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Abstract

recent experimental studies.

Background: Tissue-specific gene expression is generally regulated by combinatorial interactions among
transcription factors (TFs) which bind to the DNA. Despite this known fact, previous discoveries of the mechanism
that controls gene expression usually consider only a single TF.

Results: We provide a prediction of interacting TFs in 22 human tissues based on their DNA-binding affinity in
promoter regions. We analyze all possible pairs of 130 vertebrate TFs from the JASPAR database. First, all human
promoter regions are scanned for single TF-DNA binding affinities with TRAP and for each TF a ranked list of all
promoters ordered by the binding affinity is created. We then study the similarity of the ranked lists and detect
candidates for TF-TF interaction by applying a partial independence test for multiway contingency tables. Our
candidates are validated by both known protein-protein interactions (PPIs) and known gene regulation
mechanisms in the selected tissue. We find that the known PPIs are significantly enriched in the groups of our
predicted TF-TF interactions (2 and 7 times more common than expected by chance). In addition, the predicted
interacting TFs for studied tissues (liver, muscle, hematopoietic stem cell) are supported in literature to be active
regulators or to be expressed in the corresponding tissue.

Conclusions: The findings from this study indicate that tissue-specific gene expression is regulated by one or two
central regulators and a large number of TFs interacting with these central hubs. Our results are in agreement with

Background

Transcriptional regulatory networks determine a spatio-
temporal variance in gene expression which enables the
tissue-specificity of the cell [1]. Regulatory networks
include groups of control proteins, such as transcription
factors (TFs) binding to short DNA motifs, called tran-
scription factor binding sites (TFBS). Each TF can be
connected to a set of its target genes - genes on whose
promoters the TF binds in order to activate or repress
them [2]. In mammalian tissues, TFs do not usually act
alone but form complexes with other TFs and co-factor
proteins, which bind together to the DNA synergistically
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to affect the transcription of the target genes [3]. This
combinatorial regulation increases the specificity and
flexibility of genes in controlling tissue development and
differentiation. Therefore, detection of interacting TFs
can significantly increase our understanding of how tis-
sue specificity is determined.

Over the last years, a variety of experimental
approaches was introduced to detect TF interactions
controlling tissue gene expression. Among the most
used technologies, gel retardation assays [4], genomic
microarrays [5], or chromatin immunoprecipitation fol-
lowed by microarrays or high-throughput sequencing
[6,7] were used to construct transcriptional models in
different tissues. However, these studies are able to
detect TF interactions on a limited scale since they treat
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each TF separately. A novel two-hybrid screening
method which can detect physical protein-protein inter-
actions was applied in mouse and human [8,9]. Never-
theless, such technology is able to detect just a part
(25%) of all possible TF interactions [9].

To overcome the experimental limitation, several
computational models were built to predict tissue-speci-
fic interacting TFs. Some of these models combine gene
expression information with promoter sequence features
[10-12] or integrate the evolutionary conservation of
TFBS on promoters of tissue-specific genes [13]. How-
ever, the results of these studies can be biased by pairs
of cooperating TFs with similar motifs, as discussed in
[14]. Comparing all these methods shows that just a
small fraction of predicted TFs interactions can be
found in more than one study. This suggests that differ-
ent methods are able to identify interacting TFs from
different perspectives and that the mechanism regulating
the tissue differentiation and development is still not
completely understood. With our study we aim to create
the next component in understanding the transcrip-
tional networks in human tissues. To identify interacting
TFs, we combine the predicted binding affinities of TFs
on their target genes while investigating all possible
pairs of studied TFs with the hypergeometric test.
Furthermore, we include information about the tissue-
specificity of the target genes and apply a 3-way contin-
gency table test to determine the significance of the
overlap of tissue-specific top-ranked target genes for
pairs of different TFs. Our approach is based on the fol-
lowing two assumptions. First, two interacting TFs are
expected to share a significant number of their target
genes in comparison with two randomly selected TFs.
Second, the list of target genes of a single TF can be
represented by a ranked gene list based on the binding
affinity of the TF to the promoter sequences. To our
knowledge, this is the first method which is able to pre-
dict interacting TFs based only on predicted TF-binding
affinity to the promoter sequence and its tissue-specifi-
city information.

Methods
Similarity of ranked lists of target genes measured by the
hypergeometric test
In our model, we use a simple assumption that two
interacting TFs should share a significant number of
identical target genes. In other words, if two different
TFs bind on the same promoter regions they would very
likely act together to direct the expression of their target
genes. To evaluate the significance of the shared target
genes, we apply the hypergeometric test for ranked lists
of a TF’s target genes.

First we define the human promoter regions as -500 -
0 bp relative to the transcription start site (TSS) from
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Ensembl GRCh37/hg19 assembly of the human genome
[15], [http://genome.ucsc.edu]. To create the ranked list
of target genes we first scan all such human promoter
regions with TRAP predictor [16]. We choose the TRAP
approach since it avoids the artificial separation between
binding sites and non-binding sites but instead calcu-
lates the binding probability of a given TF to all sites in
the sequence based on a biophysical model.

The binding affinity of all 130 TFs, represented by
position weight matrices (PWMs), in the JASPAR
CORE Vertebrata database [17] to all human promo-
ters is calculated. Separately for each TF, we rank the
promoter regions by their binding affinity in a decreas-
ing order, such that the genes with high binding affi-
nity are placed at the top of the list. We measure the
similarity of these ranked lists for all possible pairs
(130 * 129/2 = 8385) of TFs by calculation of the sig-
nificance for the shared target genes among the top-L;
(for the first TF) and the top-L, (for the second TF)
ranked genes using the hypergeometric test [18]. This
problem corresponds to a simple 2-way contingency
table with two indicator random variables X and Y.
Variable X indicates genes ranked among the top-L; in
the list of the first TF and variable Y indicates genes
ranked among the top-L, in the target gene list of the
second TF. The hypergeometric test was used in a pre-
vious study [19] to predict protein-protein interactions
(PPIs) in yeast based on shared protein neighbors in
small world interactions.

To estimate the best performing thresholds L; and L,
we repeat the testing procedure for varying values of
both cutoff points: Ly, L, € {10, 20, ..., 990, 1000} which
correspond to 10* possible combinations. We assume
that the smallest obtained p-value of the hypergeometric
test is associated with the highest similarity between the
two rank lists of target genes. A similar technique was
applied by Roider et al. [20] to identify significant asso-
ciation of tissue specific genes and target genes of tran-
scription factors.

Confounding factor: motif similarity

When two TFs have very similar motifs (represented by
PWMs), with high probability their ranked lists of target
genes will be very similar [14]. To eliminate the choice
of candidates which would share a significant number of
the identical genes in the top of the lists due to their
similar matrices (and not necessarily due to their real
co-occurrence), we include a confounding factor into
the analysis, a motif similarity measure. For all pairs of
TFs, we calculate their motif similarity using the
MOSTA S§™ similarity measure [21], which is based on
the log-odds ratio of the overlap probability and the
independent probability of hits of the two motifs on
both strands of a DNA sequence.
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The similarity measure for all TF pairs ranges from
-1.12 to 8.58. To avoid the presence of TF interactions
with highly similar motifs in our predictions, we con-
centrate on TF pairs with motif similarity smaller than
four. This cutoff corresponds to the 90%-quantile of the
empirical distribution of §™* and avoids the choice of
significantly similar motifs in the JASPAR database.

Similarity of ranked lists of target genes in a tissue
measured by testing in 3-way contingency tables

By definition, a 2-way contingency table depicts the
association of two variables. In our case, the two vari-
ables come from two TFs. In order to stratify by tissue,
we need to introduce a third dimension, thus arriving at
a 3-way contingency table. We introduce variable Z,, an
indicator function for genes specific in the tissue

Z(i) = { 1 gene i specific for tissue ¢
0 otherwise.

As in the previous section, random variables X and Y
indicate genes ranked among the top-L; and top-L, in
the list of the first and second TFs, respectively. A gra-
phic illustration of this situation is shown in Figure 1.
All human genes are shown as dots, blue ones indicate
tissue specific genes (where Z(i) = 1). The green set
highlights the top-ranked target genes of the first TF (X
(i) = 1) and the red set highlights the top-ranked target
genes of the second TF (Y(i) = 1). The corresponding 2
x 2 x 2 contingency table is shown in Table 1.

To test whether the number of genes in the intersec-
tion of all 3 variables, e.g. g1 := Z(X(0) =1, Y() = 1, Z
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Table 1 2 x 2 x 2 contingency table

Genes with ... Tissue specificity No tissue specificity Sum
Rank < L, Rank >L, Rank <L, Rank >L,

Rank < L, Hi1 Hi21 Hi12 Hi122 M4+

Rank >L, Ha1 H221 H212 H222 Hot+

Sum M H21 M2 22 [L—

2 X 2 X 2 contingency table for shared genes among the top-L; and top-L,
ranked target genes of two different TFs and tissue-specific genes.

(i) = 1), is larger than expected by chance, a 3-way con-
tingency table test is applied [22]. There are 3 possible
hypotheses to be formulated in a 3-way contingency
tables: (a) mutual independence of X, Y and Z, (b) con-
ditional independence of X and Y given Z and (c) partial
independence of composite XY and Z. The expected fre-
quencies in the contingency table are estimated depend-
ing on the tested hypothesis. In our case we would like
to detect such TF pairs, which share a significant num-
ber of target genes in a tissue. This corresponds to the
partial independence hypothesis (c).

The expected frequencies under the null hypothesis in
the 2 x 2 x 2 contingency table are defined as follows:

flayz = W; x,7,z € {0, 1}.

Here, p, .. denotes the one-way marginal of Z defined
ag Mz = xyz(:) 1}“% for z € {0,1}. p,y, denotes the xy-
two-way  marginal, and in the same way:
Hays = Mz for %, y € {0, 1}.

The Zt=¢£:s't statistic for 3-way contingency tables is
defined as the log-likelihood ratio of observed (u,,,) and
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Figure 1 Venn diagram. Venn diagram of the setting for independence tests in 3-way contingency tables. Grey dots indicate all human genes,
blue dots are genes known to be specific for a selected tissue. Green and red sets denote the top-ranked target genes of the first and second
TF, respectively.
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expected frequencies (fixz) over the groups of variables
X, Yand Z [22]:

N H
2f(p: ) =2 Z My log (& ) ~ Xdzf‘
" A e

x,,2={0,

df denotes the degrees of freedom of the y* distribu-
tion and equals 3 for this particular test (one degree of
freedom for each variable for which expected frequen-
cies have to be estimated). The test statistic can be cal-
culated simply using the loglinear representation [22].

Results

Detected interactions by the hypergeometric test

To assess the association between the similarity of ranked
lists and the similarity of PWMs, we study the relation
between the smallest p-values obtained from the hyper-
geometric test and the PWM similarity measure $™**
(smoothed density scatterplot in Figure 2). As expected,
TF pairs with very similar motifs (S™** € [6,8]) corre-
spond to highly significant p-values (data cloud in lower
right corner). We identify already known PPIs from the
FANTOM Consortium [9] and BioGRID database [23];
and those TF pairs which have the same known co-factor
(trios) found in these databases [9,23] (Figure 2, red dots
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and orange triangles, respectively). However, the majority
of these known interactions correspond to TF pairs with
rather low significance (logio p € [-3; 0]).

In Figure 3, TF pairs with p-value < 10 are shown.
The network consists of 76 interactions, of which 15.8%
were found to be known PPIs (denoted as red edges).
22.4% are known trios, highlighted in orange. Among
those, we focus on 13 interactions between TF pairs with
low motif similarity (§™** < 4) which are represented by
solid lines. Three TF pairs have one or more common co-
factor (EN1:TBP interacts with AP1 and PAX6; SP1:
TFAP2A with TP53 and HOXA5:NR3C1 with PBX)
which are indicated as grey nodes with corresponding grey
edges. The evidence of a common third co-factor increases
the probability that these TFs can interact on the promo-
ter. Manke et al. [24] showed that the TFs build networks
mostly with a length of 2-4 molecules. Further, we find
with IPA software developed by Ingenuity (Redwood City,
CA, USA) an experimental confirmation of our predic-
tions in the literature for these two interactions: SP1:
TFAP2A [25-27] and GATA2:GATA3 [28].

Prediction of tissue-specific interactions
Before applying the new statistical test, tissue-specific
genes have to be defined. For our analysis we use the

Hypergeometric test for all genes
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Figure 2 Smooth scatterplot of motif similarity measure and p-values of the hypergeometric test. Logarithm of the smallest p-values of
the hypergeometric test for all tested TF pairs (vertical axis) vs. motif similarity measure S, (horizontal axis). Red points and orange triangles
denote experimentally shown PPls and trios with a known interacting co-factor, respectively.
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data from Yu et al. [29] for 30 human tissues and data
from Haas et al. [30] for 4 homogenous tissues. Both
are based on expression enrichment values of EST clus-
ters in tissues. We prefer data based on the ESTs analy-
sis rather than microarray expression data which show
much higher variability in their measurements. The
number of tissue-specific genes varies from 58 (uterus)
to 1409 (lymphocyte) which are small numbers in com-
parison with the total number of promoters (42380 in
GRCh37/hg19 assembly of the human genome [15]).

To avoid multiple testing problems we fix the length
of top-ranked target genes to 1000 for all TFs and do
not repeat the testing procedures with various thresh-
olds as in the 2-way contingency tables. The cutoff of
1000 genes is justified by small numbers of tissue-speci-
fic genes and large number of promoters. Applying dif-
ferent values of this threshold changes the scale of the
p-values but not their ranking. Using the first 1000 top-
ranked target genes, the expected number of shared
top-ranked tissue-specific genes for two different TFs
can vary between 0 and 35.

In total, we identify 594 significant TF pairs in 4 spe-
cific cell lines (p-value < 10™*') and 409 significant TF
pairs in 12 human tissues (p-value < 10°). 869 (86.6%)

of these interactions are between TFs with nonsimilar
motifs (S™** < 4). The most interactions are found in
retinal pigmented epithelium (259), the least (1) in sto-
mach. 181 TF pairs are significant in two or more differ-
ent tissues, 61 of them are common for kidney and liver
and 43 are common for hematopoietic stem cells and
lymphocytes. There are no significant interactions with
the threshold of p-value < 107 in 18 tissues. We find
additional 58 interactions with larger p-value € (10°°,
10°], 17 of them in another 6 tissues. The tissue-speci-
fic interactions in all of the 22 tissues are summarized
in Table 2. All predicted interactions including motif
similarity measure and p-values are listed in Additional
file 1.

Evaluation by known protein-protein interactions

To evaluate our predictions, we calculate the ratio of
experimentally validated PPIs from FANTOM and Bio-
GRID databases [9,23] in the set of our candidates.
15.8% (6.8-fold enrichment, Fisher’s exact test: p = 1.6 -
10”7) of interactions predicted with the iterative hyper-
geometric test were found in the protein database. 4.2%
(1.8-fold enrichment, Fisher’s exact test: p = 8.4 x 107*)
of predicted tissue-specific interactions are already
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Table 2 Summary of predicted tissue-specific TF pairs with 3 most significant TF pairs in 22 human tissues

Tissue # interactions (nonsimilar) # factors Top three nonsimilar interactions Hubs

Bladder* 303) 3 ELKT:NFYA, ELKT:NOBOX, NFYA:NOBOX -

Blood 6 (4) 5 SPIT:ARID3A, SPIB:ARID3A, SPIT:.CTCF ARID3A, SPI1, SPIB
Bone 24 (24) 25 TBP:TFAP2A, TBP:EWSR1-FLIT, TBP:NOBOX TBP

Brain 25 (17) 20 SP1:50X10, SP1:ESR2, SP1:REST MZF1, SP1

Cervix 40 (30) 24 ZFP423:ZFX, ELK1:ZFX, MIZF:ZFX ZFX, KLF4, ZFP423
Eye* 4(2) 6 T:HNF1B, SP1:TAL1-TCF3 SP1

Heart* 6 (5 MEF2A:MAFB, MEF2ANFKB1, MEF2A:REST MEF2A

Kidney 95 (87) 64 GATAT:HNF1A, HNFTA:ARID3A, TP53:HNF1B HNFTA, HNF1B
Liver 106 (99) 67 HNFTAHNF1B, HNFTA:HNF4A, HNF1A:CEBPA HNF1A, HNF1B
Lymph node 64 (57) 65 SPIT:MZF1, SPIT:MYF, SPI1:FOXQ1 SPI1

Muscle 41 (38) 40 MEF2A:ZFP423, MEF2AINHLH1, MEF2A:NFIC MEF2A, TBP
Pancreas* 14 (13) 15 ARTALT-GATA1, MZF1:TAL1-GATA1, E2F1:TALT-GATAT ~ TAL1-GATA1
Placenta* 22 4 RREB1:PDX1, ESRRB:POU5F1 -

PNS* 10 2 ELK4:REL

Sm. intestine* 1() 2 NFYA:TBP

Stomach* 7 (6) 8 EWSR1-FLIT:PLAGT, MYCPLAGT, PAX6:PLAG] PLAGI1

Testis* 16 (14) 19 FOXC1:HOXAS5, ARNT-AHRNOBOX, ARNT-AHRINKX2-5 ~ ARNT-AHR
Tongue* 12 (11) 16 NFKBT:NFIL3, NFKBT:TFAP2A, GATA3:NKX3-1 NFKB1

Adipose** 104 (90) 46 MZF1TNFYA, NFYA:IMYB, NFYA:TBP NFYA, MZF1
Lymphocyte** 181 (156) 107 ELK1:CEBPA, ELKT:FOXA2, ELK1:POU5F1 NFYA, ELK1, GABPA
Hematop. SC** 50 (41) 36 ELKT:NFYA, NFYA:GABPA, ELKT:EGR1 NFYA, ELK1
Retinal pigm. epithelium** 259 (219) 116 ARNT-AHR:CREB1, ARNT-AHR:NFYA, CREB1:BRCA1 CREB1, NFYA, PAX2

* Network predicted with p < 107, ** network predicted with p < 107°.

Summary of predicted tissue-specific TF pairs (with p-value < 10) in 22 human tissues.

validated PPIs. Further we calculate the enrichment of
known PPIs among the candidates for each tissue,
shown in the bar plot in Figure 4. Whereas for some tis-
sues the percentage of known PPIs is 10- or 7-fold
higher than expected by chance (eye, blood, bone and
brain), there are 8 tissues (bladder, pancreas, stomach,
testis, heart, placenta, peripheral nervous system and
small intestine) where no database PPIs were found.
The reason for this may lie in the incompleteness of the
experimental databases. Usually, there are groups of
well-studied proteins and TFs for which many interac-
tions are experimentally validated. Moreover, there are
many TFs for which the yeast-2-hybrid experiment can-
not be performed due to technical difficulties.

Predicted interactions in liver

In the next sections we present and validate our predic-
tions of TF interactions in liver, skeletal muscle and
hematopoietic stem cells - three well-studied homoge-
nous human tissues for which sufficient information is
provided in the literature.

The relationship between the p-values of the 3-way
contingency table test and PWM similarity measure
changes due to the stratification by tissue (see Addi-
tional file 2). Now, there is a group of highly significant
TF pairs with nonsimilar binding motifs. Taking the TF

pairs with threshold p < 107, 106 interactions among 67
TFs are detected in liver (network shown in Figure 5).
Solid edges indicate 98 interactions between TFs with
low motif similarity, remaining edges are between TF
pairs with high motif similarity. Nine (13.4%) TFs in the
network (CEBPA, HNF1A, HNF1B, HNF4A, NR2F1,
NFKB1, POU5F1, RELA, RXRA) are supported in the
literature to be transcriptional regulators in liver
(TRANSFAC database [31,32], IPA Ingenuity Systems).
We find 3 (HNF1, HNF4 and CEBP) out of 4 critical
regulators from Krivan and Wasserman [33] in our liver
regulatory network. The central regulators (HNF1A,
HNF4A) from Odom et al. [6] are the central hubs with
the highest number of interactions in our predicted net-
work. Moreover HNF1A and HNF4A were identified as
specifier (high specificity expression) hubs by the experi-
mental work of FANTOM Consortium [9]. The majority
(59.7%) of nodes (green color in Figure 5) have experi-
mental evidence supporting expression in liver tissue
[9,32,34]. We detect 3 already known interactions
between the liver regulators (HNF1A:HNF1B, HNF1A:
HNF4A, HNF1A:CEBPA), highlighted with red edges. 9
predicted interacting TF pairs share a common co-factor
(orange edges). HNF1A and SOX10 both interact with
CEBPA; HNF1A and NR2F1 both interact with HNF4A,
which support the hypothesis that these TF pairs will
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interact too. Next, we search with IPA Ingenuity Sys-
tems for enriched functions of the predicted TFs in
liver. Among transcriptional regulation and DNA-bind-
ing, development of liver (p = 1.37 x 107°°, CEBPA,
HNF1A, HNF1B, PDX1, RELA), proliferation of hepato-
cytes (p = 5.71 x 10°°*, CEBPA, HNF1A, NFE2L2,
NFKB1) and liver hepatitis (p = 1.31 x 10°°%, ESR2,
NFE2L2, PDX1, RELA) were found. Factor NFE2L2 is a
regulator in lipid metabolism and hepatic system devel-
opment (4.77 x 10°%; 9.52 x 10°%); RELA factor regu-
lates the degeneration of liver (4.22 x 10°%) and we
predict that both factors interact with two central liver
regulators HNF1A and HNF1B. Known regulatory func-
tions in liver of NFE2L and RELA indicate possible
interactions with the central regulators.

Predicted interactions in skeletal muscle

Figure 6 shows the network with 41 predicted interac-
tions among 40 TFs in skeletal muscle. Here, six TFs
(MEF2A, MYF, NFIL3, SP1, SRF, TBP) are known to
regulate the gene expression in muscle [11]. MEF2A is
the central regulator with the highest number of

predicted interactions in our network, TBP is a center
of a smaller network related to general tissue develop-
ment. Both of them were classified as facilitator (wide-
spread expression) hubs by FANTOM Consortium [9].
For 67.5% of factors evidence of expression in muscle is
found [9,32,34]. 2 already known PPIs (MEF2A:TEADI;
TBP:SP1) are detected in our predicted network in mus-
cle. Four of the predicted interactions are identified as
known trios, which increases confidence in the validity
of our predictions. TBP and TFAP2A have two known
co-factors: MYC and TP53 (shown as grey edges). Pre-
dicted TF pairs SRF:TBP, SRE:MEF2A and TBP:MEF2A
all interact with factor TEAD1 (grey edges). Since SRF,
TBP and MEF2A are regulators in muscle, there is a
high probability that TEAD1 can have a regulatory func-
tion in muscle, too. Furthermore we found experimental
evidence of physical interaction between SRF and
MEF2A in mouse [35]. 8 TFs in the network control the
differentiation of muscle cells (p = 9.4 x 107°°; MIZF,
MEF2A, MYF5, NFIC, REST, SRF, STAT1, TP53); 6
TFs in the network are involved in differentiation of
muscle cell lines (p = 8.1 x 10°°%; EWSR1, FLI1, MYF5,
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NFKB1, STAT1, ZNF423). Functional analysis was per-
formed with IPA Ingenuity Systems. Two other func-
tional categories, apoptosis of fibroblast cell lines (p =
1.31 x 10’ AHR, EGRI, EVI1, EWSRI, FLI1, NFE2L2,
NFKB1, RELA, STAT1, TP53) and development of
organs (p = 8.5 x 10 AHR, ARNT, EGR1, EVII, FLI1,
FOXD3, FOXQ1, GATA2, NFKB1, NOBOX, NR2F1,
PAX2, PAX6, PLAG1, RELA, RORA, SOX2, SP1, SRF,
TEAD1, TFAP2A, TP53, YY1, ZFX, ZNF423), are
related processes which occur in muscle.

Predicted interactions in hematopoietic stem cells

A predicted interaction network with 50 interactions
among 36 TFs in hematopoietic stem cells is shown in
Figure 7. This network was generated using the interac-
tions with p < 107! because of the large number of speci-
fic genes in the hematopoietic stem cells (678) which
induce a higher number of predicted significant interac-
tions. The network consists of two subnetworks with two
central hubs: ELK1 and NFYA which were classified as
facilitator hubs by FANTOM Consortium [9] too. Both
TFs together with ELK4 and SPI1 are known regulators
in hematopoiesis. Similar to previously analyzed tissues, a
majority (72.2%) of predicted interacting factors is
expressed directly in the hematopoietic stem cells or in
bone marrow [9,32,34]. We predict 4 already known PPIs

(ELK1:KLF4, NFYA:ELK4, NFYA:SPI1, NFYA:CREB1)
and 12 trio interactions which share one or more com-
mon co-factors (BRCA1, SP1, SRF and TP53).

A functional analysis with IPA Ingenuity Systems
showed that 18 (CREB1, CTCF, E2F1, EBF1, EGRI,
ELK1, ELK4, GABPA, HIF1A, HNF1A, IRF1, IRF2,
KLF4, MYB, NFYA, PBX1, RXRA-VDR, SPI1) of the 36
TFs in our network play a role in the hematopoiesis (p
=7.19 x 10"*); 13 factors (CREB1, E2F1, EBF1, EGR1,
ELK1, ELK4, GABPA, HIF1A, HNF1A, IRF1, IRF2,
MYB, SPI1) function in the development of lymphocytes
and leukocytes (p = 1.77 x 107'1).

Comparison of predicted interactions with other
computational methods
The findings of our study predict that the gene expres-
sion in tissues is regulated by a large number of tissue-
specific interactions which are dominated by central reg-
ulators. The central hubs detected with our methodol-
ogy were confirmed by experimental evidence of the
FANTOM Consortium [9]. Here, we want to compare
our findings in liver, muscle and hematopoietic stem
cells with two other computational methods predicting
tissue-specific interactions of TFs.

Yu et al. [12] predict interactions between TFs using
the relative position and co-occurrence of their binding
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sites in promoters of tissue-specific genes. For their ana-
lysis the PWMs from TRANSFAC database were used.
We have identified 11 (HNF1:NFIL3, PBX1:HNF1,
HNF4:HNF1, HNF4A:HNF1, HNF1:FOXC1, CEBPA:
HNF1, FOXD3:HNF1, HNF1:NKX2-2, HNF1:FOXL1,
HNF1:NKX3A, RORA1:HNF1) predicted liver-specific
interactions from Yu et al. in our liver network too,
where HNF1:NFIL3 belongs to the top three liver inter-
actions in their publication. HNF1 is the central regula-
tor in liver described by Yu et al. which is in agreement
with our liver central hubs HNF1A and HNF1B. 8 of
our predicted interactions in muscle (MYF:MEF2, TBP:
MEF2, SRE:MEF2, SRF:TBP, RREB1:MEF2, PAX2:MEF2,
NF-kappaB:MEF2, TBP:TFAP2A) could be found in the
muscle-specific network from Yu et al., where MYE:
MEF?2 is one of the top three interactions. Here, the
central regulator is MEF2 which corresponds to our
central hub in muscle MEF2A. Since Yu et al. do not
analyze the interactions in hematopoietic stem cells,

direct comparison is not possible. We have therefore
examined bone marrow which is the most related tissue
including hematopoietic stem cells. 5 predicted interac-
tions (ELK1:GABPA, ELK1:CREB1, ELK1:NFY, ELKI:
MYBI1, NFY:VDR) from our network could be found in
the interacting TF pairs in bone marrow described by
Yu et al. Hu and Gallo [13] employ a functional conser-
vation approach to predict interacting TFs from tissue-
expressed genes. We could identify only two of our pre-
dicted TF pairs in liver (HNF1:PAX4, HNF1:SRY) and
one TF pair in skeletal muscle (PAX:TBP). One reason
for the small overlap may be the different predicted
central regulators in tissues. The liver hubs in Hu and
Gallo are CEBP, HNF3, and HNF4 whereas our main
liver hubs are HNF1A, HNF1B and HNF4A. Our cen-
tral hub in muscle MEF2A does not occur in the mus-
cle-specific network of Hu and Gallo. The agreement of
predictions between Hu and Gallo and Yu et al. is very
low too.
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We see two reasons why the overlap of our interac-
tions and those from Yu et al. is much larger than in
comparison to Hu and Gallo [13]. First, we use the
same set of tissue-specific genes as Yu et al. Second,
predictions of Yu et al. are much more numerous (e.g.
1052 for muscle and 202 for liver) such that the chance
to find some common TF pairs is much higher.

Conclusion

Tissue-specific gene expression is regulated by interac-
tions of multiple transcription factors. To better under-
stand how cells in tissues and developmental states
achieve their specificity, the identification of interacting
TFs regulating together the expression of their target
genes is necessary. Previous computational studies were
based either on common sequence features of promo-
ters [10-12] or on function conservation of interacting
TFs [13]. Although these studies make plausible predic-
tions, the mechanisms controlling tissue specific gene
expression are still not fully understood.

In this study, we presented a new method predicting
interactions between TFs. We used the predicted bind-
ing affinity information for single TF on promoters and
compared the ranked lists of the target genes for all
pairs of studied TFs. To identify the interacting pairs in
a tissue, tissue specificity information of the target genes
was included. We applied statistical testing in 3-way
contingency tables to predict TF interactions. The

number of interactions between TFs with similar bind-
ing sites in our prediction was reduced by focusing on
TF pairs with nonsimilar motifs. In total, we have iden-
tified 1079 significant TF pairs in 22 human tissues,
altogether 767 unique TF pairs. The majority (86.6%) of
TF pairs found had nonsimilar motifs. The validity of
discovered tissue-specific TF pairs was demonstrated by
both known protein-protein interactions and the tissue
expression of TFs. We have shown that known protein-
protein interactions are enriched (1.8- and 6.8-fold) in
the selected candidates with and without tissue specifi-
cation, respectively. The majority (60 - 70%) of predicted
tissue-specific factors were found to be expressed in the
studied tissue.

All tissue-specific factors were found just by the selec-
tion criterion from the statistical test, without any
knowledge about their functions in human tissues.
Furthermore, we have identified significantly enriched
gene functions related to the examined tissue which
support the hypothesis of the regulatory function of
these TFs in the tissue. Our predicted networks in
human tissues are characterized by one or two central
regulators with a high number of interactions. These
central hubs correspond to factors such as HNF1A,
HNF1B and HNF4A in liver or MEF2A and TBP in
muscle or NFYA and ELK1 in hematopoietic stem cells.
These have known regulatory function in the studied
tissue and an experimentally validated specifier/
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facilitator hub function by FANTOM Consortium [9].
Despite the successful predictions of novel pairs of
interacting TFs, our method could be improved. In gen-
eral, TFs with very similar motifs (which we excluded
from our prediction) can in reality jointly bind to the
DNA sequence and regulate the transcription of the tar-
get gene. However, our method is not able to distin-
guish between joint binding of both TFs and binding of
a single TF for such similar TFBS. Currently, we use a
simple definition of promoter regions. We could theore-
tically achieve much higher accuracy by using open
chromatin regions for various cell types. For our predic-
tions, we have used the groups of genes which are speci-
fic for the whole tissue. In general, many mammalian
tissues are highly heterogeneous and consist of different
types of cells which could be regulated by different com-
binations of TFs. Including cell-type-specific genes
would improve the accuracy of predicted interactions,
but since the cell-type groups include smaller numbers
of specific genes, the probability of having common spe-
cific genes at the top of the ranked lists will be even
smaller. A future experimental validation would provide
a measure of the specificity and sensitivity of our predic-
tions. Our findings have shown that comparing the
ranked lists of target genes results in plausible predic-
tions of interacting TFs in human tissues.

Additional material

Additional file 1: Table of all predicted interactions by tissue. Table
with all predicted tissue-specific TF pairs with their motif similarity, p-
value from the 3-way-contingency table test, shared co-factors and PPI
database evidence.

Additional file 2: Smooth scatterplot of p-values of the 3-way
contingency table test in liver and motif similarity measure.
Logarithm of the p-values of the 3-way contingency table test for TF
pairs in liver (vertical axis) vs. motif similarity measure ST (horizontal
axis). Red points and orange triangles denote experimentally shown PPIs
and trios with a known interacting co-factor, respectively.
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