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A B S T R A C T   

Objective: To develop a 2-stage discrete events simulation (DES) based framework for the evaluation of elective 
surgery cancellation strategies and resumption scenarios across multiple operational outcomes. 
Materials and Methods: Study data was derived from the data warehouse and domain knowledge on the opera-
tional process of the largest tertiary hospital in Singapore. 34,025 unique cases over 43 operating rooms (ORs) 
and 18 surgical disciplines performed from 1 January 2019 to 31 May 2020 were extracted for the study. A 
clustering approach was used in stage 1 of the modelling framework to develop the groups of surgeries that 
followed distinctive postponement patterns. These clusters were then used as inputs for stage 2 where the DES 
model was used to evaluate alternative phased resumption strategies considering the outcomes of OR utilization, 
waiting times to surgeries and the time to clear the backlogs. 
Results: The tool enabled us to understand the elective postponement patterns during the COVID-19 partial 
lockdown period, and evaluate the best phased resumption strategy. Differences in the performance measures 
were evaluated based on 95% confidence intervals. The results indicate that two of the gradual phased 
resumption strategies provided lower peak OR and bed utilizations but required a longer time to return to BAU 
levels. Minimum peak bed demands could also be reduced by approximately 14 beds daily with the gradual 
resumption strategy, whilst the maximum peak bed demands by approximately 8.2 beds. Peak OR utilization 
could be reduced to 92% for gradual resumption as compared to a minimum peak of 94.2% with the full 
resumption strategy. 
Conclusions: The 2-stage modelling framework coupled with a user-friendly visualization interface were key 
enablers for understanding the elective surgery postponement patterns during a partial lockdown phase. The DES 
model enabled the identification and evaluation of optimal phased resumption policies across multiple important 
operational outcome measures. 
Lay abstract: During the height of the COVID-19 pandemic, most healthcare systems suspended their non-urgent 
elective surgery services. This strategy was undertaken as a means to expand surge capacity, through the 
preservation of structural resources (such as operating theaters, ICU beds, and ventilators), consumables (such as 
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personal protective equipment and medications), and critical healthcare manpower. As a result, some patients 
had less-essential surgeries postponed due to the pandemic. As the first wave of the pandemic waned, there was 
an urgent need to quickly develop optimal strategies for the resumption of these surgeries. We developed a 2- 
stage discrete events simulation (DES) framework based on 34,025 unique cases over 43 operating rooms 
(ORs) and 18 surgical disciplines performed from 1 January 2019 to 31 May 2020 captured in the Singapore 
General Hospital (SGH) enterprise data warehouse. The outcomes evaluated were OR utilization, waiting times 
to surgeries and time to clear the backlogs. A user-friendly visualization interface was developed to enable de-
cision makers to determine the most promising surgery resumption strategy across these outcomes. Hospitals 
globally can make use of the modelling framework to adapt to their own surgical systems to evaluate strategies 
for postponement and resumption of elective surgeries.   

1. Background and significance 

During the height of the COVID-19 pandemic, most healthcare sys-
tems suspended their non-urgent elective surgery services. This strategy 
was undertaken as a means to expand surge capacity, through the 
preservation of structural resources (such as operating theaters, ICU 
beds, and ventilators), consumable resources (such as personal protec-
tive equipment (PPE) and medications), and manpower. Non-urgent 
elective procedures may also unnecessarily contribute to increased 
risk of spreading the coronavirus within facilities. As a result, some 
patients had their needed, but less-essential surgeries postponed [1]. 
While short-term postponement of these elective surgeries may be 
tolerable, there is potential to result in worse outcomes for patients if 
their surgeries are delayed for a prolonged duration. As the first wave of 
the pandemic waned, there was an urgent demand to resume these 
postponed surgeries whilst managing the peacetime workloads in an 
optimal manner. 

Professional bodies and societies around the world have weighed in 
this issue by releasing guidelines and principles for the safe resumption 
of elective surgical services [2–5]. Most notably, the American College 
of Surgeons, American Society of Anesthesiologists, Association of Peri- 
Operative Registered Nurses, and American Hospital Association have 
jointly issued a suggested roadmap that delineates four main categories 
of issues that should be addressed in such planning [5]. A phased 
reopening of the operating rooms (OR) has been recommended as one of 
the key strategies for safe resumption which transcends all of these four 
categories. A phased reopening strategy, however, is not a straightfor-
ward approach. The rate of increase in reopening OR slots needs to be 
balanced against multiple competing aims. For example, the number 
and surgical case-mix that is allowed to be booked needs to be matched 
with the availability of general and intensive care beds (with adequate 
resources and staffing), assessment of clinical acuity, load of backlogged 
cases and optimal utilization of OR slots. Furthermore, the strategy must 
be flexible and agile enough in case of sudden re-resurgence of COVID- 
19 in the community. 

In view of these complex requirements, there is a need for data- 
driven tools and simulation models to guide policymakers and hospital 
administrators on the best OR reopening strategies. There is currently a 
paucity of published literature on candidate models that could be used 
for this purpose. In this paper, we aim to describe the development of 
one such modelling framework that addresses the following:  

(1) How long will it take to clear the backlog given ongoing surgical 
demands?  

(2) What are the best strategies to bring back postponed surgeries in 
order to achieve the business-as-usual scenario before COVID-19 
in the most cost-effective and efficient means possible?  

(3) How can we clear the backlog in a clinically responsible way 
without having overly extended wait times for surgical patients?  

(4) How can we ensure that the resumption process will not result in 
high levels of utilization for surgical staff?  

(5) How can we deal with potentially unexpected scenarios resulting 
from future surge in COVID-19 cases during the resumption 
period? 

The original process for deciding on resumption strategies relied 
largely on the use of Microsoft Excel by planning teams. We developed a 
2-stage modelling framework based on K-means clustering [6] and 
discrete events simulation (DES) deployed in Python programming 
language [7] in order to deal with large amounts of data with highly 
volatile scenarios in a sustainable system. The DES model can interface 
with new data and consider alternative elective surgery management 
strategies as the pandemic evolves with resurgent waves of infections. 
Updated models can be easily derived without having to deal with bulky 
spreadsheets that have to be manipulated in an ad-hoc manner. A user- 
friendly visualization interface was also developed to support managers 
and administrators. 

This study was exempted from Centralized Institutional Review 
Board (CIRB) review of the Singapore Health Services (opinion date 26 
May 2020, number 2020/2470) as it was considered a service 
improvement project using routinely collected anonymous data. 

2. Data and methods 

Singapore is a city-state in Southeast Asia with 5.7 million people 
and a diverse ethnic composition. The study hospital (SH) is Singapore 
General Hospital (SGH) which is the largest comprehensive public 
hospital in Singapore. SGH comprises of more than 30 clinical disci-
plines and approximately 1,700 inpatient beds. The hospital saw more 
than 25,000 surgeries and had 18 ICU beds in 2019. The number of ICU 
beds can be surged up to 40 beds and subsequently up to 200 beds (in 
phases) during a pandemic. The surgical services comprise of 43 ORs, 
where the planned response included essential drugs rationing (e.g. 
propofol, fentanyl and muscle relaxants), conversion of ORs into ICU 
facilities, and the re-designation of medical as well as nursing manpower 
for taking care of COVID patients. The detailed response plan has been 
described in a previous publication [8]. 

We performed a retrospective, single-center study to develop data- 
driven simulation models to guide policymakers and hospital adminis-
trators on the best OR resumption strategies. Data for this study was 
derived from the SH’s Electronic Medical Record (EMR) based on Sun-
rise Clinical Manager (Allscripts, Illinois, USA) which is integrated with 
data from multiple other healthcare transactional systems (including 
administrative and ancillary systems) and stored in an enterprise data 
warehouse, the electronic Health Intelligence System (eHINTS) [9]. 
Anonymized data from the Perioperative Registry of the SH was used. 
Data included patient demographics, surgical listing details, operating 
room utilization details, and hospital admission history for all elective 
and emergency surgeries done at the SH’s Main Operating Theatre 
(MOT) and the Ambulatory Surgical Centre (ASC) from January 2019 to 
May 2020. 

Non-essential elective surgeries were systematically reduced from 
7th February 2020 in response to an increasing number of COVID-19 
cases in Singapore. Further reduction in the elective surgical listing 
was mandated from 7th April 2020 in response to a nationwide partial 
lockdown (known as “Circuit Breaker” measures) instituted by 
Singapore [10]. Resumption of surgeries was assumed to start after the 
end of the lockdown period. The modelling framework thus consisted of 
two stages. Stage 1 evaluated the surgery reduction patterns during the 

H.R. Abdullah et al.                                                                                                                                                                                                                            



International Journal of Medical Informatics 158 (2022) 104665

3

partial lockdown period, whilst Stage 2 considered the reduction pat-
terns in Stage 1 as inputs in the DES model for evaluation of alternative 
resumption strategies. The surgery reduction patterns will be derived 
from unsupervised cluster analysis and the clusters will be used in Stage 
2 for the evaluation of alternative resumption strategies. The primary 
outcomes evaluated by the framework were (1) bed demands for sur-
gical patients; (2) OT slots utilization; (3) waiting time to surgery, and 
(4) time to clearance of backlogs.  

• Stage 1: Evaluating the Surgery Reduction Patterns 

To assess the impact on overall surgical load due to the post-
ponement of cases, retrospective data from 34,025 unique cases over 43 
operating rooms (ORs) (including ASCs, MOTs, specialized urology 
suites and others), all surgeries from 18 surgical disciplines performed in 
the SH from 1 January 2019 to 31 May 2020 were extracted from the 
EMR for the study. Since the main objective of this simulation model was 
to evaluate the reduction and subsequent resumption of elective sur-
geries, non-elective surgeries and surgeries with rare (<5 counts) pro-
cedure codes were removed. Differences in caseloads between January 
2019 to May 2019 and January 2020 to May 2020 were used to obtain 
the estimated reduction in caseloads. To obtain a representative sample 
of surgical cases over a yearly period, 24,738 unique cases performed 
from 1 January 2019 to 31 December 2019 from this dataset was used to 
perform K-means clustering to identify cluster of surgical procedures. 

Cases with no length of stay or urgency status values were also excluded 
from the analysis. Finally, 18,472 elective cases were used in the clus-
tering analysis (see Fig. 1). 

Clustering of procedure codes based on the Ministry of Health’s 
Table of Surgical Procedures [11] was done to derive the surgery 
reduction patterns across all procedures. A data driven approach was 
found to be more suitable for the characterisation of reduction rates 
compared to the use of predefined criteria which assumed only certain 
procedure types were postponed based on literature evidence [1,12]. 
The clusters derived from the analysis were identified based on length- 
of-stay(LOS) statistics and volume of surgeries. 

The cluster labels of surgical procedures captured in the EMR were 
derived from the fuzzy K-means clustering algorithm [7] and the dis-
tributions of these postponed procedures were used to simulate elective 
reduction patterns. 18,472 elective cases were first grouped according to 
the procedure code that was associated with the elective case. 7-point 
statistics for each surgical procedure code were generated using the 
LOS (in days) associated with each case. The 2nd, 9th, 25th, 50th (me-
dian), 75th, 91st, 98th Percentile and total count (n) were used to 
identify the clusters. The elbow method, gap statistics and silhouette 
methods were used to determine the optimal number of clusters to be 
used in the analysis. Procedure codes were labelled with the cluster la-
bels identified through this analysis and can be used prospectively for 
new cases with such procedure codes. The steps for the fuzzy clustering 
analysis is shown in Fig. 2. A descriptive analysis was performed to 

Fig. 1. Data cleaning process for the unsupervised cluster analysis.  

Fig. 2. Flowchart for the fuzzy clustering algorithm.  
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validate the clusters with inputs from OR clinicians and OR management 
executives.  

• Stage 2: DES model for the Evaluation of Resumption Strategies 

2.1. DES model 

To assess the impact of various resumption strategies, a DES model 
that was developed earlier for OR listing processes [13] was updated to 
describe the processes during the study period. The DES model was 
deployed using Python 3.6 [8]. Pandas [14] and Numpy [15] packages 
were used to implement distributional parameters in the model. 23 
elective ORs for 18 surgical disciplines and 2 emergency ORs from our 

institution were included in the simulation model. The model captured 
the detailed processes from the point of the first listing until after the 
patient exits the hospital, capturing both OR and inpatient bed man-
agement processes. The process understanding developed through in- 
depth interviews with nurses, surgeons, anesthetists, and scheduling 
staff were incorporated to develop the operational constraints of the 
simulation model. The OR allocation schedules from 2019, empirical 
distributions for the arrival rates of patients, duration of each surgical 
procedure and in-hospital length of stay and the distribution of cancelled 
surgeries derived from Stage 1 were fed as inputs into the simulation 
model. We assumed that the MOTs are operational for five days per week 
with 525 min of available surgery time per working day for each OT 
(capacity). The operating policies incorporated into the model are 
described as follows (see Fig. 2 for the flow of events and definition of 

Fig. 3. Timeline of events for the surgical scheduling process.  

Fig. 4. UML diagram depicting inter-twined relationships and information flows across various stakeholders and subsystems.  
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the performance indicators): 

(1) Patients arrive at the Emergency Department (ED) or the hospi-
tal’s Specialist Outpatient Clinics (SOCs). If they require surgical 
treatment, a surgery request is made to the listing nurses in the 
appropriate operating theatres.  

(2) The listing nurse search for an available OT slot to list the surgery 
case.  

(3) The available slots are allocated to scheduled surgeries during the 
listing process.  

(4) Emergency surgical cases are first listed into the 2 dedicated 
Emergency ORs. However, if these ORs are being utilized and are 
unavailable, emergency cases may be listed in one of the avail-
able elective OR.  

(5) After the surgical case has been listed or scheduled into a 
particular OR slot, it can be cancelled or rescheduled to another 
date.  

(6) Surgeries that extend beyond the OR daily operating duration 
will be attributed to OR overtimes 

OR slots have been assigned to surgical disciplines through the 
master surgical schedules prior to the listing process. Surgeons are only 
able to list their cases into slots allocated according to the master sur-
gical schedule. An exception to this scheduling policy is made if they 
have mutual arrangements with other surgeons and departments or if 
the slot has been made available for open booking during the open ac-
cess period. OR utilization time is defined as the time taken from when 
the anesthetist begins to prepare the patient for surgery, up to the point 
when the OR is cleaned and ready for use for the next surgery case (see 
Fig. 3). OR utilization is defined as the OR utilization time over total 
available OR time. Wait times to surgery (WTS) is defined as the date 
when the surgery is listed till the date of the actualized surgery, which 
includes the delays resulting from any cancellations and rescheduling 
during that period (see Fig. 3). 

Patient arrivals were assumed to follow independent Poisson pro-
cesses for each OR discipline, with mean inter-arrival rates estimated 
from the dataset. Surgical case from each discipline was generated using 
empirical probability distributions derived from the data. Surgical du-
rations were modelled using discretized empirical distributions. Surgical 
cases are assigned to OR slots using a first-fit algorithm [26] over the 
possible choices of OR slots. Constraints on the allocation of OR slots to 
surgeons and departments were derived from master surgical schedule. 
Hospitalization could occur a day before or on the day of surgery. If the 
patient requires admission to one of the intensive care (ICU) or high 
dependency (HD) units, a bed in the ICU or HD will be secured prior to 
the operation. As this is meant to be a continuous flow process with high 
variability, there is a need to establish dynamic objects which are robust 
and flexible enough to incorporate the stochastic and uncertain events 
across the entire flow. The class diagram which captures the flow of 
information across various stakeholders and scheduling subsystems in 
Unified Modeling Language (UML) [27] is shown in Fig. 4. 

Input statistics related to average surgical durations and caseloads, 
as well as outcome measures related to the ORU and WTS performance 
across the ORs and surgical disciplines were validated against the his-
torical data in the baseline scenario. Apart from the ORU and WTS, other 
secondary indicators related to the average number of patients waiting 

for surgeries, overtimes and cases listed were also compared with the 
historical data. Non-parametric bootstrap confidence intervals (95%) for 
the simulated results were developed and compared against the actual 
statistics derived from the historical data across all the OTs. The 
Kolmogorov-Smirnov non-parametric test was used to compare the 
difference in the actual and simulated empirical distributions of the 
outcome measures. A simulation warm-up period of 3 months was 
assumed, and identical random seeds were used in the simulation model 
for these validation studies. 

Evaluation of Resumption Strategies Different resumption scenarios 
were evaluated against the predicted outcome measures to develop the 
optimal resumption strategies. The DES model was run across three 
distinct phases:  

(1) Phase 1: Refers to the business-as-usual (BAU) or “peacetime” 
period, prior to 7th February 2020  

(2) Phase 2: Reduction of surgical procedures over the period of 4 
months from 7th February 2020 to the end of the nation-wide 
partial lockdown period on 1st June 2020  

(3) Phase 3: Resumption of surgical services belonging to Cluster 1 
(the cluster with most case COVID-19 related elective 
postponement) 

The DES model can be used to evaluate various potential resumption 
strategies in terms of the volume of resumption across the postponed 
elective procedures. Amongst the various strategies evaluated with the 
DES model, we describe the following more significant configurations of 
resumption strategies in phase 3 for this study:  

• Strategy 0: Full resumption from Month 1  
• Strategy 1: 25% resumption incrementally from Month 1 to Month 4  
• Strategy 2: 50% resumption incrementally in Month 1 and Month 2  
• Strategy 3: 50% resumption incrementally in Month 1 and Month 3  
• Strategy 4: 50% in Month 1, followed by an additional 25% in Month 

2 and 3 

The simulation was run for a period of 36 months, with a warm-up 
period of 5 months from the start of the simulation, and a cool-down 
period of 4 months from the end of the simulation run. The stable 
regime from Month 5 to Month 20 corresponded to the period from 31 
Dec 2019 till 31 Jan 2022. The postponement of surgical cases was 
implemented from the start of Month 9 to the end of Month 11, corre-
sponding to the April - Jun 2020 period. The partial resumption of the 
cases started from Month 12 onwards to Month 17, corresponding to the 
July - Dec 2020 period and full resumption of cases after this period. 
This timeline mirrors the historical sequence of interventions in 2020. 

The simulation results were used in evaluating outcomes from the 
various strategies. Statistics from the outcomes were derived from 10 
replications of the simulation runs for each scenario. Each replication of 
the simulation for each strategy was run with a different random seed for 
the random variables used in the simulation model. The peak/average 
values and time of resuming back to BAU (since the BAU scenario was 
our baseline) for the outcome measures (bed demands for surgical pa-
tients, OR utilization and waiting time to surgery) were evaluated and 
compared for each resumption strategy. 

Table 1 
Monthly Surgery Loads across OR locations from 1 Jan 2019/2020 to 31 May 2019/2020.  

Location 2019 2020 

Jan Feb Mar Apr May Jan Feb Mar Apr May 

ASC 433 348 499 455 440 329 0 265 183 85 
MOT 1404 1222 1515 1541 1544 1326 1111 1179 1104 906 
URO 220 151 198 226 243 199 56 1 5 6 
Others 92 74 92 92 88 147 145 174 151 94  
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3. Results 

Stage 1: A year-on-year comparison of the surgical load was made for 
5 months from 1 Jan till 31 May across years 2019 and 2020. The results 
are shown below for ASCs, MOTs, specialized Urology ORs (URO) and 
other ORs in Table 1. The K-means cluster analysis revealed discernible 
patterns of hospital bed-days demand across the 1,304 different surgical 
codes in the system. A value of k = 4 was selected as the optimal number 
of clusters to be used in the analysis based on results of the elbow 
method, gap statistics and silhouette methods [7]. Fig. 5(a) shows the 
cluster identification result using the gap statistics and Fig. 5(b) shows 
the distribution of the 4 clusters. The following clusters were derived 
from the dataset (Fig. 4):  

(1) Cluster 1 consists of 65.78% of surgeries with short LOS (2–6 
days) and accounted for 31.07% of bed days  

(2) Cluster 2 consists of 21% of surgeries with moderate LOS (4–16 
days) and accounted for 27.51% of bed days  

(3) Cluster 3 consists of 7.5% of surgeries with long LOS (5–35 days) 
and accounted for 18.35% of bed days  

(4) Cluster 4 includes 5.25% of surgeries with significantly longer 
LOS (14–62 days) and accounted for 23.07% of bed days 

The summary statistics for the LOS of the clusters are presented in 
Table 2. From the descriptive analysis, a 31.4% reduction was observed 
in the number of surgeries performed during the COVID-19 restrictions 
period compared to the same period in the preceding year. When 
analyzed by cluster, most of the reduced surgery listings came from cases 
within cluster 1 (see Table 3 and Fig. 6). Cluster 1 accounted for 41 to 
69% reduction of surgeries from February to May in 2020. Surgeries in 
Cluster 1 accounted for 66% of all surgeries performed with a median 
post-operative LOS of 3 (IQR:4) days. Cluster 2 experienced a less sig-
nificant reduction year-on-year. Approximately 76.3% of orthopedic, 
86.7% of urology and 50% of general surgeries were labelled as 
belonging to cluster 1. The top 10 number of surgeries in cluster 1 were 
surgeries related to total knee replacement, hernia, gallbladder, breast 
cancer, urethra cytoscopy, colon and spine. The top 10 number of sur-
geries in cluster 2 were related to surgeries on bile duct, coronary dis-
ease, bladder cystoscopy, vascular, colon and laparotomies (see Annex, 
Table A1). 

Stage 2: The DES simulation model focused on the phased reopening 
strategies of ORs for procedures in cluster 1. The impact of full 
reopening and phased reopening with strategies 1–4 on the peak hos-
pital bed demands, waiting time to surgery for backlogged cases and OR 
utilization was compared using the simulation model. The trajectories 
for the recovery of bed demand to business-as-usual (BAU) (or backlog 
clearance time) are shown in Fig. 7(a). It can be observed that Strategy 2 
recovers to an acceptable threshold of deviation from the BAU levels at a 
much faster rate. However, the peak bed demand in strategy 2 is higher 
than Strategy 1 or 4. Fig. 7(b) shows the trajectories of OR utilization 
from Jan 2020 which captured the period prior to surgery reduction, 
during the reduction period and during the resumption period for the 
full resumption and 2 sequential resumption strategies. It can be 
observed from Fig. 7(b) that the variability in OR Utilization for Strategy 
1 was more pronounced, due to the resumption of surgeries being spread 
out across various time points. 

For the SH, we found strategies 1 and 2 were the most promising 
across the outcome measures. Strategy 1 showed lower peaks for bed 
demand (Fig. 8(a)), lower peak OR utilization rates (see Fig. 8(b)) but it 
took a longer time to achieve BAU levels for OR utilization (see Fig. 8 
(d)). However, Strategy 1 may result in more fluctuations in the OR 
utilization (see Fig. 7(b)). Strategy 2 resulted no significant changes in 
peak bed demand and OR utilization (Fig. 8(a) and (b)) and may require 
a longer time to return to BAU levels for OR utilization (Fig. 8(d)). 
However, Strategy 2 may be preferred if the clearance times across the 

Fig. 5. (a) Cluster identification using the Gap Statistics; (b) Descriptive statistics of 4 clusters.  

Table 2 
Summary Statistics for the Cluster Analysis based on the LOS statistics.  

Statistic Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Length of Stay 
Statistics 

Minimum 1 1 1 1 
1st Quartile 
Median 

2 4 5 
13 

14 
3 8 35 

Mean 5.02 13.65 25.87 46.72 
Standard 
Dev 

5.79 18.00 33.1 45.6 

3rd Quartile 6 16 35 62 
Maximum 132 257 261 301 

No of Surgeries* 12,020 3,915 1,378 959 
% of Surgeries* 65.78% 21.43% 7.54% 5.25% 
No of Bed days* 60,355 53,431 44,800 35,642 
% Bed days* 31.07% 27.51% 18.35% 23.07%  

Table 3 
Year-on-Year (YOY) Comparison of Surgery Loads.  

Cluster Year Jan Feb Mar Apr May 

C1 2019 1252 1173 1556 1586 1538 
2020 1244 696 911 669 477 

Percent change − 1% − 41% − 41% − 58% − 69% 
C2 2019 261 282 335 337 335 

2020 317 283 290 299 285 
Percent change 21% 0% − 13% − 11% − 15% 
C3 2019 94 101 112 120 131 

2020 123 117 165 177 127 
Percent change 31% 16% 47% 48% − 3% 
C4 2019 84 115 129 105 117 

2020 152 126 128 177 118 
Percent change 81% 10% − 1% 69% 1%  

H.R. Abdullah et al.                                                                                                                                                                                                                            



International Journal of Medical Informatics 158 (2022) 104665

7

bed outcomes within a specific acceptable threshold from the BAU level 
(e.g., 5–10 days as shown in Fig. 7(a)). Based on the simulation runs, 
there is no significant impact on the peak bed demand and the time to 
converge to BAU levels for bed demands between Strategy 2 and full 
resumption (Fig. 8(a) and (c)) (see Table 4). 

4. Discussion 

The decision to lift restrictions placed during the COVID-19 
pandemic were not taken lightly. This study demonstrates how data 
from previous years and during the pandemic could be utilized to guide 
the decision for phased resumption of surgical services. In this study, 
data from one year pre-COVID was used to guide the analysis to 
demonstrate the effectiveness of such an approach. Data from multiple 
years prior to when COVID-19 appeared can be incorporated easily into 
the proposed 2-stage modelling approach. The proposed 2-stage 
approach made use of unsupervised learning methods to identify tar-
geted groups of surgical procedures and a DES model to evaluate suit-
able resumption strategies for these groups. These findings provided 

insight and guidance to postponement and resumption strategies in 
various stages of the pandemic as well as advance planning for future 
pandemic scenarios. 

A number of research have discussed the issue of optimal resumption 
of surgical services post COVID-19 using qualitative analysis and pro-
posed guidelines across various surgical disciplines [16–18]. A few re-
ported studies attempted to use time series and queueing methodologies 
[19], mathematical modelling [20] and retrospective cohort analysis 
[21] to glean insights on the impact of surgical disruption and to support 
decisions on surgical resumption. Mathematical models have been 
proposed by Joshi et al. [20] with the objective of determining the 
optimal combination of rooms and surgical hours to minimize staff 
overtime during the resumption of surgical workloads. Till date, there 
has not been research that directly models the impact of surgical 
workloads and postponements jointly, based on a DES model that ac-
counts for OR workloads, OR utilization, waiting times to surgery and 
backlog clearance times. Our modelling framework accounts for the 
tradeoffs between over-utilization (that can lead to significant over-
times) and extended patient wait times. Clearance times have been 

Fig. 6. Breakdown of the reduction of surgical loads across the 4 clusters.  

Fig. 7. Comparison of Bed Demands and OR Utilization across 4 strategies and full resumption for: (a) Recovery of Bed Demands to BAU; (b) OR Utilization before 
surgery, during reduction and during resumption. 
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estimated using queuing models before [19]. Similar to clearance times, 
our model estimated the time required to reach the BAU workload. In 
our case however, the DES model allows for estimation of the entire 
distribution of clearance times based on actual data across all surgical 
groups whereas the queuing models based on Little’s Law primarily 
estimates mean clearance times [19,22]. 

A multidisciplinary approach that considers organizational, surgical 
and patient factors has been advocated to triage cases [12]. Case by case 
assessment in the triaging process is important and should consider in-
dividual patient factors (e.g., age, comorbidities, disease severity), the 
surgical procedure, projected inpatient LOS and the eventual load of 

backlogged cases amongst others [12]. Similar multi-factorial consid-
erations have been observed in the SH. The types of surgeries that were 
reduced thus had to be characterised from a data-centric approach 
instead of having predefined criteria to group the surgery types that 
were reduced. An unsupervised learning approach does not require any 
prior assumption in the definition of the clusters. The clustering results 
provided important inputs for the downstream DES model and helped to 
guide decisions on the appropriate case-mix that could be listed in each 
phase of the resumption strategy. The postoperative LOS and volume of 
surgeries were deemed sufficient to derive insights and inputs to the DES 
model. Nonetheless, more detailed clustering can be performed using 

Fig. 8. Comparison of Time to Event measures across 4 strategies and full resumption with 95% confidence intervals for: (a) Peak Bed During Resumption (b) Peak 
OR Utilization (c) Convergence Time to BAU for Bed Demands (d) Convergence Time to BAU for OR Utilization. 

Table 4 
Results from the simulation model across the various outcome measures.  

Policy Resumption 
Strategy 

Range of Bed 
Demands During 
Resumption^ 

Range of OR 
Utilization During 
Resumption^ 

Range of Peak Wait 
Times to Surgery During 
Resumption 

Time to Event 
Mean (SD) 

Time to Peak Bed 
During 
Resumption 

Converge to BAU 
for Bed Demands 

Converge to BAU 
for OR Utilization 

Full 
Resumption 

Strategy 0 485.0–504.3 94.2% − 96.2% 74.3–108.2 154.9 (77.5) 241.0 (45.7) 199.7 (13.6) 

Sequential 
Resumption 

Strategy 1 470.9–496.1 92.1%–95.6% 41.8–145.5 152.4 (94.5) 266.6 (64.6) 242.5 (33.7) 
Strategy 2 482.7–500.6 92.0%–96.3% 56.1–119.9 149.8 (66.1) 223.5 (53.3) 213.7 (45.6) 
Strategy 3 472.9–501.4 91.3%–96.2% 75.2–145.7 138.6 (67.2) 271.0 (60.5 220.1 (35.8) 
Strategy 4 477.5–497.3 91.4%–95.7% 36.8–116.4 180.8 (80.3) 243.8 (49.7) 210.1 (42.9) 

^ Lower bound is based on conservative estimate across 2 weeks before and after peak demands. Upper bound is the absolute maximum bed demand/OR Utilization. 
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this two-stage framework. The clustering analysis can consider addi-
tional factor such as indication and urgency, expected requirement for 
prolonged ventilation and the need for postoperative ICU. 

To ensure that the model output was relevant not just for policy-
makers but similarly for ground managers, we developed a live dash-
board to monitor the historical and projected available bed days and 
waiting time to surgery for each surgeon and surgical discipline. This 
dashboard provided visibility across these measures for the weeks ahead 
and acted as a decision support tool on allowing the listing of elective 
surgical cases (See Fig. 9). As the pandemic continues to evolve with new 
variants and resurgence in various countries, the dashboard provides a 
ready means to make evidence-based OR management decisions in an 
agile and sustainable manner. A similar dashboard was also described in 
Joshi et al. [20] which included information on personal protective 
equipment (PPE) usage but excluded projections of bed demands. The 
inclusion of bed demands is critical from our hospital management 
perspective as trade-offs in terms of the bed demands have to be 
considered for non-surgical disciplines (e.g., infectious disease beds). 
Furthermore, stringent policies to mitigate hospital acquired infections 
during COVID-19 may require reduction of the number of beds in shared 
rooms (eg eight bedder wards) by as much as 50%. The implications of 
these bed reduction strategies should be also accounted for in evaluation 
of strategies for reduction and resumption of surgeries. PPE, ventilators 
and drugs were assumed to be sufficient similar to Wang et al. [19] as 
Singapore did not face a shortage of these essential items during the 
entire COVID-19 period. The postponement of such surgeries may also 
lead to unintended negative effects, such as disease progression due to 
delayed surgeries which may lead to more invasive or additional sur-
geries. While this is a widely recognized conundrum [1,5], our current 
model was not able to account for such individual-level permutations. 
Regardless, together with healthcare manpower, these remain impor-
tant issues that a further extension of the model can account for [5]. 

A number of papers have recommended tiered surgery postponement 
strategies during the pandemic [1,23] and a phased resumption of sur-
geries thereafter [21,24,25]. Planning for phased resumption has to 
consider awareness of the pandemic situation, preparedness level of the 
hospital and ensure the continued delivery of safe, high quality and 

high-value care for surgical patients [26,27]. The roadmap for resuming 
elective surgery after the COVID-19 pandemic advocated an appropriate 
strategy for phased re-opening of operating rooms [5]. To our knowl-
edge, the quantitative evaluation of phased resumption strategies have 
not been reported in the literature, although mathematical models for 
the evaluation of backlog clearance and the financial impact of surgical 
postponements have been reported previously [19,20,21] The results 
from our simulation model demonstrated that phased resumption of 
services will improve performance across some of the outcome measures 
without significant impact on other measures. Dependent on the per-
formance measure of interest to the healthcare system, the model allows 
the trade-offs of various resumption strategies to be quantified and an 
optimal strategy to be derived. Our modelling approach allowed us to 
calibrate the resumption strategies and resumption targets (e.g., 25% vs. 
50%), revealing the trade-offs in the resumption strategies. With a 
phased resumption strategy, lower peak bed demands and faster re-
covery to normal levels can be achieved without compromising other 
measures. All these insights enable the SH to identify an optimal strategy 
for phased opening of ORs. 

The model has yet to consider the financial impact of surgical 
reduction and resumption strategies. A retrospective cohort analysis 
based on insurance claims data has been reported previously [21]. The 
extension of our model to consider revenue impact of surgery manage-
ment strategies during COVID-19 can provide further decision support 
to determine optimal strategies for postponement and resumption of 
surgeries in future scenarios. 

5. Conclusion 

We developed a 2-stage modelling framework for understanding 
elective surgery postponement patterns during a partial COVID-19 
lockdown and the evaluation of alternative resumption strategies 
across multiple important operational outcome measures. The effective 
management of 34,025 unique cases over 43 operating rooms (ORs) and 
18 surgical disciplines required an integrated systems approach across 
the operations of the entire hospital. The complexity of health systems 
coupled with the possibility of COVID resurgence underscores the 

Fig. 9. Decision support dashboard for monitoring the resumption of surgical services during COVID-19.  
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importance of leveraging on advanced techniques in systems engineer-
ing and predictive analytics deployed in a user-friendly and adaptable 
platform for agile evidence-based decision making. 

Summary Table 
What was already known on the topic  

• Surgeries reduced to cope with COVID-19 in hospitals should be 
resumed in a calibrated phased manner.  

• Triaging and rationing of cases during COVID-19 and subsequent 
resumption of case should consider multidisciplinary approaches 
that considers patient, surgical and organizational factors.  

• Process for guiding the phased reopening can be derived from a data- 
driven approach through the use of mathematical modelling and 
simulation approaches. 

What this study added to our knowledge  

• The development of a 2-stage modelling framework that leverages on 
a DES model with cluster analysis to understand the elective post-
ponement patterns and evaluate the best phased resumption 
strategy.  

• The proposed model enables the evaluation of alternative strategies 
accounting for OR utilization, waiting times to surgeries and clear-
ance times for backlogs.  

• The modelling framework leverages on machine learning and 
simulation model implemented within an interactive user interface 
for decision support showed that a calibrated phased approach can 
result in better outcomes across OR utilization, waiting times to 
surgeries and clearance times for backlogs. The user interface also 
provides visibility on the downstream projected bed demands under 
various scenarios. 
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Table A1 
Top 10 surgeries in Cluster 1 and 2.  

Procedure 
Code 

Cluster Description 

SJ802T 1 Thyroid, Various Lesions, Hemithyroidectomy/Partial 
Thyroidectomy 

SI725U 1 Uterus/cervix, Hysteroscopy, Diagnostic, D&C 
SF820A 1 Abdominal Wall, Inguinal/Femoral Hernia, Bilateral 

Herniorrhaphy (MIS/open) 
SH830P 1 Prostate Gland, Various Lesions, Radical Prostatectomy 

(MIS/open) 
SM705T 1 Tonsils, Various Lesions, Removal with/without 

Adenoidectomy 
SA702S 1 Skin and Subcutaneous Tissue, Tumor/Cyst/Ulcer/Scar, 

Excision biopsy, Lesion size more than 15 mm in 
diameter 

SJ803T 1 Thyroid, Various Lesions, Total/Subtotal Thyroidectomy 
SM714N 1 Nose, Various Lesions (turbinates), turbinectomy/ 

turbinoplasty/Submucous Resection (with or without 
endoscopes) 

SH835P 1 Prostate Gland, Various Lesions, Saturation Prostate 
Biopsy 

SM724N 1 Nose, Various Lesions, Septoplasty/Submucous Resection 
SB810K 2 Knee, Various Lesions, Primary Total Joint Replacement 

(Unilateral), open/MIS/navigated 
SF819A 2 Abdominal Wall, Inguinal/Femoral Hernia, Unilateral 

Herniorrhaphy (MIS/open) 
SB716K 2 Knee, Various Lesions, Primary Total Joint Replacement 

(Unilateral) with augmentation, requiring extra implants 
or bone grafts, open/MIS/navigated 

SF801G 2 Gallbladder, Various Lesions, Cholecystectomy (open or 
lap) 

SA824B 2 Breast, Tumor (malignant), Simple Mastectomy with 
Axiliary Clearance, with/without Sentinel Node Biopsy 

SA827B 2 Breast, Tumor (malignant), Simple Mastectomy with 
Sentinel Node Biopsy/Axiliary Node Sampling 

SG700U 2 Ureter, Cystoscopy and insertion of double J stent 
SF701C 2 Colon, Anterior Resection (OpenMIS) 
SC701L 2 Lung, Various lesions, Pneumonectomy/Lobectomy, MIS 
SG800U 2 Ureter, Ureteroscopy and lithotripsy 
SF708B 3 Bile Duct, Endoscopic Retrograde 

Cholangiopancreatography (ERCP) with sphincerotomy/ 
removal of stone/insertion of biliary stent 

SD812H 3 Heart, Coronary Disease, Coronary Artery Bypass Graft 
(Open) 

SB808S 3 Spine, Deformities, Corrective Osteotomy – With/ 
Without Computer Navigation 

SF803C 3 Colon, Various Lesions, Right/Left Hemicolectomy (MIS/ 
open) 

SD712B 3 Blood vessels, Vascular System, Various Lesions, 
Insertion of Tenckhoff Catheter 

SD731H 3 Heart, Valve (Repair/Replacement) - 1 Valve 
SF702C 3 Colon, Colonoscopy (diagnostic), fibreoptic with/ 

without biopsy 
SB729S 3 Spine, Various Lesions, Decompression, Spinal 

Instrumentation, Multiple Levels 
SD721A 3 Artery, Stenosis/Occlusion, Percutaneous Transluminal 

Angioplasty (PTA), Simple 
SF813L 3 Liver, Various Lesions, Partial Lobectomy/Segmental 

Resection (open or lap) 
SA811S 4 Skin and Subcutaneous Tissue, Deep greater than 3 cm/ 

Extensive Contaminated Wound, Debridement 
SF701I 4 Intestine/Stomach, Upper GI endoscopy with/without 

biopsy 
SD720A 4 Artery, Stenosis/Occlusion, Percutaneous Transluminal 

Angioplasty (PTA), Difficult (eg subintimal PTA, below 
knee PTA) 

SG713B 4 Bladder, Cystoscopy, with or without biopsy 
SA853S 4 Skin and Subcutaneous Tissue, Wound, Debridement < 3 

cm 
SF808A 4 Abdominal Cavity, Various Lesions, Exploratory 

Laparotomy (MIS/open) 
SD821A 4 Artery, Various Lesions, Arterio-venuous Fistula Creation 
SK708B 4 Brain, Intracerebral Tumor, Biopsy and/or 

Decompression/Removal via Craniotomy, Complex 
SF807E 4  

Table A1 (continued ) 

Procedure 
Code 

Cluster Description 

Esophagus/Intestine/Stomach, Upper GI endoscopy with 
insertion of Prosthesis (e.g. insertion of Celestin Tube/ 
complicated Polypectomy) 

SF809P 4 Pancreas, Various Lesions, Whipple Operation/Total 
Pancreatectomy  
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ap-southeast-1.elasticbeanstalk.com/. Username and password to access 
this site can be made available upon request to the Corresponding 
Author. 
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