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Emerging translational
strategies and challenges for
enhancing regulatory T cell
therapy for graft-versus-
host disease

Keli L. Hippen1*, Mehrdad Hefazi2, Jemma H. Larson1

and Bruce R. Blazar1

1University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood &
Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States, 2Division of Hematology,
Mayo Clinic, Rochester, MN, United States
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative

therapy for many types of cancer. Genetic disparities between donor and host

can result in immune-mediated attack of host tissues, known as graft versus

host disease (GVHD), a major cause of morbidity and mortality following HSCT.

Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system

homeostasis, limiting the activation and differentiation of effector T cells (Teff)

that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell

therapy (ACT) with Treg has demonstrated, first in murine models and now in

patients, that prophylactic Treg infusion can also suppress GVHD. While clinical

trials have demonstrated Treg reduce severe GVHD occurrence, several

impediments remain, including Treg variability and practical need for

individualized Treg production for each patient. Additionally, there are

challenges in the use of in vitro expansion techniques and in achieving in

vivo Treg persistence in context of both immune suppressive drugs and in

lymphoreplete patients being treated for GVHD. This review will focus on 3

main translational approaches taken to improve the efficacy of tTreg ACT in

GVHD prophylaxis and development of treatment options, following HSCT:

genetic modification, manipulating TCR and cytokine signaling, and Treg

production protocols. In vitro expansion for Treg ACT presents a multitude

of approaches for gene modification to improve efficacy, including: antigen

specificity, tissue targeting, deletion of negative regulators/exhaustion markers,

resistance to immunosuppressive drugs common in GVHD treatment. Such
Abbreviations: ACT, Adoptive cell therapy; AHR, aryl hydrocarbon receptor; allo-HSCT, allogeneic

hematopoietic stem cell transplantation; APCs, antigen-presenting cells; Blimp-1, B lymphocyte-induced

maturation protein-1; BM-Treg, bone marrow Treg; CLA, cutaneous leukocyte antigen; Tcons,

conventional T cells; Teff, effector T cells; FITC, fluorescein isothiocyanate; GI, gastrointestinal; GVL,

graft-vs-leukemia; GVHD, graft versus host disease; iTregs, induced Treg; PB, peripheral blood; pTregs,

peripheral Tregs; SLO, secondary lymphoid organs; Tregs, regulatory T cells; TCR, T cell receptor; TruC,

TCR fusion construct; tTregs, Thymic Tregs; Tr1, type 1 regulatory T cells.
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expansion is particularly important in patients without significant lymphopenia

that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo.

Several potential therapeutics have also been identified that enhance tTreg

stability or persistence/expansion following ACT that target specific pathways,

including: DNA/histone methylation status, TCR/co-stimulation signaling, and

IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg

production related to tissue source, Treg subsets, therapeutic approaches to

increase Treg suppression and stability during tTreg expansion, and potential

for storing large numbers of Treg from a single production run to be used as an

off-the-shelf infusion product capable of treating multiple recipients.
KEYWORDS

tTreg, pTreg, iTreg, CAR, GVHD
Introduction

Allogeneic hematopoietic stem cell transplantation (allo-

HSCT) is a curative therapy for many types of cancer (1).

Genetic disparities between donor and host can result in graft-

versus-host disease (GVHD), a major cause of morbidity and

mortality following allo-HSCT (2). Regulatory CD4+25++FoxP3

+ T cells (Tregs) are present at low frequency and are crucial for

immune system homeostasis by limiting the activation and
02
differentiation of effector T cells (Teff) that are self-reactive or

stimulated by foreign antigen (Figure 1) exposure (3). Adoptive

cell therapy (ACT) with Tregs has demonstrated, first in murine

models and now in patients, that prophylactic Treg infusion can

also suppress GVHD (4–6). While clinical trials have

demonstrated Tregs reduce severe GVHD occurrence, several

impediments remain, including the practical need for

individualized Treg production for each patient (5, 7).

Additional challenges exist in achieving in vivo Treg
FIGURE 1

Potential ex vivo mechanisms to enhance Treg ACT.
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persistence, especially in the context of immune suppressive

drugs given to patients for GVHD prevention or treatment (8).

This review will focus on translational approaches taken to

improve the efficacy of Treg ACT such as manipulating T cell

receptor (TCR) and cytokine signaling, in vitro expansion and

genome modifications to improve antigen specificity, GVHD

target tissue migration, and therapeutics to enhance Treg

stability or persistence/expansion following ACT (9). Lastly,

this review will discuss improvements in Treg production

related to tissue source, Treg subsets, suppressor potency and

stability, and potential for use as an off-the-shelf product capable

of treating multiple recipients.
CD4 Treg background

CD4+ Tregs can be divided into three main classes based

upon site of development. Thymic Tregs (tTregs) are

CD4+25++FoxP3+ cells formed in the thymus. Peripheral

Tregs (pTregs)and induced Tregs (iTregs) acquire Foxp3 and

suppressor function in vivo or in vitro, respectively. Type 1

regulatory T (Tr1) cells also can arise in vivo in the periphery or

induced in vitro; Tr1 cells do not express FoxP3, require the

transcription factors Tbet and B lymphocyte-induced

maturation protein-1 (Blimp-1) (10), and secrete IL-10 as the

primary mechanism for their suppressive function (11).

Regulatory CD4+ T cells (Tregs) are a rare cell type crucial

for immune system homeostasis, limiting the activation and

differentiation of effector T cells (Teff) that are self-reactive or

stimulated by foreign antigen exposure (3). Treg are

characteristically defined by the constitutive expression of both

Foxp3 and high expression of CD25, compared to conventional

T-cells (Tcon) which typically express significantly lower levels

of both CD25 and Foxp3 (12). However, human Tcon can also

transiently express Foxp3 following TCR stimulation, thus

human FoxP3+ T-cells consist of a heterogeneous population

of both Treg and activated Tcon. CD127 expression has been

shown to inversely correlate with the expression of Foxp3 in

human T-cells (13). Therefore, human Treg are characterized as

CD127lo (i.e. CD4+CD25+CD127loFoxp3+). CD4+25++ Treg

also co-express high levels of several immunosuppressive

functional markers, including CTLA-4, Lag3, TIGIT, Tim-3

and PD-1, which directly contribute to the critical suppressive

function of this population (14–17), as well as CD39 and CD73

(18). Treg also constitutively express a number of co-stimulatory

molecules, including 4-1BB, OX-40, TNFRII, TNFRSF25 (19).

While expression is not restricted to Treg, Helios and

neuropilin-1 expression have been shown to increase Treg

stability in vivo (20–22).

Interestingly, several mechanisms used by Treg for

suppression of Teff responses also help stabilize the Treg

phenotype. For example, high expression of CD25 by tTreg

and iTreg may preferentially facilitate IL-2 signaling to Treg and,
Frontiers in Immunology 03
via competition, diminish IL-2 signaling of Teffs (23). Similarly,

multiple subsets of tTreg, iTreg and Tr1 cells produce the

immunosuppressive cytokines TGFß and IL-10, which

concomitantly promote Treg stability while limiting Teff

activation and differentiation (11, 23, 24). Treg also secrete the

immunosuppressive cytokine IL-35, which has recently been

shown to induce infectious tolerance and/or T cell exhaustion

(25, 26). Treg also use metabolic intermediates to suppress T cell

activation, including extracellular production of adenosine

through the concordant expression of CD39 and CD73 (27)

and the direct transfer of the potent inhibitory second messenger

cAMP to T cells (23). Treg expression of CTLA4 can induce DC

expression of indoleamine 2,3- dioxygenase (IDO), which

suppresses via depletion of tryptophan and commensurate

production of kynurenines (28).

Treg can also directly induce T cell death by several

pathways. Human Treg and Tr1 cells can directly lyse T cells

via a perforin and granzyme A or B mechanism, respectively (29,

30). Alternatively, Treg can induce T cell apoptosis via a TRAIL-

DR5 pathway or through expression of galectin-1 (31) or

FasL (32).
CD4 Treg ACT clinical trials

Despite strong evidence of the in vivo efficacy of Tregs in

murine and xenogeneic models, the initiation of clinical trials

was slowed due to difficulties in obtaining sufficient numbers of

Tregs without contaminating effector T cells (Teffs) that may

subvert Treg potency and stability (33). Another consideration

was that supra-physiological murine Treg numbers can cause

generalized immunosuppression (34, 35). GVHD, a frequent

and severe complicating factor in allo-HSCT (6), represented a

unique Treg application venue as the GVHD risk period has a

defined onset that begins with the infusion of a known number

of donor T cells that can be controlled by certain T cell:Treg

ratios. Furthermore, the goal of immunosuppression is to

control donor anti-host reactions until the highest risk period

has passed, facilitating the development of operational tolerance.

One of the biggest hurdles to the development of a successful

GVHD therapy is maintaining the therapeutic GVL effect. There

has been concern in the field that Treg ACT would result in

global immunosuppression, interfere with an effective GVL

response, and potentially induce an aggressive autoimmunity

(36). Further concerns included the possibility that infused Treg

would convert to Teffs, thereby worsening GVHD. However,

murine and xenogeneic experiments showed that Treg did not

exacerbate GVHD (32, 37–40). Indeed, over 20 reports on Treg

ACT clinical trials found that Treg did not exacerbate GVHD.

There is the potential loss of a GVL response. While preclinical

studies do not support this as a substantial risk, clinical outcome

parameters for cancer recurrence are not sufficiently mature to

reach a definitive conclusion.
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Several groups have now reported Treg ACT acute GVHD

(aGVHD) prevention data with variations including whether

Treg were in vitro expanded or freshly isolated and directly

infused, type and source of Treg, and Treg dose (Table 1). In

first-in-human Treg infusions, Treg were flow-sort purified from

the initial allo-HSCT donors, expanded in vitro, and then

infused into patients with acute or chronic GVHD. Transient

improvement for aGVHD and significant reduction in

symptoms and immune suppressive drugs were seen (46). In

initial Treg ACT studies for GVHD prophylaxis, donor Tregs

bead-purified from peripheral blood (PB), no toxicities were

seen; however, a limited number of Tregs prevented dose

escalation over 5x106/kg studies (41, 42). Efficacy was

observed in patients receiving Tregs prior to Tcon infusions,
Frontiers in Immunology 04
allowing in vivo Treg expansion to occur in lymphopenic

recipients, allowing for higher Treg : Tcon ratios (44). To

achieve higher Treg cell doses, bead-purified Tregs were

expanded in vitro, albeit with lower purity (Foxp3+CD127-)

and suppressor function. Adding rapamycin that preferentially

inhibits Tcon over Treg expansion (51–54) to bead purified Treg

cultures increased purity and suppressor function, allowing

assessment of the efficacy of donor Treg ACT on GVHD

(NCT00725062). In other concurrent studies, Tregs were

purified from umbilical cord blood (UCB); in vitro expansion

was achieved with retention of high purity and suppressor

function due to a relative lack of contaminating Tcons in UCB

as compared to PB. The initial study showed modest reduction

in aGVHD in recipients of third-party expanded UCB blood
TABLE 1 Completed clinical trials with results involving adoptive Treg therapy in GVHD (search date March 30, 2022).

Treg
type

Study ID Patients HSC
product

Cell Product Dose Outcomes Center Ref’s.

Fresh
Treg

2012-002685-
12

9 Not specified Fresh PB CD4
Treg Up to
5×106/kg

Fresh CD4 tTreg
Up to 5×106/kg × once

Safe; not designed for efficacy University Hospital
Regensburg, Germany

(41)

01/08 28 Haploidentical Fresh PB CD4
Tregs and Tcons

2×106/kg - 4×106/kg Treg
and 0.5×106/kg - 2×106/kg
Tcon

15% developed ≥ grade 2
aGVHD
5% developed relapse

University of Perugia,
Italy

(42,
43)

NCT01660607 24 TCD MRD/
MUD

Fresh PB CD4
Tregs and Tcons

1×106/kg - 3×106/kg Treg
and 1×105/kg - 3×107/kg
Tcon

1st cohort: 40% ≥ grade 2
aGVHD
2nd cohort: No GVHD (n =
7)

Stanford, USA (44)

NCT02423915 5 dUCBT, n = 2
PB MUD, n =
3

fresh UCB CD4
Treg ±
Fucosylation

1.2×106/kg 100% ≥ grade 2 aGVHD MD Anderson, USA (45)

Expanded
Treg

NKEBN/458-
310/2008

2 MRD Expanded CD4
Treg

3 × 106/kg in SR aGVHD Reduced IST in cGVHD.
Only transient improvement
in aGVHD

Medical University of
Gdańsk, Poland

(46)

NCT00602693 23 dUCBT Expanded UCB
CD4 Treg

0.01-3×106/kg Treg 43% ≥ grade 2 aGVHD
(vs. 61% in hist. control)

University of
Minnesota, USA

(4)

NCT00602693 11 dUCBT Expanded UCB
CD4 Treg

3×106-1×108/kg Treg 9% developed ≥ grade 2
aGVHD

University of
Minnesota, USA

(5)

EK 206082008 5 Any Expanded PB
CD4 Treg

5×105/kg – 4.4×106/kg ×
once

Clinical response to SR-
cGVHD in 2 pts.
Stable disease in 3 pts

University Hospital
Carl Gustav Carus,
Germany

(47)

3 Any Expanded donor
PB CD4 Treg

3×106/kg Treg Clinical response to SR-
cGVHD in 3 pts.

Charité –
Universitätsmedizin
Berlin, Germany

(48)

iTreg NCT01634217 14 MRD Expanded PB
CD4 iTregs

Up to 3×108/kg 2nd cohort: 20% ≥ grade 2
aGVHD

University of
Minnesota, USA

(7)

Tr1 ALT-TEN 18 Haplo Expanded IL-10
Tr1 DLI

1-3x105 CD3C T cells/kg Grade 3 GVHD in 1/5 pts
with immune reconstitution.
No GVHD in 7 pts without
immune reconstitution

San Raffaele
University, Italy

(49)

NCT03198234 Any Expanded T-
allo10 cells

1-9x106-T-allo10/kg Tr1 cells detected up to 1 yr
after HSCT. Cont.
recruitment.

Stanford, USA (50)
frontier
HSCT, hematopoietic stem cell transplantation; cGVHD, chronic GVHD; GVHD, graft-verus-host disease; aGVHD, acute GVHD; MRD, matched related donor; MUD, matched unrelated
donor; TAC, tacrolimus; CSA, cyclosporin; Siro, sirolimus; IST, immunosuppressive therapy; SR GVHD, steroid-refractory GVHD; dUCBT, double umbilical cord blood transplant; MMF,
mycophenolate mofetil; PB, peripheral blood; UCB, umbilical cord blood.
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Tregs at a dose of 3x106/kg (4). In a follow-up study employing a

second round of Treg expansion, doses of up to100x106/kg

virtually eliminated aGVHD with a cumulative incidence of

only 9% at 100 days (5).

Protocols have been developed to induce regulatory function

in PB CD4 non-Treg cells by expanding Tcons in the presence of

anti-CD3 antibody, TGFb and rapamycin (37). These iTregs

were as suppressive in vitro and in vivo as pTregs. Because PB

Tcons are far more abundant than Tregs, yields were as much as

50-fold higher than initial PB and UCB Treg clinical trials.

Despite concerns for iTreg de-differentiation to Teffs (termed

plasticity), iTregs given as GVHD prophylaxis were well-

tolerated at doses of 300x106/kg with no clinical or laboratory

evidence of iTreg plasticity (7).

Tr1s, initially shown to mediate tolerance following allo-

HSCT in severe combined immune deficiency patients, have

desirable properties such as antigen specificity and a direct graft-

vs-leukemia (GVL) effect against some tumors (55). Tr1 ACT

was then used in a proof-of-concept study treating patients

receiving allo-HSCT for hematological malignancies (49). Their

in vivo suppressive role is can best be demonstrated in situations

in which Tregs are present at low to negligible levels such

as aGVHD, wherein Tr1 become the main Treg subset;

conversely, under these conditions, Tr1 deficiency can lead to

GVHD progression (11). Roncarolo, Bachetta and colleagues

are conducting a dose-escalation study (1-9x106/kg) with host

allo-antigen driven Tr1 cells; preliminary analysis shows

that therapy is well-tolerated, with long-term persistence of

Tr1 cells (50, 56).

In addition to the varied types of Treg used for ACT, these

products differed in their state of differentiation. Most Treg ACT

trials have used cells purified from PB as a readily accessible Treg

cell source. The majority (>80%) of PB Tregs (and Tcons) are

antigen-experienced (i.e. CD45RO+) and have been shown to

expand to a lesser extent than their naïve counterparts (57–59).

In contrast, Tregs isolated from UCB are >90% naïve (33) as are

tTregs isolated from pediatric thymi often removed to better

expose the operating field in children born with congenital heart

defects (60, 61).
Impact of different
immunosuppressive drugs on
Treg function

One significant consideration for the use of Treg ACT for

either prophylaxis or treatment of GVHD are the wide range of

immunosuppressants used in the transplant setting. Studies with

murine and human T cells have shown that treatment with JAK

inhibitors (Ruxolitinib, JAK1/2 or Pacritinib, JAK2) can increase

the relative proportion of Treg following transplant (62, 63).

Similarly, Treg expression of aldehyde dehydrogenase

preferentially allows Treg compared to Teffector (Teff) survival
Frontiers in Immunology 05
in the presence of cyclophosphamide treatment during HSCT

(64). Rapamycin, an mTOR inhibitor, allows preferential

survival of Treg over Teff in vitro and in vivo (40, 52, 53),

owing to Foxp3-mediated expression of Pim2, a kinase with

substrate overlap with Akt and, by extension, mTOR (51). In

contrast, cyclosporin A (CsA) inhibits Treg persistence and

suppressor function in vitro and in an ACT model in vivo (65).
Genetic engineering to improve
Treg specificity and
suppressor function

In preclinical studies, antigen-specific Tregs have superior

potency on a per cell basis as compared to polyclonal Tregs and

as a result of antigen-specificity, decreased risk of global

immunosuppression (66–68). Although alloantigen-reactive

Tregs can be expanded via repetitive stimulation with host

antigen-presenting cells (APCs), clinical translation has proven

to be challenging due to the low frequency of such tTregs and

pTregs present in PB (69, 70).

To confer antigen specificity, polyclonal Tregs can be

transduced with a recombinant antigen-specific TCR or CAR

directed to the desired antigen (71–73). TCR delivery has been

tested in various preclinical models of autoimmune diseases and

transplantation (74–77). In the context of GVHD, Semple et al.

showed that iTregs generated from chicken ovalbumin (OVA)-

reactive CD4 OT-II TCR transgenic T cells efficiently prevented

aGVHD induced by polyclonal Teffs in allogeneic recipients that

expressed OVA protein, but not in OVA(-) recipients (78). In a

subsequent study, Li et al. generated iTregs reactive to minor

histocompatibility antigens that are encoded on the

Y-chromosome. Male histocompatibility (H-Y)-specific iTregs

isolated from TCR transgenic mice were highly effective in

controlling GVHD in an antigen-dependent manner while

sparing the GVL effect against acute or pre-established

leukemia (79). While these studies provide a rationale for

further development of TCR-specific Treg therapies,

translating TCR gene modifications into the clinic for use in

GVHD prophylaxis and treatment is hampered by the necessity

that the host target antigens need to be presented in the context

of a specific HLA determinant, or of the direct allorecognition of

the “foreign” host HLA-determinant itself. Furthermore,

mispairing of the endogenous and engineered TCR chains can

cause undesired reactivity and off-target effects (80). Various

strategies have been explored to reduce this issue, including

genome editing techniques to partially knockdown or knockout

endogenous TCR expression, as well as using TCR chains that

are structurally modified in the constant region, such that they

pair with endogenous chains with lower efficiency (81–83).

While TCRs can recognize both intracellular and surface

antigens, CAR recognition is limited to cell surface proteins.
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However, CARs have the advantage of being MHC independent

and their function can further be regulated via co-stimulatory

signal potentiation (84, 85). Furthermore, Tregs possess a unique

feature of bystander suppression which enables targeting of

third-party antigens present in the same tissue to induce

endogenous tolerogenic cells through a process known as

infectious tolerance (86–89). This modality is particularly

advantageous in diseases with no defined causative antigen

(Figure 1).

The first CAR Tregs developed with the specific aim of

reducing alloimmunity were targeted against HLA-A2, a

frequently mismatched antigen in allo-HSCT (90). Tregs

expressing an HLA-A2 CAR were shown to inhibit xenogeneic

GvHD more effectively than polyclonal Tregs on a per cell basis

(90). In subsequent studies, HLA-A2 CAR Tregs were shown to

migrate to HLA-A2 expressing skin and islet grafts, alleviating

the alloimmune-mediated graft rejection in humanized mice

(91, 92). These promising results have led to the authorization of

the first CAR-Treg clinical trial in the UK and the Netherlands

(STeadfast) to evaluate the safety and tolerability of an

autologous HLA-A2-specific Treg therapy (TX200-TR101

product) for HLA-A2 mismatched kidney transplant recipients

(EUCTR2019-001730-34-NL and NCT04817774). Results of the

STeadfast trial,may further support the application of CAR

Tregs in a clinical trial setting, further expanding the

possibility of using CAR Tregs in other disease conditions. As

such, the results of this study are highly anticipated.

Another antigen recently applied to CAR Tregs for

preventing GVHD in preclinical studies is CD19 expressed on

B cells (85, 93). Using a xenogeneic GVHD model, Imura et al.

showed that GvHD-suppressing effect of human CD19-CAR
Frontiers in Immunology 06
Tregs was greater than that of polyclonal Tregs in immune

deficient mice given peripheral blood mononuclear cells,

probably because such Tregs could specifically expand in

response to B cells (93). As such, CD19-CAR Tregs may also

be a potential candidate for treating chronic GVHD and

antibody-mediated autoimmune conditions due to their

capacity to inhibit antibody production (93).Several studies

have investigated the effects of incorporating different

costimulatory motifs into CAR Tregs. Dawson et al, compared

10 costimulatory domains, including CD28, 4-1BB, ICOS,

CTLA-4, PD-1, GITR, OX40 and TNFR2, in a xenogeneic

GVHD model using the HLA-A2 CAR Treg platform (85).

These data, as well as those of three other independent studies,

confirmed that CAR Tregs encoding a CD28 signal have

superior in vitro and in vivo suppressor function (85, 93–95).

These studies highlight the fact that intracellular signaling

domains most effective in CAR-T cells do not necessarily

apply to CAR-Tregs. Understanding how different CAR

designs affect Treg function merits further exploration (71).

Recent advances in the field of cancer immunotherapy have

inspired the adoption of innovative CAR designs. Rana et al.

compared the functionality of a FVIII-specific second-

generation CAR Treg with that of a TCR fusion construct

(TruC) generated via linking of the FVIII scFV to CD3ϵ TCR

chain (96). High-affinity second-generation CAR engagement

led to strong TCR independent signaling and loss of Treg

suppressor function along with limited in vivo persistence. In

contrast, TruC Tregs delivered controlled antigen-specific, TCR-

dependent signaling via engagement of the CAR along with the

TCR complex to suppress FVIII-specific antibody response (96).

Modular CARs, also known as universal CARs or switchable
FIGURE 2

Potential post-transplant mechanisms to enhance Treg suppression of GVHD.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.926550
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hippen et al. 10.3389/fimmu.2022.926550
CARs, have also been applied to the field of CAR Tregs (97, 98).

In this approach, the target antigen is not recognized directly by

the CAR but rather by an adaptor encoding a tag such as biotin

or fluorescein isothiocyanate (FITC) that is recognized by the

CAR. A single CAR can thus be used to recognize a wide range of

target antigens via a designated FITC- or biotin-conjugated

antibody (97, 98). More recently, third generation CARs with

two costimulatory motifs and fourth generation CARs which co-

express constitutive or inducible factors such as cytokines or

transcription factors have been developed (99–101). These have

not been reported for Tregs to date; however, one can envision

that a similar approach can be used to engineer a fourth

generation CAR Treg with tailored cytokine support in

order to modulate their function and stability more precisely

(Figure 2) (102).
FoxP3 gene editing to
generate Tregs

Because of the challenges associated with isolating a pure

population of Tregs, genetic engineering has been used to

enforce FoxP3 expression (103, 104). Although initial studies

showed that ectopic expression of FoxP3 could induce a

regulatory phenotype, subsequent studies have shown that

FoxP3 expression alone is not sufficient to imprint a stable

(resistant to plasticity) and fully functional Treg phenotype

(105–107). The difference between tTregs, pTregs and FoxP3-

converted T cells may lie in the FoxP3 expression level needed to

stabilize the Treg phenotype (106). Allan et al. highlighted the

importance of delivering the FoxP3 gene with a strong promoter

to drive constitutive expression with limited fluctuation

depending on the cell activation state (105). Similar findings

were reported by Honaker et al, who used DNA editing

techniques together with a homology directed repair to insert

a strong promoter into the endogenous FOXP3 locus (108).

More recently, Lam et al. published an optimized method for

efficient and stable human Treg expansion with CRISPR-

mediated FoxP3 gene knock-in (109). Collectively, these efforts

highlight the importance of novel directed gene editing

techniques in the design and development of next-generation

Treg therapies.
Tissue targeting

It is well-established that Tregs found within different tissue

niches can represent phenotypically and functionally distinct

Treg subsets critical for local immune homeostasis and

regulation of tissue-specific inflammatory disease, including

GVHD (110–112). Treg heterogeneity is directly influenced by

the immense diversity of cellular and non-cellular mediators in

each specialized tissue microenvironment (110, 113, 114). As
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gene expression, including cytokine receptors that can provide a

selective advantage within each tissue microenvironment

(112, 115). Further, the mechanisms by which Treg migrate

and infiltrate into these peripheral tissues have also been shown

to play a critical role in immune regulation. Therefore, ex vivo

Treg manipulation to facilitate homing to and survival within

these tissue-specific niches may enhance the efficacy of Tregs in

vivo in controlling those local environments.

Organ systems often take advantage of local tissue-specific

stimuli to modulate local immune responses. In particular,

tissue-specific Tregs are readily influenced by diverse

environmental mediators within each distinct tissue

microenvironment which may directly contribute to local

immune homeostasis and the pathology of a wide-range of

human disease, including GVHD (110–112, 116–119). For

example, While.bone marrow (BM)-Tregs have several distinct

characteristics and functional requirements that differ from

other peripheral Treg populations, including differential

upregulation of cytokine and chemokine receptors that may

provide BM-Tregs with a unique selective advantage in that

compartment (112). The BM niche is an extremely diverse and

complex tissue (120–122). Previous work has suggested that the

variable distribution and composition of different niches even

within the BM itself can differentially impact important T-cell

functions including proliferation, differentiation, migration and

quiescence (112, 123). Similarly, unlike splenic Tregs, BM-Tregs

proved to be minimally responsive to exogenous IL-2 given

in vivo; instead, recombinant IL-9 significantly increased BM-

Treg frequency while having no impact on the frequency of

splenic Tregs (112). IL-9 is required for optimal maintenance of

Treg suppressor function (124, 125). We observed both an

upregulated expression of IL-9R in BM-Treg as well as an

enhanced capacity to respond to IL-9 both in vitro and in vivo.

Collectively, these data suggest that differential cytokine

signaling within the BM niche may provide a distinct survival

and functional advantage for BM-Tregs.

Similarly, within the gastrointestinal (GI) tract, differential

expression and release of local simulants have been shown to

both induce the production of pTregs within the gut and help to

promote Treg localization and retention within the GI tract

(126–130). The release of environmental factors, including TGF-

b and retinoic acid (RA), drives local pTreg differentiation in the

gut tissue (131–136) by contributing to gut immune homeostasis

even under inflammatory conditions (137–139). Interestingly,

T-cell in vitro exposure to RA and TGF-b is also associated with

the induction of gut tropism and enhances the expression of

several gut-associated T-cell homing receptors (126, 128).

Lymphocyte migration is well-established as a fundamental

mechanism for the maintenance of normal immune function

and is integral in controlling the pathology of inflammatory

disease (140–142). Within the context of GVHD, T-cell and Treg

homing can influence the initiation, severity, and prevention of
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GVHD (139, 143–150). Tissue-specific pathology within GVHD

target organs, including the skin, liver, and GI tract is illustrative

of the significance of T-cell and Treg homing mechanisms in

GVHD pathology (139, 149, 151). In response to local

inflammation and associated tissue damage, homing receptor

ligands and chemoattractant receptors are upregulated by

injured stromal cells (142, 152), providing directional cues for

Teff and Treg migration to inflamed tissue. Because GI tract

injury and inflammation are major drivers of disease severity

(139, 145, 153–155), targeted the specific targeting of Tregs to

the GI tract may be highly advantageous in mitigating disease

severity and improving outcomes. Beilhack et al. (149),

demonstrated that allogeneic donor T-cells first expanded

within secondary lymphoid organs (SLO) then migrated to

GVHD target organs. Similarly, this group later reported that

Tregs were able to colocalize with allogeneic donor T-cells

during GVHD, initially expanding within SLOs then migrating

into inflamed tissues (148). Inflammation caused by irradiation

and GVHD-associated pathology provided crucial stimuli for

early Treg migration to these sites of donor T cell localization,

reducing allogeneic T-cell proliferation and activation in vivo

(148). Several studies have reported an integral role for GI

homing of T-cells for both the initiation and prevention of

GVHD (143, 145, 147, 156), although these findings can vary

depending upon the intensity of conditioning and the

pathogenic mechanisms responsible for GVHD (156). T-cell

homing the GI tract is facilitated by distinct tissue-specific

mechanisms that attract T-cells to the small or large intestines

(126, 157–161). These pathways are primarily regulated by the

expression of CCR9, a4b7 and GPR-15 (126, 127, 142, 157, 162–
165). In particular, the expression of CCR9 and integrin a4b7
are integral to T-cell trafficking during GVHD. In a 2006 study

Waldman et al. (145) demonstrated that alloreactive donor T-

cells from a4b7-/- transgenic mice had a reduced capacity to

cause GVHD, with a corresponding reduction in T-cell

infiltration and tissue injury in both the gut and liver.

Similarly, a retrospective case study of 59 allo-HSCT patients

demonstrated that a4b7 expression was significantly

upregulated in memory and naïve T-cell populations and

CCR9 in CD8+ memory T-cells in patients who subsequently

developed intestinal GVHD (147), studies that led to the testing

of anti-a4b7 blocking antibody to prevent and treat aGVHD in

the clinic (166–168).

Likewise, the expression of GI tract homing receptors has

also been found to play a central role in Treg efficacy during

allogeneic HSCT. Engelhardt et al. (143) recently reported that

allo-HSCT patients with higher frequencies a4b7+ Treg post-

transplant saw a significant increase in Treg infiltration within

the GI tract, and correspondingly a reduced organ-specific risk

and reduced GVHD severity. Interestingly, this study also

reported a distinct negative correlation between the expression

of cutaneous leukocyte antigen (CLA) in allogenic T-cell and the

associated risk and severity of GVHD of the skin (143). During
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GVHD, skin involvement is often one of the first and most

commonly manifestations of disease, with skin involvement

occurring in >80% of aGVHD patients (169, 170). Like GI

tract involvement, aGVHD of the skin can significantly impact

allo-HSCT patient morbidity. CLA mediates T-cell homing to

the skin by interacting its ligand, E-selectin, which is highly

expressed on the microvasculature structure within the skin

(171–173). This, in combination with the co-expression of

several chemokine receptors, including CCR4, CCR6, CCR8,

and CCR10, drives T-cell migration towards epithelial surfaces

including the skin and GI tract (142, 146, 171, 174, 175). Varona

et al. (146) also demonstrated a correlation between CCR6

expression in MHC class II–mismatched T-cells and the

associated risk of GVHD in both the skin and GI tract with a

significant reduction in the incidence and severity of GVHD in

allogenic recipients of CCR6-deficient T-cells. Together, these

studies support the notion that tissue-targeted Treg therapy may

be a novel approach for GVHD therapies.

This then raises the question of how we can harness tissue-

specific homing mechanisms for clinical translation? Recently,

Hoeppli et al. (176) described an ex vivo human Treg product

tailored to mimic gut-homing primed Tregs. Here, they utilized

ex vivo RA stimulation to induced CCR9 expression in human

PB CD4+Foxp3+ Tregs (176) and demonstrated that the ex vivo

induction of CCR9 expression was sufficient to enhance Treg

migration to the GI tract and reduce disease severity in a

xenogeneic GVHD model (176). GPR-15 expression, an

understudied chemoattractant homing receptor (127,

143, 176), has been shown to be highly dependent on

environmental stimuli and regulated by TGF-b within the GI

tract (127, 128) and an environmental chemical sensor, aryl

hydrocarbon receptor (AHR) (177, 178). The ligand of GPR-15,

GPR-15L, has been reported to be highly expressed in epithelial

tissues exposed to the environment, including the skin and GI

tract (179, 180). Together, these data suggest that GPR-15 is

another promising target for a targeted Treg therapy. In addition

to the ex vivo induction of tissue-targeted Treg products,

genome modification of Tregs to achieve ectopic expression of

T-cell homing receptors The generation of tailored tissue-

targeted Tregs has the potential to increase the targeted

efficacy of Tregs in vivo while reducing the risk of more global

immunosuppression by providing a selective advantage for

targeted Treg products.
Enhancing ex vivo Treg expansion
and stability

As discussed earlier, rapamycin improves both culture purity

and suppressor function for clinical Treg ACT. A platform has

been developed for solid organ transplant in which allo(donor)-

specific Tregs from healthy donors or recipients post-

transplantation are expanded in the presence of co-stimulatory
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blockade. Such Tregs maintain Foxp3 demethylation status

which strongly correlates with stability (181, 182).

Expansion of sort-purified human Treg in the presence of

TNFa and IL-6 increases expansion ~3-fold while maintaining

Foxp3 expression, demethylation status, and in vitro and in vivo

suppressive function (183). PKC-Ø is a negative regulator of

Treg suppressive function, and acute treatment of expanded

Treg with a non-competitive PKC-Ø inhibitor (AEB071)

increased in vitro and in vivo suppressor function (184).

Downregulation of miR-146b, which targets Traf6, increased

Treg suppressive function in vitro and GVHD efficacy in vivo

(185). Following in vitro expansion, purified CD39hi vs CD39lo

Tregs were more suppressive in a xenogeneic GVHD model

(186). Adoptive transfer of IL-33 stimulated Tregs were more

effective than control Tregs at preventing murine aGVHD (187)

an effect dependent on Treg expression of amphiregulin that can

mediate tissue repair. In response to IL-33, engineered human

ST2 (IL-33R)-expressing Tregs had increased expansion,

maintained suppressor function, produced amphiregulin and

had a heightened ability to induce anti-inflammatory M2

macrophages (188). IL-27, a member of the IL-12 family, has

been shown to increase tTreg suppressive function and aGVHD

efficacy in murine studies. Acute IL-27 stimulation increased the

in vitro and in vivo suppressive function of human iTregs in a

xenogeneic GVHD model (189). Lastly, CD155+ (DNAM+)

Treg were less stable; depleting these cells at the beginning of

culture increased Foxp3 expression, demethylation, and

suppressive function in vitro (190).
In vivo strategies to enhance
Treg efficacy

Tregs have high expression of CD25 (the high-affinity

subunit of the IL-2 receptor) and IL-2 is required for stability

and expansion. Clinical trials have shown that prophylactic

administration of low doses of IL-2 can expand graft-

associated Tregs after allo-HSCT and reduce the incidence of

acute and chronic GVHD (191–193). Low dose IL-2/rapamycin

enhanced the long-term persistence of adoptively transferred

Tregs in non-human primates in a non-GVHD setting (194).

PEGylation of IL-2 was found to increase half-life in vivo and

expand Tregs in a xenogeneic GVHD model (195). In other

studies, murine and human Treg containing IL-2 nanogel

‘backpacks’ that deliver IL-2 to Tregs in an autocrine fashion

under certain conditions that trigger the TCR at sites of antigen

encounter showed increased suppression of skin graft rejection

in murine and xenogeneic models of disease (196). Infusion of

IL-2/anti-IL-2 complexes increased both IL-2 half-life and Treg

numbers, along with suppressing murine diabetes, colitis, and

skin allograft rejection (197–199). One group also showed that

IL-2/anti-IL-2 could reduce disease in a xenogeneic GVHD
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assessed (199).

However, IL-2 also can stimulate CD8 T cells and NK cells

that express the high affinity IL-2 receptor. Exogenous low-dose

IL-2 and IL-2/anti-IL2 complexes decreased Treg efficacy when

given at the time of donor T-cell infusion in either xenogeneic or

allogeneic GVHD models, respectively, likely though expansion

of contaminating cells (200, 201). To circumvent IL-2

augmentation of CD8 T-cells and NK cells, the Garcia group

engineered orthogonal IL-2/IL-2Rb pairs for murine and human

systems. Following introduction of an ortho-IL-2Rß subunit and

administration of ortho-IL2 protein into murine and human T

cells, these neo-cytokines increased in vivo tumor killing in T

cell, and CAR T cell, ACT (102, 202, 203). Infusion of ortho-IL-2

protein that has a markedly reduced capacity to bind to cells

expressing wildtype IL-2Rb, with Tregs transduced to express

the ortho-IL-2Rß subunit was effective in ameliorating murine

heart allograft rejection (204).

In vivo Treg expansion and suppression of GVHD were

augmented by stimulation through TNFRSF25 (DR3) with

either an agonistic antibody or a form of the natural ligand

(TL1A-Ig) (205). These in vivo expanded Tregs also had

increased efficacy following adoptive transfer (206). Activation

of TNFRSF-member (TNFR2) expanded Tregs in vivo and

ameliorated GVHD, without the need for exogenous IL-2

(207). Additionally, several pharmacologic agents favor Treg

over Teff cell expansion post-HSCT, including: histone

deacetylase inhibitors (vorinostat), hypomethylating agents

(decitabine), JAK1/2 inhibitors (Ruxolitinib), ROCK1/2

inhibitors (Belumosudil) (62, 169, 208–210) and RA receptor

agonists (211).
Concluding remarks

Treg ACT for GVHD prevention is now a reality, although

barriers remain to common clinical practice. Pre-clinical

advances are being made to enhance Treg efficacy, specificity,

and tissue targeting. The clinical efficacy of adoptive Treg

therapy for aGVHD is still being optimized. Comparable to

the confluence in timing between Treg persistence and the

relatively short-term immunosuppression needed in allo-

HSCT and the fact that third party Treg ACT suppresses

GVHD makes possible the production of banked (stored)

Tregs that could be used to treat a multitude of patients.

Importantly, Treg can also be highly expanded in vitro

without obvious signs of exhaustion (212), enabling many of

the culture or genetic manipulations discussed herein. Since

Treg cryopreservation, an intricate part of banking, has proven

very challenging (38, 61, 213), with varying recoveries, effects

on Foxp3 expression, and in vitro suppressive functions,

cryopreservation and thawing parameters that maintain a

Treg phenotype and in vivo suppressive function after
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thawing is key to fully unlocking Treg ACT for GVHD

and other indicat ions such as graft reject ion and

autoimmune disease.
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