studies available at present of RIC in

ischemic stroke. In September 2019, a literature search in PubMed was performed

based on the combination of the following terms: “remote ischemic conditioning”,
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“ischemic stroke”, “ischemic preconditioning”, “ischemic

perconditioning”, “ischemic postconditioning”, “cerebral

hemodynamics” and “cerebral blood flow”. The reference

list of relevant papers was also screened. The search was

limited to publications in English, and the final references

included were chosen based on the relevance to the scope

of this review.

Findings of Animal Experiments and
Clinical Studies
RICmainly exerts endogenous protective effects on important

organs of the body through nerve, humoral, and immune-

inflammatory pathways. Its safety and efficacy in ischemic

stroke have been reported.40,41 Recent studies have shown that

RIC can alleviate ischemia-reperfusion (I/R) injury.42–44

Cerebral ischemia leads to cerebral hypoperfusion. After

reperfusion, hyperperfusion is the first to be observed in

almost all experimental animals, followed by hypoperfusion.45

Neither hyperperfusion nor hypoperfusion is harmless to the

recovery from cerebral ischemia. Wang et al found that after

ischemia reperfusion, the hyperperfusion time in the control

group lasted for 30 mins, followed by several hours of hypo-

perfusion. In the RIC group, in contrast, the hyperperfusion

time was shortened to 20 mins, and the decreasing of hyper-

perfusion values was observed while the hypoperfusion values

increased. These findings suggest that RIC can reduce I/R

injury and improve disturbed CBF by reducing the duration

and degree of hyperperfusion.42 Zhao et al demonstrated for

the first time that RIC had remarkable effects on CBF in focal

cerebral ischemic rat models. They found that bilateral com-

mon carotid artery occlusion reduced CBF to approximately

30% of the baseline, and additional middle cerebral artery

occlusion further decreased CBF to 20% approximately.

After the common carotid artery was released, a transient

hyperemic response was observed, which could be broken

off by three cycles of reperfusion and occlusion of the bilateral

common carotid artery. The results indicated that RIC could

protect against I/R injury and be conducive to CBF.43 Clinical

trials also show this positive result. Meng et al evaluated the

protective effects of RIC in patients with symptomatic athero-

sclerotic intracranial arterial stenosis. They found RIC could

prevent recurrent stroke and shorten the average time to

recovery. The degree of the abnormally elevated peak systolic

velocities decline was more pronounced in the RIC group vs

the control group.44 In addition, the middle cerebral artery

peak systolic blood flow velocity and pulsatility index did

not change significantly before, during, or after RIC in AIS

patients treated with thrombectomy.37 And it has been demon-

strated that RICmay reduce infarction tissue risk as an adjunct

therapy to thrombolysis in patients with acute ischemic

stroke.40

Research on cerebral hemodynamics has shifted from

purely vascular concepts to a complex interaction of bio-

chemical and molecular mechanisms. Factors that can affect

the cardiac function, the coupling of nerves and blood ves-

sels, the content of blood gas, the blood viscosity, the body

temperature, and the automatic regulation of cerebral blood

vessels may affect cerebral hemodynamics.46 The influence

of RIC on the cerebral hemodynamics of ischemic stroke

may occur through the following means: it may improve

cardiac function, improve collateral circulation of cerebral

vessels, protect neurovascular units (NVU), induce the for-

mation of gas molecules, affect the function of vascular

endothelial cells, and affect the nervous system [Figure 1].

Mechanisms
RIC Can Improve Cardiac Function
The cerebrovascular system and the cardiovascular system

are highly correlated in anatomy and physiological functions.

Left ventricular ejection enters the cerebrovascular system

through the aortic arch to supply blood and oxygen to the

brain tissue. The brain receives one fifth of the cardiac out-

put. It has been reported that moderate and regular physical

exercise can improve cardiac function, increase CBF, and

improvemicrocirculation.47–49 Lieshout et al found that there

was a linear correlation between CBF and cardiac output in

healthy subjects, that is, when the muscles of the lower limbs

were tense, cardiac output increased and the mean blood flow

velocity of the middle cerebral artery (MCA) increased

simultaneously.50 Evidence also showed that left ventricle

ejection fraction was one of the strongest predictors of the

poststroke improvement. Preserved ejection fraction is asso-

ciated with early favorable outcome in ischemic stroke.51 All

the evidence supports that improving cardiac function could

be a nice way to affect cerebral hemodynamics.

Recently, several studies have shown that RIC may have

an exercise equivalent.2,52 For example, a prospective study

showed that dialysates prepared from plasma of human sub-

jects undergoing high-intensity exercise or RIC were both

protective in reducing the infarct size of an isolated rabbit

heart after I/R injury.52 Kono et al studied 10 heart failure

patients with left ventricular ejection fraction reduced and 10

healthy subjects. All subjects received RIC treatment for 1

week. The results showed that RIC increased coronary
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microcirculation in both patients and healthy subjects.53

Previous experimental studies showed that although RIC

failed to improve the left ventricular ejection fraction, RIC

could reduce the level of plasma N-terminal pro brain-type

natriuretic peptide, improve the myocardial systolic function

of most patients with severe compensatory heart failure,

reduce systolic blood pressure, and reduce the cardiac after-

load, so as to have a positive impact on hemodynamics.54 In a

randomized controlled study involving 50 subjects with mild

ischemic heart failure, RIC treatment of the upper limb twice

a day for 6 weeks could improve the cardiac function of

patients, improve the left ventricular ejection fraction, extent

the 6 mins walk distance, and reduce the level of B-type

natriuretic peptide, thereby affecting the New York Heart

Function Assessment score.55 RIC may play the role of

myocardial protection through the survival activating factor

enhancement (SAFE) pathway and the reperfusion injury

salvage kinases (RISK) pathway:

The SAFE Pathway

The SAFE pathway is a novel protective pathway against

reperfusion injuries, which consists of the Janus kinase 2

(JAK2) signal transducer and activator of transcription 3

(STAT-3) signaling cascade.56 Previous research has indi-

cated the cardioprotection by RIC was associated with

activation of the SAFE signaling pathway.57 Tamareille

et al reported that local ischemic postconditioning +RIC

increased phospho-STAT-3 levels when compared to local

ischemic postconditioning alone, which highlighted the

key role of the SAFE pathway.58 Additional study has

revealed that remote ischemic postconditioning protects

myocardial cells by the recruitment of the RISK and

SAFE pathways. However, remote ischemic precondition-

ing may not.59 The activation of SAFE pathway may be

different in different RIC protocols.

The RISK Pathway

The RISK pathway is another universal signaling cascade

composed of two parallel cascades, the phosphoinositide-3

kinase/Akt and MEK1-ERK1/2. Activation of the RISK

pathway by RIC has been confirmed to be associated with

cardioprotection in many experimental models.60 Recent

studies also observe that interaction exists between the

RISK and SAFE signaling pathways in mediating RIC.58

Figure 1 The simplified schema graph of potential mechanisms through which RIC influences CBF. The hypoxia induced by RIC upregulates the VEGF production, which activates

VEGFR. Then, Dll-4 expression is induced and NCID is proteolytically cleaved to liberate an adjacent endothelial cell. NICD enters the nucleus and activates the transcription of

Notch-responsive genes. The interaction between VEGF and the Notch signaling pathway plays a crucial role in angiogenesis. RIC can also induce the formation of three main gas

molecules: NO, CO, and H2S. They can improve CBF by relaxing smooth muscle cells. RIC can also improve CBF by protecting cardiac function and NVU.

Abbreviations: CAT, cysteine aminotransferase; CBF, cerebral blood flow; CO, carbon monoxide; Dll-4, Delta-like 4; EC, endothelial cell; eNOS, endothelial nitric oxide synthase;

H2S, hydrogen sulfide; HO, heme oxygenase; I/R, ischemia/reperfusion; 3MST, 3-mercaptopyruvate sulfurtransferase; NCID, Notch intracellular domain; NO, nitric oxide; NVU,

neurovascular unit; RIC, remote ischemic conditioning; SMC, smooth muscle cell; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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Further studies are required to determine the relationship

between the SAFE and RISK pathway and their function

of myocardial protection.

Based on the researches cited above, RIC may exert their

myocardial protection through the SAFE pathway and RISK

pathway, thereby improving cerebral hemodynamics. Long-

term RIC treatment may be beneficial to patients either with

heart failure or with ischemic stroke. The protective effects of

exercise and RIC on cardiac function and cerebral hemody-

namics deserve further study.

RIC Can Improve Cerebral Collateral

Circulation
The primary collaterals consist of circulatory anastomoses

that constitute the circle of Willis, and the secondary col-

laterals consist of the pial or leptomeningeal collaterals. The

collateral circulation plays an important role in maintaining

tissue viability in the first hours of ischemic stroke. It has

been reported that collateral circulation is a key factor in

predicting the prognosis of ischemic stroke.61 Thus, pro-

moting collateral circulation formation and strengthening

collateral circulation function are important strategies for

the treatment or prevention of ischemic diseases.62

Evidence showed that the higher the ischemic edge micro-

vascular density, the better the clinical outcome in stroke

patients.63 RIC has been proven that it could significantly

develop leptomeningeal anastomoses and enhance the ves-

sel diameter of anterior cerebral artery-middle cerebral

artery anastomoses. RIC may play a neuroprotective role

by enhancing the leptomeningeal collateral circulation.64 In

addition, it has been reported that RIC significantly induced

angiogenesis and collaterals formation, which was mani-

fested as an increase in the number and volume of blood

vessels. And these changes had an effect on improving

CBF.3 RIC may improve the collateral circulation of cere-

bral vessels through the following ways:

Notch Signaling Pathway

The Notch signaling pathway is a biologically ancient

intercellular signaling pathway. The Notch receptor is a

highly conserved membrane-bound receptor, which

directly transfers signals from the cell surface to the

nucleus by regulating intramembrane proteolysis. Notch1

and Notch4 are the only two kinds of Notch receptors

expressed in vascular endothelial cells, which have an

important effect on the vascular development and physio-

logical process of vertebrates. These effects include the

regulation of the arterial/venous differentiation of

endothelial cells and vascular smooth muscle cells, the

regulation of the germination and branching of blood

vessels during normal development and tumor angiogen-

esis, and the differentiation and physiological responses of

vascular smooth muscle cells.65 Lawson et al first con-

firmed the effect of the Notch signaling pathway on arter-

iovenous differentiation in zebrafish experiments. They

found that loss of the Notch signaling pathway lead to

defective arteriovenous differentiation. Activation of the

Notch signaling pathway, by contrast, resulted in repres-

sion of venous cell development, and promoted the differ-

entiation of cells into arteries. The Notch signaling

pathway is essential for the normal development of arteries

and veins.66 It has been demonstrated that the promoting

of the Notch signaling pathway contributed to the prolif-

eration of endothelial progenitor cells and angiogenesis of

the brain in cerebral ischemic stroke mice.67 And blockade

of Notch signaling decreased vascular smooth muscle

cells’ investment of developing arteries.68 In the mouse

model of hind limb ischemia, the arteriogenesis of the

ischemic hindlimb of mice with Notch1 heterozygous

deletion was also impaired.69 In conclusion, the Notch

signaling pathway plays an important role in the normal

function of angiogenesis.

Ren et al utilized the middle cerebral artery occlusion

(MCAO) model in rats and divided the rats into a sham

operation group, an MCAO control group, and an MCAO +

RIC group. The study showed that compared with the

MCAO control group, Notch1 and the intracellular domain

expression of Notch1 in the MCAO +RIC group was

increased, the artery diameter was enlarged, the leptome-

ningeal anastomoses branch was significantly increased,

and local CBF was also significantly elevated.2 Therefore,

RIC may stimulate the Notch1 signaling pathway to pro-

mote collateral circulation generation and improve CBF in

ischemic regions, thereby affecting cerebral hemodynamics.

The Notch signaling pathway may be a new therapeutic

target for ischemic stroke.

eNOS/NO Pathway

The production of nitric oxide (NO) in vivo is catalyzed by

three different enzymes, neuronal nitric oxide synthase

(nNOS), inducible NOS (iNOS) and endothelial NOS

(eNOS). NO production by vascular endothelial cells is

mainly dependent on eNOS.70 The eNOS catalyzes the

conversion of L-arginine to L-citrulline to generate NO.

Nitrite is the storage pool of NO generated by endogenous

eNOS, which is reduced to NO in the hypoxic area,
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mediating vascular dilatation and increasing CBF.

Murohara et al research showed that vascular remodeling

was impaired in an eNOS knockout murine model of

operatively induced hindlimb ischemia.71 Thus, the

eNOS/NO pathway is considered one of the major regula-

tors of angiogenesis after ischemia.

An experiment divided 30 adult rats into a sham opera-

tion group, a bilateral carotid artery occlusion group (2VO),

and a 2VO+RIC group. The experiment found that com-

pared with 2VO group, in the 2VO+RIC group, the expres-

sion of phosphorylated endothelial nitric oxide synthase

(p-eNOS) increased, microvascular density and collateral

vessels increased, and the cerebral perfusion significantly

increased as well. Intraperitoneal injection of NOS inhibi-

tors can reverse this phenomenon.72 Moreover, RIC treat-

ment could up-regulate the content of nitrite in the plasma

of mice, and the up-regulation of nitrite was related to the

increase of CBF.73 Hoda et al reported that RIC up-regu-

lated the expression of eNOS mRNA in blood vessels of the

regulatory site by about 10 times, and increased the plasma

concentration of NO.74 These results suggest that RIC can

improve cerebral perfusion in ischemic regions by promot-

ing angiogenesis, and this effect is mediated by eNOS/NO

pathway. Nitrite levels are easily measured in the blood and

can therefore be used as a promising circulating biomarker

for ischemic treatment.

VEGF Pathway

Vascular endothelial growth factor (VEGF) is now consid-

ered one of the most effective highly specific cell factors

promoting vascular endothelial growth, participating

directly in the angiogenesis of ischemic or hypoxic tissues

or organs. In the human genome, VEGF A, B, C, D, E and

placental growth factor are included. They need to bind to

the corresponding receptors and activate different down-

stream signaling pathways to play their respective roles.

VEGF-A was the first discovered among them, with the

richest content and the strongest function in tissues and

cells. Therefore, VEGF refers to VEGF-A in most litera-

ture. Accumulating evidence supports the protective role

of VEGF in inducing angiogenesis and increasing vascular

permeability, thus affecting hemodynamics.75–77 Zhang

et al used male Wistar rats to construct the MCAO

model, and they discovered that VEGF expression began

to increase 2 hrs after cerebral infarction, and lasted for at

least 28 days. The increase in the number of new capil-

laries in the ischemic area was correlated with the up-

regulation of VEGF, indicating that VEGF mediated the

angiogenesis in the ischemic area and increased cerebral

blood perfusion.78 In addition, VEGF-A is also a potent

vasodilator and has been reported to not only induce

neuroprotection directly in ischemic disorders, but also to

improve cerebral autoregulation through hypoxia-induci-

ble transcription factor-1-regulated pathways.79

Evidence suggests that RIC is able to elevate the cir-

culating VEGF significantly, even at the mRNA and pro-

tein levels,80 which is considered to be a key mediator of

protective RIC effects.81 Ueno et al investigated the rela-

tionship between RIC and VEGF by clamping abdominal

aortas in mice. The results also showed that RIC could

increase the level of VEGF in plasma, thus producing a

neuroprotective effect.82 All the studies above have con-

firmed that RIC can effectively promote the up-regulation

of VEGF expression, so as to play its physiological role in

promoting the neovascularization in the ischemic area and

affecting cerebral hemodynamics. This is probably a main

molecular biological mechanism through which RIC med-

iates brain protection.

RIC Can Prevent the Collapse of Pial Collaterals

The cerebral collaterals are pivotal auxiliary vascular path-

ways. They can maintain blood flow to ischemic tissue up

to a point when the primary vascular routes to the brain are

obstructed.83

An experiment showed constriction of pial collaterals and

distal MCA segments at all time points after MCAO was

apparent in controls, but this did not happen in RIC-treated

animals. This result demonstrated that RIC could prevent the

collapse or constriction of cerebral collaterals after ischemia

took place. And it could also improve CBF through its

influence on cerebral collaterals. But no significant effect or

interaction was observed in blood flow velocity.10

Above all, it is proved that RIC has a positive influence

on cerebral collateral circulation. On the one hand, RIC

can promote the establishment of collateral circulation in

several ways. On the other hand, RIC can prevent the

collapse of pial collaterals after ischemia. That is, RIC is

beneficial to the status of collateral circulation and collat-

eral blood flow. Therefore, RIC is a potential therapeutic

method for ischemic stroke.

RIC Can Protect the Neurovascular Unit
The concept of “neurovascular unit (NVU)” was first intro-

duced by Lo et al in 2003.84 The NVU is a special structural

and functional unit of the mammalian nervous system. It

includes vascular cells (endothelium, pericytes, and vascular
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smooth muscle cells), glial cells (astrocytes, microglia, and

oligodendroglia), and neurons, which are tightly connected

to modulate regional blood flow in response to local meta-

bolic demand.85,86 This modulation enables rapid increase in

CBF in response to neuronal activation, despite the relatively

stable global blood flow.86 Many physiological studies have

confirmed that there is communication between cerebral

blood vessels and adjacent nerve cells in NVU. The NVU

plays a crucial role in modifying cerebrovascular function,

controlling CBF and permeability in health and in specific

diseases.87 Therefore, the regulation of regional and local

cerebral hemodynamics depends on the structural and func-

tional integrity of the NVU.88

Several diseases can lead to impaired cellular communi-

cation between neurovascular unit components, and thus

result in brain dysfunction. Microvessel responses, astrocyte

injury, and neuron injury occur almost simultaneously when

the ischemia/reperfusion (I/R) happens.89 Damage to any

part of the NVU could lead to dysfunction in cerebral hemo-

dynamics. Thus, we should make efforts to protect the func-

tional and structural integrity of the NVU in patients with

ischemic stroke. Han et al first demonstrated that ischemic

treatment could reduce the I/R injury to the cellular structures

of neurons, astrocytes, and microvessels.90 Researches then

advanced to RIC. Astrocytes are important part of NVU, they

undergo rapid hypertrophy and hyperplasia in response to

injury of brain tissue. Cheng et al reported that RIC could

protect NVU by adjusting the proportion of astrocyte sub-

types and weakening the activation of astrocytes in the brains

of ischemic mice, thereby improving neurological function

as well as reducing mortality, infarct area, and hemispheric

swelling after ischemic stroke.5

The evidences above give us reason to think that RIC can

be effective in improving CBF by protecting NVU during

ischemic stroke. The understanding of NVU highlights that

attention should be shifted from neurons or blood vessels,

respectively, to the whole NVU. It also provides a platform

for potential therapies for ischemic stroke. RIC may be an

effective and promising treatment for ischemic stroke due to

its convenience of operation and positive impact on NVU.

However, there is still much to learn about the mechanism

and function of the neurovascular unit and RIC.

RIC Can Induce the Formation of Gas

Molecules
Numerous studies have demonstrated that hypoxia can

induce vascular endothelial cells to produce gaseous

messenger molecules, such as nitric oxide (NO), carbon

monoxide (CO), and hydrogen sulfide (H2S).
91–93 These

gasotransmitters share several common properties among

their physiological and pathological functions.

NO

As mentioned above, NO is considered one of the main

endothelium-derived vasodilation factors. NO plays a poten-

tial role in cerebral autoregulation, the expansion of cerebral

blood vessels, and the improvement of CBF. A study discov-

ered that a decrease in transmural pressure from 60 mmHg

resulted in the increasing release of vascular NO by intrapar-

enchymal arterioles isolated from rats. The result supports that

NO contributes to the autoregulatory vasodilation intrinsic to

the vessel during hypotension.94 White et al compared the

effect of the NOS inhibitor N(G)-monomethyl-L-arginine on

dynamic autoregulation with that of noradrenaline in healthy

humans. They found reduced NO secretion was associated

with impaired cerebral autoregulation, suggesting that nitric

oxide mediates cerebral autoregulation in humans.95 Recently,

a number of studies have focused on the function of NO on

cerebral autoregulation.96–98 It is demonstrated that inhaled

nitric oxide had the function of preventing impairment of

cerebral autoregulation, reducing hippocampal necrosis and

blocking the reductions in CBF.96–98 Thus, NO is an important

medium of the regulating of cerebral hemodynamics and con-

tributes to the adequate blood supply to the brain. However,

there are still dissenting voices.99,100 The effect of NO on

cerebral hemodynamics needs further study, including the

effective dose and its possible toxic effect.

CO

CO is a gaseous second messenger endogenously generated

from heme by heme oxygenase (HO). Three isoforms of

HO (e.g., HO-1, HO-2, and HO-3) have been discovered.101

Endogenous CO production occurring at low concentrations

is thought to be protective.101 In animal models, 250 ppm

CO in the central nervous system have been demonstrated

to have protective effects.102,103 CO can generate cyclic

guanosine phosphate by activating guanosine cyclase. The

increase of intracellular cyclic guanosine phosphate can

expand blood vessels and inhibit platelet aggregation. An

increasing number of studies have shown that endogenous

CO may be one of the factors involved in regulating vas-

cular tension during hypoxia.104 The vascular tone of the

resisting arteries and arterioles determines the resistance of

the surrounding vessels, which helps to regulate blood

pressure and blood flow, thus affecting the hemodynamics
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inside tissues and organs.105 Several experiments confirm

that CO also can influence NVU by its impact on neurogen-

esis, angiogenesis, and synaptic plasticity.102,106,107 HO-1

knockout mice (HO-1(-/-)) had fewer positive cells for axon

migrating markers after MCAO.108 Mice exposed to 250

ppm CO for 2 hrs each day have significant endothelial

progenitor cells mobilization.106 And, relatively low con-

centration of endogenous CO production is thought to play

an important role at the synapse leading to long-term

potentiation.109 Therefore, the potential efficacy of CO

therapy in ischemic stroke may be its influence on neuro-

genesis, angiogenesis, and synaptic plasticity, which can

improve the CBF by affecting NVU.

H2S

H2S can also be produced by cells under ischemic condi-

tions, and it has been considered the third important gas-

eous signaling molecule following NO and CO. It used to

be regarded as a poisonous gas. However, as research

progresses, an increasing number of experiments have

revealed its role as a bioactive molecule in biological

systems. There are conflicting results concerning the role

of H2S in ischemic stroke.110–114 Chen et al showed that

increased production of H2S in the brain was significantly

correlated with either poor clinical outcome or early dete-

rioration in clinical stroke.110 There is also strong informa-

tion supporting the important role that H2S plays in the

induction of angiogenesis,111 regulation of neuronal

activity,113 vascular relaxation,114 and protection against

I/R injury in important organs. It is confirmed that H2S

could protect neurons against hypoxic injury via the K

(ATP)/PKC/ERK1/2/Hsp90 pathway.115 Wang et al proved

that H2S protected blood-brain barrier (BBB) integrity

following middle cerebral artery occlusion (MCAO).116

Jang et al reported that treatment with H2S augmented

angiogenesis in the peri-infarct area, and it improved func-

tional outcomes after 2 weeks significantly through PI3K/

AKT signaling in a rat MCAO model.117 Their findings

manifest that H2S has potential therapeutic value in regen-

erative and even hemodynamic recovery after stroke.

Similar to NO, H2S can relax smooth muscle cells and

expand blood vessels. H2S synthase has been found in

mammals.93 So H2S may have the potential of becoming

the mediator of RIC affecting cerebral hemodynamics.

It is reasonable to infer that RIC may induce the gen-

eration of endogenous gas molecules through the I/R of

distant limbs.93,118 Gas molecules enter the central nervous

system through blood circulation, thereby regulating

cerebral vascular tone and affecting cerebral hemody-

namics. Natural products that are induced by RIC can

provide an innovative tool for improving treatments for

stroke recovery. More investigations should be done to

gain a clearer understanding of these gas molecules. And

considerable attention should be paid to RIC as a target for

novel therapeutic treatment against for ischemic stroke.

RIC Can Affect the Function of Vascular

Endothelial Cells
Blood vessels are composed of the tunica adventitia,

tunica media and the tunica intima. The contractile force

of blood vessels is mainly regulated by the contractile

force of tunica media smooth muscle cells, while the latter

are affected by vascular endothelial cells. Vascular

endothelial cells can generate NO, prostacyclin, hydrogen

peroxide, and hydrogen sulfide, and activate potassium ion

channels. Vascular endothelial cells change vascular reac-

tivity through the production and release of vasoactive

factors, which can regulate local vascular perfusion and

are important substances for regulating vascular tone.119

Nakamura et al studied 15 smokers and 15 non-smokers,

who were given upper extremity RIC six times a day for 1

month. The results showed that the RIC stimulation could

significantly increase the level of circulating progenitor

cells in the non-smoking group, enhance the response of

the forearm blood flow to acetylcholine, and enhance the

endothelium-dependent vasodilatory function. No such

changes were observed in the smoking group. RIC may be

a simple and safe treatment for peripheral vascular endothe-

lial protection.120 A recent study also confirmed that RIC

can improve the endothelium-dependent vasodilatory func-

tion of brachial arteries in the forearm.121

The effector of RIC may act on the whole body through

blood circulation. Therefore, it is inferred that the effector

produced by RIC may have the same effect on cerebrovas-

cular endothelial cells, thereby affecting cerebrovascular

reactivity and improving cerebral hemodynamics.

RIC Can Affect the Nervous System
The nervous system also plays an important part in the

effects of RIC on cerebral hemodynamics. Primarily, the

proper function of RIC is reliant on the presence of intact

neuronal pathways. There is a trend toward attenuation of

RIC protection when femoral and sciatic nerves are sec-

tioned in a rabbit model.122 Local muscle ischemia

induced through RIC may lead to the release of adenosine
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bradykinin or opioid, which may activate the nervous

system. A recent study confirmed that RIC could reduce

the I/R injury of endothelial cells and enhance the

endothelium-dependent vasodilatory function by mediat-

ing the production of glucagon-like peptide-1, thus affect-

ing the circulatory system. Glucagon-like peptide-1 is an

endocrine hormone released by L cells of the small intes-

tine under the regulation of the efferent activity of the

vagus nerve.121 It has been discovered that selective sever-

ing of the posterior gastric branch of the vagus nerve can

eliminate the protective effect of RIC, and stimulation of

this branch can induce the protective effect of RIC.

Scientists thus believe that the circulating factors of RIC

are generated and released into the systemic circulation by

the internal organs innervated by the posterior gastric

branch of the vagus nerve.112 Activation of the vagus

nerve by RIC may also inhibit inflammatory processes

mediated by the liver and spleen via the cholinergic anti-

inflammatory pathway.123 A study from Azevedo et al

showed that neurovascular coupling was impaired in indi-

viduals with autonomic dysfunction, and so was cerebro-

vascular regulation.124 It also has been reported that

activation of other parasympathetic nerves by RIC, such

as the sphenopalatine ganglion, may increase CBF.125

Therefore, RIC can affect the nervous system, espe-

cially the vagus nerve, and exert an influence on cerebral

hemodynamics. The vagus nerve may become a potential

therapeutic target for ischemic stroke. However, the inter-

action between the sympathetic and parasympathetic

nerves is extremely mazy. It is difficult to affect only one

without affecting the other. Further studies are needed to

confirm the interaction between the nervous system and its

relationship with RIC.

Conclusions
In conclusion, during the initial stage of ischemic stroke, the

CBF decreases and the autoregulation of the cerebral vascular

system is damaged, leading to cerebral ischemia and hypoxia,

and this may lead to a poor prognosis. Multiple mechanisms

are involved in the process of regulation of CBF. Several

animal experiments and clinical studies have shown that RIC

can trigger the endogenous protection mechanisms through a

variety of ways, thus having a positive impact on cerebral

hemodynamics. RIC has the potential to become a therapeutic

treatment to improve CBF during the initial phase of ischemic

stroke with the advantages of being simple, safe, non-invasive,

and inexpensive. Renewed efforts are needed to improve our

understanding of RIC and to provide important insights into

developing more effective therapies for ischemic stroke.
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