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Abstract

Psychological and personality factors, socioeconomic status, and brain properties all con-

tribute to chronic pain but have essentially been studied independently. Here, we adminis-

tered a broad battery of questionnaires to patients with chronic back pain (CBP) and

collected repeated sessions of resting-state functional magnetic resonance imaging (fMRI)

brain scans. Clustering and network analyses applied on the questionnaire data revealed

four orthogonal dimensions accounting for 56% of the variance and defining chronic pain

traits. Two of these traits—Pain-trait and Emote-trait—were associated with back pain char-

acteristics and could be related to distinct distributed functional networks in a cross-valida-

tion procedure, identifying neurotraits. These neurotraits showed good reliability across four

fMRI sessions acquired over five weeks. Further, traits and neurotraits all related to the

income, emphasizing the importance of socioeconomic status within the personality space

of chronic pain. Our approach is a first step in providing metrics aimed at unifying the psy-

chology and the neurophysiology of chronic pain applicable across diverse clinical

conditions.

Introduction

Unraveling mechanisms of chronic pain remains a major scientific challenge. There is now

strong and convincing evidence that specific brain properties contribute to the risk of develop-

ing chronic pain and that the transition to chronic pain involves brain adaptations that, to a

large part, construct and mold the state of chronic pain [1,2]. Additionally, current theories

suggest that pain characteristics, pain-related disability, and responses to treatment are all par-

tially determined by psychological factors and/or personality properties [3], as well as parame-

ters related to socioeconomic status (SES) [4]. Although the biopsychosocial (BPS) perspective

is actively applied in the everyday clinical management of chronic pain [5], component
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properties that comprise the concept—namely biological processes (brain and body), psycho-

logical factors, and the impact of social factors on these components—have rarely been jointly

studied. Thus, the relative influence of these factors on each other, as well as their independent

contribution to the state of chronic pain, remains unknown. In its current form, the BPS

model is built on fragmented evidence taken from different disciplines, and—remarkably—

lacks integration between psychosocial components and underlying biology. Even though sub-

groupings of chronic pain types by psychological dimensions have been repeatedly formulated

[6–10], a systematic approach of linking such concepts with brain biology has, to our knowl-

edge, not been undertaken. Here, we unravel and interrelate components of BPS by combining

psychological, personality, and SES factors with measures of resting state functional connectiv-

ity to begin to define a unified perspective of chronic pain.

There is a large body of literature demonstrating that psychological and personality factors

are important contributors to chronic pain (e.g., the psychological components of BPS). Pain

catastrophizing [11] and fear of pain [12] represent strong predictors of chronic pain, whereas

pain acceptance is associated with resilience [13]. Moreover, neuroticism—one factor in the

five-factor model of personality [14]—has been shown to moderate the association between

catastrophic thinking and pain vigilance [15] and has been associated with substance abuse,

anxiety, and major depressive disorder [16,17]. In contrast, optimism is usually associated

with lower catastrophic thinking, higher pain acceptance, and better coping strategies [18].

Other psychological factors such as mindfulness or body awareness have also been linked with

improvements in pain, mood disturbance, and disability [19,20], as well as with better coping

strategies for managing chronic pain [21]. It is thus unsurprising that psychological factors are

usually considered better predictors of chronic pain disability than the actual injury itself [22].

Despite their pivotal role in chronic pain, a comprehensive multidimensional characterization

of psychological and personality factors in chronic pain remains unexplored. The first aim of

the current study was therefore to determine how the psychological factors believed to impact

persisting pain interacted with general personality factors to give rise to factors that define

chronic pain traits, in a chronic back pain (CBP) cohort.

The neurobiological underpinnings of chronic pain psychology/personality also remain rel-

atively unknown, as few studies have examined the association between such factors (usually

focusing on pain catastrophizing) and brain functional properties. For instance, pain rumina-

tion has been associated with stronger functional connectivity between the medial prefrontal

cortex and regions within the default mode network (DMN) in temporomandibular disorder

[23]. In migraines, seed-based analyses show that pain catastrophizing is associated with func-

tional coupling between several brain regions (posterior cingulate cortex with the dorsolateral

prefrontal cortex and the insula with the hippocampus) [24]. In fibromyalgia, pain catastro-

phizing has been associated with increased dorsolateral prefrontal cortex activity in anticipa-

tion of pain [25]. However, these studies tested limited psychological parameters in association

with brain properties from only a few predefined regions of interest. Here, our secondary aim

was to decode traits of chronic pain using resting-state functional connectivity magnetic reso-

nance imaging (fMRI), with the goal of determining if and how chronic pain traits are repre-

sented in patterns of brain activity, bridging the psychology of pain with its neurobiological

framework, which we define as neurotraits. Thus, our primary hypothesis was that chronic

pain traits can be determined from distributed neural representations.

Our third aim was to determine the influence of social components on traits and neuro-

traits by examining the association of SES with these dimensions. Many studies show that

lower SES is associated with higher prevalence of musculoskeletal pain, neuropathic pain,

ulcers, and sciatica across Europe and North America [4]. Consistently, the British Birth

Cohort study revealed that lower SES during adulthood is associated with shoulder, forearm,
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low back, knee, and chronic widespread pain [26]. Consistent with the BPS model, SES and

occupational hazards are important risk factors for the onset of back pain and pain disability,

independent of injury occurrence or type [27,28]. We therefore hypothesized that SES mea-

sured with self-reported income, years of education, sex/gender, and race/ethnicity will be

linked to the traits and underlying neurobiology.

Our results indicate four dimensions comprising chronic pain traits, only two of which

were associated with back pain characteristics of CBP. We therefore studied brain functional

connectivity networks for these two dimensions and demonstrate that they can be represented

from distributed functional networks (neurotraits). These networks were reliable in repeat

brain scans. Confirming our starting hypothesis, SES was associated with chronic pain traits

and their related functional networks.

Results

This study is based on data collected in the setting of a Randomized Control Trial (RCT)

designed to study placebo pill response in chronic pain patients [29]. Patients with CBP

enrolled in the RCT visited the lab on six occasions with four visits including brain-imaging

sessions (Fig 1A). A total of 108 CBP patients were included. Group 1 included 62 CBP that

completed all six visits of the RCT and were used to determine the components of personality,

derive underlying patterns of brain connectivity. Group 2 included 46 CBP patients that com-

pleted all questionnaires at V1 but did not complete the brain imaging sessions for various rea-

sons, including claustrophobia, meeting an exclusion criterion at a later point in the trial, or

dropping out of the study. The demographics for these patients can be found in S1 Table. For

each figure, numerical data are available in S1 Data, and a description of the analyses and P val-

ues are reported in S4 Table.

Psychology/personality traits of chronic pain

We first sought to define the psychology/personality factors of chronic pain based on

responses to a broad battery of questionnaires in two CBP cohorts (Group 1 and Group 2; S2

Table). We applied clustering and network analysis methods to the covariance matrix con-

structed from responses to questionnaires that surveyed concepts related to chronic pain; con-

structs of personality; and emotional, attentional, and motivational properties, all of which are

thought to influence traits of chronic pain. We profiled the CBP patients using the following

measures: pain anxiety (PASS), pain catastrophizing (PCS), pain sensitivity (PSQ), pain accep-

tance (CPAQ), emotion regulation (ERQ), attentional capacities (ACS), attentional capacities

in the presence of emotions (EACS), optimism (LOT-R), sensitivity and aversion to loss

(LAQ), positive affect (PANAS/p), interoceptive awareness capacities (MAIA), mindfulness

capacities (FFM), and personality traits (NEO-5: neuroticism, extraversion, openness, consci-

entiousness, and agreeableness). The associations among subscales are presented in Fig 1B for

both groups of patients. Principal component analysis (PCA) was used to order the 36 sub-

scales in Group 1 and subsequently used to organize the questionnaires for Group 2 in Fig 1B.

As shown in the figure, the pattern of covariance was very similar in the two groups.

We used Group 1 data to construct a network from the covariance matrix of 36 subscales.

This network exhibited high-dimensional topology, as community clustering of the subscales

segregated into four distinct communities (Fig 1C). PCA analysis applied on the covariance

matrix for Group 1 also identified four orthogonal principal components with eigenvalues >

2.0 and explained more than 5% of the variance (representing the elbow in the scree plot, S1A

Fig). The four components together explained 56% of the variance. PCA performed for Group

2 data identified the same four components as seen for Group 1 data, explaining 57% of the

Functional connectivity-based traits of chronic pain
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Fig 1. Psychological and personality factors identify four chronic pain traits. A. The study design consisted of six visits to the lab, with four of these including brain

imaging sessions. Questionnaires were administered at V1 and pain was manipulated with placebo treatment (T1) followed by a washout period (W1), repeated twice

(T2, W2). Sixty-two patients completed all six visits (Group 1) and 46 patients completed the questionnaires at V1 but did not finish the rest of the study (Group 2). B.

Each covariance matrix (Group 1 and Group 2; ordered based on PCA results for Group 1) showed associations between the questionnaire outcomes used to probe CBP

patients’ profiles (r values shown in bar from blue to red). C. A network constructed from the Group 1 covariance matrix displays the strongest correlations (top 10%)

and topological properties indicated the presence of four communities. Size of the nodes are scaled based on degree count. D. PCA performed on all 36 questionnaire

outcomes (Group 1) identified four orthogonal components. Given the observed loadings and network clustering, we label these components as: Pain-trait; Character-

trait; Aware-trait; and Emote-trait. Only components loading>0.4 or<−0.4 are depicted. Abbreviations of the psychological factors: PASS and its four subscales:

Avoidance (pass/a), Cognitive (pass/c), Fear (pass/f), and Physiological (pass/p); PCS and its three subscales: Rumination (pcs/r), Magnification (pcs/m), and

Functional connectivity-based traits of chronic pain
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variance, validating the four dominant psychological dimensions related to chronic pain.

These components are dubbed “chronic pain traits,” which we label based on the component

loadings. Component 1, Pain-trait, was dominated by factors emphasizing the psychological

toll of chronic pain: high positive loadings for fear of pain, pain catastrophizing, and pain anxi-

ety and a high negative loading for pain acceptance. Component 2, Character-trait, included

mainly positive personality traits such as extraversion, conscientiousness, and openness. Com-

ponent 3, Aware-trait, included various awareness capacities and abilities to regulate emotions.

Component 4, Emote-trait, included diminished neuroticism, lower sensitivity to loss, high

optimism, strong attentional control in the presence of emotion, and high aptitude for mind-

fulness. Similar results were obtained in Group 2, for which the PCA identified the same four

domains with factor loadings similarly as seen in Group 1 (S1B Fig). Although network and

PCA analyses resulted in similar results, there were also subtle differences in the components

identified by each procedure; thus, we use both representations in subsequent analyses. Over-

all, we identify four validated dimensions comprising traits of chronic pain in CBP patients.

Unsurprisingly, the obtained pattern indicates that pain-related properties comprise the domi-

nant dimension, while the other three dimensions comprise positive domains of character,

awareness, and emotion, all of which would theoretically counterbalance or modulate the pri-

marily negative pain-related dimension.

Associations between chronic pain traits and back pain characteristics

We examined the interrelationship between the four trait dimensions of chronic pain with the

intensity, qualities, and negative affective characteristics of the back pain experienced by our

CBP patients. Our aim was to link specific traits to pain aspects of CBP. In both groups, we

assessed back pain and pain-related negative affect using questionnaires and ratings. The pain

intensity measurements included a series of numerical scales: out-of-clinic ecological momen-

tary assessments (EMAs) of back pain intensity entered twice a day using smartphone technol-

ogy, a verbal recall of the pain experienced over the last seven days (Memory) and an in-lab

numeric rating scale (NRS) of the current pain. Pain qualities were assessed using the McGill

pain questionnaire—sensory (MPQ/s) and affective (MPQ/a) subscales—and PainDetect. Neg-

ative mood and depressive symptoms were assessed using the negative affect score from the

Positive and Negative Affect Scale (PANAS/n) and the Beck Depression Index (BDI-1a).

Finally, physical health was also evaluated (12-item short-form survey/physical health [SF-

12p]). The absolute levels in these pain measurements were equivalent between the two groups

with the exception of SF-12p that was higher in Group 1. Baseline levels for these measure-

ments are presented for both groups in S3 Table.

The correlation matrix between trait dimensions and pain measurements was calculated for

visit 1 (V1) and visit 2 (V2) in Group 1 (Fig 2A) and for a smaller set of pain measurements for

visit 1 in Group 2 (Fig 2B). Obtained results indicate that Pain-trait was positively related to

almost all clinical measurements capturing back pain properties at V1 and V2, while Emote-

Helplessness (pcs/h); CPAQ and its two subscores: Activity Engagement (cpaq/a) and Pain Willingness (cpaq/pw); MAIA: Not Distracting (maia/nd), Attention

Regulation (maia/a), Emotional Awareness (maia/e), and Self-Regulation (maia/sr), Noticing (maia/n), Not Worrying (maia/nw), Body Listening (maia/bl), and

Trusting (maia/t); PSQ and its two subscales: Painful (psq/p) and Non-Painful (psq/np); PANAS with Positive (panas/p) subscale; FFM with its five subscales: Observe

(ffm/o), Describe (ffm/d), Act with Awareness (ffm/a), Non-Judge (ffm/nj), and Non-React (ffm/nr); ERQ with its Reappraisal (erq/r) and Suppression (erq/s) subscales;

ACS; EACS; LOT-R; and LAQ. For each figure, the numerical data are available S1 Data, and a description of the analyses and P values are reported in S4 Table. ACS,

Attentional Control Scale; CBP, chronic back pain; CPAQ, Chronic Pain Acceptance Questionnaire; EACS, Emotional Attentional Control Scale; ERQ, Emotional

Regulation Questionnaire; FFM, Five Facets of Mindfulness; LAQ, Loss Aversion Questionnaire; LOT-R, Life Orientation Test, Revised version; MAIA,

Multidimensional Assessment of Interoceptive Awareness; PANAS, Positive and Negative Affect Scale; PASS, Pain Anxiety Symptoms Scale; PCA; PCS, Pain

Catastrophizing Scale; PSQ, Pain Sensitivity Questionnaire.

https://doi.org/10.1371/journal.pbio.3000349.g001
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trait was anticorrelated primarily to the negative affective characteristics of CBP (Fig 2A,

Group 1). Similar associations were also observed in Group 2 (Fig 2B). Character-trait and

Aware-trait showed no reliable relationships with pain or negative affect measurements. Con-

sensus analysis between visits and groups confirmed these results (Fig 2C). Thus, we uncov-

ered two traits associated with back pain properties, in opposite directions and with distinct

patterns.

Fig 2. Relating trait dimensions to pain characteristics. Correlation matrices indicate the extent of the association of each trait with back pain intensity (EMAs,

Memory, NRS), quality (MPQs/a, PainDetect), and negative affect (PANAS/n, BDI). A. In group 1, Pain-trait scores were related to almost all pain characteristics queried

at V1 and V2, while Emote-trait scores were negatively related to negative affect at V1 and V2. B. Consistent findings were observed in group 2 (data only available at V1).

C. Consensus was obtained when the effects were replicated within participant (across V1 and V2 in Group 1) and between cohort of patients (Group 1 and Group 2).

The consensus map shows that Pain-trait related to almost all pain assessments and Emote-trait related specifically to negative affect. The consensus across visits and

groups was established using uncorrected P values �P< 0.05; ��P< 0.01; ���P< 0.001 (significant even after Bonferroni correction for all comparisons [56 comparisons

in Group 1 and 28 comparisons in Group 2]). For each figure, the numerical data are available S1 Data, and a description of the analyses and P values are reported in S4

Table. BDI, Beck Depression Index (only collected at V1); EMA, ecological momentary assessment (phone app daily pain ratings); NRS, numerical rating scale; MPQa,

McGill pain questionnaire/affective; MPQs, McGill pain questionnaire/sensory; PANASn, Positive and Negative Affect Scale/negative; SF-12p, 12-item short-form

survey/physical health.

https://doi.org/10.1371/journal.pbio.3000349.g002
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Finally, we assessed if the expression of these chronic pain traits was related with how long

individuals have been suffering from persisting pain; we observed no correlation between pain

duration and any traits (Pearson correlations; all P values > 0.24).

Brain functional circuits defining neurotraits for Pain-trait and Emote-

trait

Next, we used a connectomics-based [30,31] approach to examine if the two chronic pain traits

associated with back pain properties can be decoded from functional networks using resting

state fMRI in a cross-validation procedure. We used connectome-based modeling of func-

tional connectivity to determine if brain networks underlying chronic pain traits can be identi-

fied based on the Shen et al. protocol [32]. Two different parcellation schemes were used to

test the robustness of our results. First, we used the Power brain parcellation (see Methods

[33]) and computed pairwise Pearson correlation coefficients between the time courses of each

possible pair of 272 nodes; these generated a single-subject connectivity matrix. We then used

a 3-fold cross-validation procedure, for which patients were divided into training (2/3 of

patients) and testing (1/3 of the patients) sets. The training set was used to select features asso-

ciated with each trait score, performing robust regressions between each link of the connectiv-

ity matrices with the specific trait score (P< 0.05). A leave-one-out procedure was used within

the training set to reduce the number of connections to the ones correlating with the trait in

each of the n − 1 iterations. Once the stable connections were identified, a summary statistic

was calculated from the sum of all edges (z(r)) positively correlating with the trait and the sum

of all edges (z(r)) negatively correlating with the trait, separately. Of note is that the edges posi-

tively correlating with the trait are not necessarily positive functional connections and vice

versa for edges negatively correlating with the trait. No other approach was tested to determine

brain circuitry associated with chronic pain traits.

The results of these correlates were validated using the left-out patients of the test set. The

sum of positive and negative z(r) values from the same set of edges identified in the training set

was calculated in the patients of the test set to determine their traits. The normalized value of

each subject was correlated with their actual trait. This cross-validation procedure was

repeated for the three folds, rotating and substituting the third of the patients used in the test

set. A permutation test (n = 10,000) was used to determine significance. Fig 3A shows that

three patterns of functional connectivity were successfully cross-validated using this proce-

dure. The Pain-trait score was determined from both positive (r2 = 0.14; P = 0.002) and nega-

tive edges (r2 = 0.10; P = 0.01), and the Emote-trait score was determined only from positive

edges (r2 = 0.08; P = 0.02). Because the features selected in the training set differed across the

three folds, a single set of consensus weights was generated from averaging the links across the

folds. Thus, an edge selected across all three folds was provided a weight of 1.0, an edge

selected in two folds was provided a weight of 0.66, and an edge selected in one fold was pro-

vided a weight of 0.33. Links persistent across the three folds were labeled “most stable links”

and displayed (Fig 3B, 3D and 3F).

All weighted links were organized based on their connectivity within and between the 14

communities of the human brain. The full connectivity matrices for all links related to the two

traits are also shown (Fig 3C, 3E and 3G). Pain-trait scores were determined from a total of

1,326 weighted positive links: mainly between DMN and sensorimotor, cingulate, salience,

and ventral attention communities (Neurotrait 1); and 882 weighted negative links: mainly

between sensorimotor, DMN, memory, visual, frontoparietal, and ventral attention communi-

ties (Neurotrait 2). The Emote-trait scores were determined from a total of 1,105 weighted pos-

itive links: between DMN, visual, sensorimotor, salience, and frontoparietal communities

Functional connectivity-based traits of chronic pain
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(Neurotrait 3). Thus, highly distributed networks comprise the neurotraits related to the two

chronic pain traits specifically reflecting CBP properties.

Because the traits were orthogonalized with the PCA, the edges showed little overlap

between neurotraits. There was an 8% (108/1326 edges) overlap between Neurotrait 1 and

Neurotrait 3 and a 6% (50/822 edges) overlap between Neurotrait 2 and Neurotrait 3. By defi-

nition, there was no overlap between Neurotrait 1 and Neurotrait 2. Further, the Emote-trait

was not correlated with either Neurotrait 1 (r = 0.05; P = 0.71) or Neurotrait 2 (r = −0.01;

P = 0.92) and the Pain-trait was not correlated with Neurotrait 3 (r = 0.09; P = 0.51).

The robustness of our results was then tested by interrogating a different brain atlas [34].

The same cross-validation procedure showed that brain networks constructed from the two

different parcellation schemes were similar and robust for tracking Pain-trait and Emote-trait

(S2 Fig). These results reveal distinct and validated neural networks corresponding to the two

chronic pain-related traits.

Neurotraits are reliable across fMRI sessions

All analyses presented thus far were performed on data collected at V1 (questionnaire data) or

V2 (pretreatment brain imaging and questionnaire data). Next, we examined the stability of the

three identified neurotraits by assessing functional connectivity patterns across the four longitu-

dinal brain imaging sessions. The sum of positive and negative z(r) values from the same sets of

edges initially identified at V2 (Fig 4A) was calculated for the resting state fMRI data collected

at V3, V4, and V5 (Fig 4B). The pattern of functional connectivity calculated from V3–V5—

neurotraits derived weeks after assessing the corresponding traits—successfully tracked patients’

scores on Pain-trait and Emote-trait. We further quantify the reliability of the neurotraits by

computing the intraclass correlation (ICC) for each neurotrait [35]. The average ICC was Neu-

rotrait 1: 0.87 (95% CI: Lower: 0.80; Upper: 0.92); Neurotrait 2: 0.85 (95% CI: Lower: 0.78;

Upper: 0.91); Neurotrait 3: 0.83 (95% CI: Lower: 0.74; Upper: 0.89). Together, the neurotraits

showed good reliability across the four brain-imaging sessions collected weeks apart.

Associations between neurotraits and back pain characteristics

We directly tested the associations between the identified brain networks (Neurotraits) and the

clinical characteristics of the CBP patients (Group 1). We used data reduction on pain measure-

ments (ratings and questionnaires, parameters shown in Fig 2A) to limit the number of analy-

ses. We applied PCA and derived three chronic pain related components, together explaining

57% of the variance, and representing: 1) pain intensity, 2) pain qualities, and 3) negative affect

and physical health (Fig 5A). Correlations and partial correlations were used to assess the associ-

ations between the neurotraits and these three chronic pain defining components.

To increase the reliability of our results, we averaged each neurotrait across the four rest-

ing-state fMRI sessions. Fig 5B shows that the three neurotraits correlated with the pain inten-

sity and that Neurotrait 2 and Neurotrait 3 correlated with the affect/health component.

However, only Neurotrait 1 with pain intensity and Neurotrait 3 with affect/health survived

multiple comparisons. There were no significant associations between Neurotraits and the

Fig 3. Resting state functional connectivity determined Pain-trait and Emote-trait. A. Resting-state fMRI was used to construct functional connectivity covariance

matrices, and a 3-fold cross-validation procedure was implemented to identify links related to trait scores. Scatterplots show the normalized score of each individual and

their chronic pain traits when they were in the left-out fold. Pain-trait was determined from both positive and negative links and Emote-trait could be determined only

by positive but not negative links. B, D, F. The most stable links were the common links consistently selected by the models across all three folds. C, E, G. The matrices

display within- and between-community connections of all links, irrespective of their weights, when the brain networks are represented by 14 communities. The full

connectivity profile for each trait is also shown across all 272 nodes. �P< 0.05; ��P< 0.01. For each figure, the numerical data are available S1 Data and a description of

the analyses, and P values are reported in S4 Table.

https://doi.org/10.1371/journal.pbio.3000349.g003
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pain quality. Testing the association between the chronic pain components and the Neurotraits

from each brain imaging session separately showed relatively consistent results, although the

effect on affect/health was no longer present at visit 5 (Fig 5C).

Next, a series of partial correlations were performed to fully understand the interplay

between the Neurotraits. The unique contribution of Neurotrait 1 and Neurotrait 2, after con-

trolling for the effect of Neurotrait 3, showed a strong association with affect/health (Fig 5D).

The unique contribution of Neurotrait 3, after controlling for Neurotrait 1 and Neurotrait 2,

also showed a strong association with affect/health (Fig 5F). These findings survived multiple

comparisons and were consistent across visits when tested separately (Fig 5E and 5G). Our

results suggest a weak nonspecific association between the three Neurotraits and the pain

intensity, which mostly dissipated when applying partial correlations. On the other hand, the

partial correlations revealed strong and specific associations between neurotraits and affect/

Fig 4. Stability assessment of neurotraits from repeat brain scans over 5 weeks. A. Strength of relationships between weighted patterns of connectivity that were

trained at V2 with corresponding psychology/personality trait scores. B. Relationship between neurotraits (derived from connectivity based on subsequent brain scans)

and trait scores determined by questionnaires at V1. The trait–neurotrait relationship is preserved. �P< 0.05; ��P< 0.01; ���P< 0.001. For each figure, the numerical

data are available S1 Data, and a description of the analyses and P values are reported in S4 Table.

https://doi.org/10.1371/journal.pbio.3000349.g004
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health. These findings are consistent with Pain-trait and Emote-trait being independently

associated with negative affect and physical health, implying that the brain networks were

directly related with the clinical characteristics of the patients.

Associations between traits, neurotraits, and socioeconomic status

The biopsychosocial components of chronic pain have repeatedly been linked to SES. Here, we

measured SES using self-reported income (US dollars earned yearly), race/ethnicity, sex/

Fig 5. Association between neurotraits and pain measurements. A. Data reduction was performed to extract three principal

components reflecting pain intensity, pain quality and affect/physical health measured at visit 1 and visit 2. The component matrix

displays the correlations between the pain measurements and each component. B. The mean neurotrait represents the averaged sum

of the positive and the negative z(r) values across all four visits (n = 56). The covariance matrix shows an association of the neurotraits

with pain intensity and affect/health but not with pain quality. C. The covariance matrices show the associations between pain

components (visit 1 and visit 2) and the neurotraits extracted at each visit separately (visits 2–5). D. Partial correlations show that

Neurotrait 1 and 2 were strongly correlated with affect/negative health when controlling for Neurotrait 3. E. The effect was reliable

when extracting the neurotraits from separate visits. F. Neurotrait 3 was also strongly correlated with affect/negative health when

controlling for Neurotrait 1 and 2. G. The effect was reliable across each visit. +P = 0.053; �P< 0.05; �� P< 0.01 (significant after

Bonferroni corrections for nine comparisons); ���P< 0.001. For each figure, the numerical data are available S1 Data, and a

description of the analyses and P values are reported in S4 Table.

https://doi.org/10.1371/journal.pbio.3000349.g005
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gender, and years of education separately. The years of education and the race/ethnicity (but

not sex/gender) were strongly associated with income (S3 Fig) but not with the traits or neuro-

traits (ps> 0.13). The income was most strongly associated with chronic pain traits (when

controlling for race/ethnicity and years of education), as patients reporting income greater

than 25,000 expressed a lower level of Pain-trait (Fig 6A). This finding was replicated in Group

2 (Fig 6B). Moreover, the effect was not limited to psychological factors, as income was

strongly linked with both positive and negative connections of Neurotrait 1 and Neurotrait 2

(Fig 6C), showing the association between SES and the individual’s psychology and underlying

neurophysiology. As displayed in Fig 6D, income mostly correlated with the subscales defining

the Pain-trait and Emote-trait, as lower income was linked with higher anxiety and catastro-

phizing and higher income linked with higher optimism.

Associations between traits and responses to treatment

We next assessed how the uncovered chronic pain traits can potentially be related with

responses to treatment. In the current study, we explored how the traits related to the response

to placebo pills in the settings of a RCT. We calculated the magnitude of placebo response as

the strongest response (% change in pain) in either of the two treatment periods, as was

Fig 6. Association between socioeconomic factors and traits and neurotraits. A. Income differentiated patients on Pain-trait after

controlling for ethnicity and years of education (while the inverse was not true), suggesting that socioeconomic status (rather than ethnicity or

years of education) contributed to Pain-trait 1. Annual income of>25,000 seemed to represent a socioeconomic threshold distinguishing

vulnerability from protection. B. Applying the 25,000 threshold yielded similar results in Group 2. C–D. Self-reported income further

differentiated Neurotrait 1 and Neurotrait 2 (marginally significant; P = 0.06). E. Spearman correlations were used to display subscales

associated with income (only significant relations are displayed (uncorrected P< 0.05). All abbreviations are defined in Fig 1. Post-hoc

comparisons were Bonferroni corrected for six comparisons &P� 0.1; �P< 0.05. For each figure, the numerical data are available S1 Data and a

description of the analyses and p-values are reported in S4 Table.

https://doi.org/10.1371/journal.pbio.3000349.g006
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previously done [29]. Interestingly, the two traits reflecting back pain properties of CBP, Pain-

trait, and Emote-trait, were unrelated to the placebo response. In contrast, Character-trait and

Aware-trait predisposed patients to the future magnitude of placebo response (S4 Fig). The

current result highlights the fact that chronic pain traits unrelated to pain measurements are

still relevant when studying other characteristics of patients, such as the likelihood of respond-

ing to a specific treatment.

Discussion

Current work is aimed towards defining the psychological/personality traits of chronic pain

and integrating these properties with brain function. We identified four chronic pain traits,

which accounted for about 60% of the variance generated across a high-dimensional personal-

ity/psychology space (36 subscales from 13 questionnaires), validated in a separate sample.

Only two of these traits were associated with the pain characteristics, in specific and opposing

patterns. These traits were used to identify underlying brain circuitries (neurotraits), which

were relatively stable over multiple weeks. Identified traits and neurotraits showed an associa-

tion with socioeconomic factors—specifically, income—with the patients reporting higher

income being more protected. Thus, our study provides a characterization of the chronic pain

patient along psychological, neurobiological, and social dimensions, all underpinning specific

traits and their derived brain networks.

Here, we advance a novel approach for deriving multivariate dimensions of chronic pain.

By interrogating patients within a high-dimensional personality/psychology space—spanning

the domains of attitudes toward pain (acceptance, catastrophizing, anxiety, sensitivity), intero-

ceptive awareness, emotional regulation, and attentional control, mindfulness skills, personal-

ity (extraversion, agreeableness, conscientiousness, neuroticism, and openness), optimism,

motivation (loss aversion), and positive affective state—and then applying dimensionality

reduction techniques (cluster and network analyses), we uncover primary chronic pain traits

and expound on their properties. Given that the dimensionality reduction methods used here

depend on the input parameter space and the size of the population used, obtained results

remain somewhat arbitrary and one worries about missing critical dimensions. Nevertheless,

our ability to validate the effects of traits on chronic pain measurements in an independent

group of patients and show that the uncovered neurotraits were relatively stable across four

consecutive brain scans enhances confidence that the studied dimensions are robust, meaning-

ful, and biologically grounded characteristics at least for neuropathic chronic back pain.

Traits of chronic pain

The current study systematically delineates the state space of the biopsychosocial model for

chronic pain. In this regard, the specific terminology that we invoke aims to highlight the limits

of the biopsychosocial model as explored here. Although the biopsychosocial model has been

advocated for over 30 years and is widely used in clinical pain settings (mainly in multidisciplin-

ary pain management programs) [36–38], it still remains a poorly-defined concept [39].

Here, we begin to better understand and depict the critical biopsychosocial elements for

CBP. Components of Pain-trait are all considered fundamental constituents of the biopsycho-

social model. They have been repeatedly shown to be important contributors to chronic pain,

and even seem to determine the analgesic efficacy of diverse therapies (topical or oral analge-

sics, cortisone and other injectables, surgical outcomes, and psychosocial treatments like cog-

nitive behavioral therapy) [39]. The next two factors, Character-trait and Aware-trait, reflect

positive character as well as awareness and emotional regulation traits and showed no consis-

tent relationship with back pain properties. The fourth, Emote-trait factor, reflects higher

Functional connectivity-based traits of chronic pain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000349 August 20, 2019 13 / 24

https://doi.org/10.1371/journal.pbio.3000349


optimism, mindfulness capacities, and lower neuroticism and loss aversion, and it was

inversely related with negative affect. Thus, factors 2–4 seem to counterbalance the aversive

toll of chronic pain (factor 1) and as such may be an important compensatory mechanism that

patients use to tolerate the persistent CBP state (diminishing their perceived disability while

living in chronic pain). From this viewpoint, Emote-trait specifically seems to offset and coun-

teract the negative emotional impact of chronic pain. Moreover, given that factors 2–3 prede-

termined response to placebo treatment, and since we have shown (based on this same data

[29]) that placebo response is predetermined from personality and brain anatomy and func-

tional connectivity, we propose that the trajectories of personality reorganization with devel-

opment of chronic pain, that is the interplay between factor 1 and factors 2 and 3, in turn

determines CBP placebo response types.

Throughout this manuscript, we refer to the PCA factors comprising psychological and per-

sonality outcome measures as “traits.” Three of these factors (2–4) are composed of fundamen-

tal personality attributes and emotional characteristics observed in the population at large and

are unlikely to represent risk factors for developing CBP, as no such evidence has been

described in the past and the concept makes little mechanistic sense. The pain-related factor is,

however, comprised of outcomes specific to chronic pain patients, which would by definition

be changing over time, as pain transitions from an acute to a chronic condition (in this phase

perhaps all four factors may be more fluid and reorganizing, paralleling brain reorganization).

Further, given that chronic back pain is a negative affective condition that can last for decades

or even a lifetime, associated dominant personality factors must be considered stable and thus

traits but may also be undergoing fluctuations in response to new experiences painful and oth-

erwise. We propose that the identified factors should be “cardinal” or “central” traits of chronic

back pain as we expect that they dominate and shape these patients’ everyday behaviors [40].

Still, the approach raises new and critical questions that require further study. First, there is

a general consensus that the human population at large is composed of five broad personality

traits, also known as the Five-Factor-Model [14]. Our results show that most of these traits are

clustered together in CBP (Character-trait), while other aspects (Emote-trait) become differen-

tially related to chronic pain. Importantly, while subjective well-being is observed in individu-

als scoring high in extraversion and low in neuroticism in the population at large [41], in CBP,

these characteristics load on orthogonal factors (that is, they vary independently) and relate to

distinct properties. How the CBP traits (and their interrelationships) change and congeal in

the transition from acute to chronic pain is unknown and will be exciting to explore. It will

also be important to study the role of traits and individual differences in traits in the context of

treatments for chronic pain. Such knowledge would be important to know from a risk-man-

agement viewpoint; concurrently, knowledge regarding malleability of these traits could pro-

vide targets for psychological or cognitive behavioral interventions. Second, we do not know

the extent of invariance in the identified traits across different clinical chronic pain conditions

(e.g., osteoarthritis, fibromyalgia, phantom pain, complex regional pain syndrome, pelvic pain,

etc.), many of which are known to differ in their underlying biology (e.g., somatic versus vis-

ceral conditions). We also do not know how the covariance (network architecture) between

these traits may change after different kinds of treatments or therapies. Further studies explor-

ing these issues are certainly warranted.

Neurotraits of chronic pain

Data-driven methods provide an unbiased and optimal way to map distributed brain represen-

tations for complex phenomena [42], and such an approach is especially appropriate when

studying chronic pain since recent evidence indicates that pain patients exhibit a disruption of
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functional connectivity throughout the cortex [43]. We show that Pain-trait and Emote-trait

can be determined from distributed patterns of functional connectivity in left-out-patients.

The identified network (neurotraits) were validated using two independent brain atlases,

showed good reliability across four brain imaging sessions, and directly related with the clini-

cal pain measurements. Unsurprisingly, identified networks (neurotraits) involved brain

regions not necessarily related to acute or chronic pain. The networks did still include a large

number of connections that included the prefrontal cortex and the DMN, especially Neurotrait

1, consistent with earlier evidence showing involvement of these regions in chronic pain and

catastrophizing [23,44–46].

Our results support the existence of multiple brain systems contributing and modulating the

chronic pain experience. These systems involve different circuitry representing a different mixture

of psychological factors and personality traits. This is in accordance with the literature indicating

that several systems may contribute to chronic pain. For instance, several studies have indicated

that the DMN linked with pain catastrophizing determines pain intensity [23,44–46], whereas the

mesolimbic system linked with reward/punishment modulates pain perception and determines

risk for transition to chronic pain [47–51]. Accordingly, we demonstrate that psychological com-

ponents of Pain-trait (pain catastrophizing, anxiety, acceptance) determined vulnerability or pro-

tection (association with all pain measurements) and Emote-trait (neuroticism, sensitivity to loss,

optimism, and mindfulness capacities) determined resilience (association with negative affect and

physical health). Furthermore, we show that such a concept of resilience is complex and can be

determined by multiple independent traits and neurotraits. Thus, these findings suggest multiple

dimensions of personality interacting to determine unique chronic pain experiences that each

have their own biology. Future studies should also incorporate neuroanatomical and structural

brain properties, as these factors may further enhance the explanatory power of the neurotraits in

relation to corresponding psychological/personality traits of CBP.

Socioeconomic influences on traits and types of chronic pain

Chronic pain traits and neurotraits were specifically associated with income. One may con-

clude that these are at least partially interlinked with environmental factors beyond the SES

variables studied here to also include upbringing, culture, and politics. Our results replicate

previous research findings showing that lower incomes related with higher pain scores but also

increased disability resulting from chronic pain [52]. Importantly, SES was most strongly

linked with subscales defining the traits of patients, as income correlated with components of

Pain-trait (catastrophizing and anxiety of pain) and Emote-trait 4 (optimism). Moreover, the

association between income with Neurotrait 1, and Neurotrait 2 further enhances confidence

in the consistency and interpretability of the identified brain networks reflecting the traits.

Thus, the link between income and our traits provides insights into the social component of

the biopsychosocial model and further substantiates the idea that chronic pain experience is

not only rooted in biology but also intimately embedded in society.

In an earlier preprint version of this manuscript (https://www.biorxiv.org/content/10.1101/

421438v1), we reported on deriving subtypes (which we defined as neuropsychotypes) of CBP

based on clustering the CBP patients using neurotrait measurements. Further analyses (as sug-

gested by a reviewer) indicated that the subtypes were not stable, pointing that such categoriza-

tions were arbitrary. Therefore, these results were removed in this version of the manuscript.

Pitfalls and limitations

The current study included cross-validation of the neurotraits, assessment of within-subject

robustness of neurotraits, and a validation cohort without brain imaging. Despite these
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strengths, the total number of subjects remains relatively small (n = 108: n = 62 with brain

imaging, and n = 46 without brain imaging). Further, patients were excluded if they showed

moderate or severe depressive symptom severity, which may influence the generalizability of

the results. Moreover, the biological variables were restricted to resting state functional con-

nectivity derived from brain imaging, whereas variables from the periphery or central spinal

processing were not included. Finally, the social variables were restricted to sex/gender, race/

ethnicity, years of education, and income, while other variables such as working environment,

city living, marital status, and access to healthcare were not included or collected, even though

they likely also play a role in the expression of pain traits or neurotraits. Therefore, future stud-

ies should include additional variables to fully examine the interplay between the neurobiolog-

ical, psychological, and social components of chronic pain.

Conclusions

We advance a methodology for identifying traits in neuropathic CBP, but the dimensions used

to develop the trait space are globally relevant to other chronic pain conditions. Besides pro-

viding a comprehensive specification of the biopsychosocial properties of CBP, the approach

provides tools and metrics that enable direct comparisons between such conditions regarding

the linkage between neurophysiology and the psychology of chronic pain. Future studies are,

however, necessary to replicate the identified traits and neurotraits, test generalizability across

chronic pain conditions, and determine their clinical utility.

Material and methods

Ethics statement

The research has been approved by the Northwestern University IRB (ID: R1018-STU80585)

in accordance with the principles expressed in the Declaration of Helsinki. Written informed

consent was obtained for each participant.

Study design

This study was conducted in the setting of a clinical RCT specifically designed for assessing the

placebo response (ClinicalTrials.gov: NCT02013427). The results of the placebo response have

been previously published [29], and this is a reanalysis of the same data set. The study con-

sisted of six visits spread over approximately 8 weeks, including a baseline monitoring/screen-

ing period and two placebo treatment periods, each followed by a washout period. A full

description of the study procedure on each visit, as well as the results of the placebo manipula-

tion, can be found in [29]. Here, we restricted our initial analyses to questionnaire and brain-

imaging data collected prior to placebo treatment. However, the brain imaging data acquired

after the placebo treatment was used to test the stability of cross-validated patterns of func-

tional connectivity.

Study population

One hundred twenty-nine participants with CBP were initially recruited from the general pop-

ulation via advertising in the community and clinical referrals via hospital databases. Patients

were assessed for general eligibility via self-report using a screening intake form that the lab.

Individuals had to be 18 years or older with a history of lower back pain for at least 6 months.

This pain should have been neuropathic (radiculopathy confirmed by physical examination

was required), with no evidence of additional comorbid chronic pain, neurological, or psychi-

atric conditions. The pain level had to be of at least 5/10 during the screening interview, and
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the average pain level from the smartphone app needed to be higher than 4/10 during the base-

line rating period. Patients with BDI score > 19 were excluded from the RCT. Finally, clinical

measurements taken at V1 were required to be within the pre-specified healthy range [29] and

all participants passed the MRI safety screening requirements at each scanning visit.

Of the enrolled 125 patients, 63 chronic pain patients completed the study. One of these

patients was removed from the brain imaging analyses because it failed quality control (see

below). Forty-seven additional patients completed all questionnaires from V1, but did not

complete the brain imaging session because they failed to meet the inclusion criteria at V1

(BDI score> 19; n = 4), showed average pain levels lower than 4/10 during the 2-week baseline

period between V1 and V2 (n = 16), were claustrophobic or MRI incompatible (n = 9), had

out-of-range vital signs or blood lab results (n = 6), or discontinued the study (e.g., were lost to

follow-up, had increased pain, or no longer wanted to be in the study) (n = 11). Participants

were compensated US$50 for each visit completed, and they were reimbursed up to US$20 for

travel and parking expenses if applicable.

Software used for data analyses

Statistical analyses including data reduction (PCA), test for normality of the data (using Sha-

piro–Wilk test), group comparisons when the data was normally distributed (t test and

ANCOVA), Pearson and Spearman correlations, and Intra class correlations were all per-

formed using SPSS version 21.0.0. Preprocessing of the brain imaging data was performed

using in house Matlab codes (version 2017b) and FSL version 5.0. Connectome based model-

ing was performed using Matlab. Modularity analysis applied on the questionnaire data was

performed with the Network analyser app in Cytoskape (https://cytoscape.org/) version 3.6.1.

Ecological momentary assessments using phone app

Each patient’s pain was monitored electronically using an app designed specifically for the

study. The app had a VAS scale with sliding bars on which the participant was asked to rate

their current pain level from 0 (no pain) to 10 (worst imaginable). Participants were instructed

to use the app twice a day and were compensated $0.25 for each rating they submitted, up to

$0.50/day. This additional payment was given at the end of the study to encourage compliance

throughout the study. The ratings were sent to a secure server and both date- and time-

stamped. The overall compliance of the phone ratings was on average 76%.

Other chronic pain measurements

We assessed chronic pain intensity using multiple measurements. Besides the EMAs, a numer-

ical rating scale and a verbal recall of the averaged pain experienced over the last week (mem-

ory) was collected in the lab. Second, the qualities of the pain were assessed using the MPQ

affective and sensory subscales, and PainDetect. Third, the mood was assessed with PANAS/

negative subscale and the Beck Depression Inventory, Version 1a (BDI-1a). Finally, we

assessed physical health using the SF-12p physical subscale.

Analysis of questionnaire data

A full list of all 13 questionnaires used to measure psychological and personality factors can be

found in S2 Table. Data from these self-report measures was downloaded directly from RED-

Cap as a CSV file and scored in Excel according to their references [29]. An option to “skip” a

question was provided for each item. If more than 20% of the data from a given questionnaire

(or questionnaire subscale, if applicable) was missing, the person’s data for the questionnaire
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was not scored. For any other missing data, the missing item was replaced by the mean (if the

questionnaire had sub-scoring, the mean was calculated from the remaining items in the sub-

dimension as opposed to the entire questionnaire).

Data reduction was performed using two strategies. Firstly, a binarized undirected network

was constructed using the strongest 10% correlation coefficients of the covariance matrix

between the 36 subscales (i.e., network constructed at 0.1 density). Modules were identified

using the Network analyser app in Cytoskape. Secondly, a principal component analysis was

applied on the 36 subscales to extract four components explaining the above 56% of the vari-

ance. The components were orthogonalized using varimax rotation in SPSS.

Socioeconomic status

Self-reported income was measured with the following categories: 0–10,000; > 10 < 25,000; >

25,000 < 50,000; > 50,000. Self-reported years of education was reported with a single number

that ranged from 8–20. Race/ethnicity was also self-reported by the participant. There were a

few missing data (patient skipped the question or preferred not to answer) for self-reported

income, years of education, and ethnicity. In those cases, no attempt was made to fill those

missing items. Because these missing values sometimes lead to analyses with different number

of patients, the n are provided on each figure for each analysis.

Brain-imaging protocol and data analysis

Brain-imaging data are the same as in [29]. The data were acquired with a Siemens Magnetom

Prisma 3 Tesla. The entire procedure was completed in about 35 min, but an extra 25 min was

planned to install the patients in a comfortable position and to reacquire images, if necessary.

High-resolution T1-weighted brain images were collected using integrated parallel imaging

techniques (PAT; GRAPPA) representing receiver coil-based data acceleration methods. The

acquisition parameters were: isometric voxel size = 1 X 1 X 1 mm, TR = 2,300 ms, TE = 2.40

ms, flip angle = 9˚, acceleration factor of 2, base resolution 256, slices = 176, and field of view

(FoV) = 256 mm. The encoding directions were from anterior to posterior, and the time of

acquisition was 5 min and 21 sec.

Blood oxygen level-dependent (BOLD) contrast-sensitive T2�-weighted multiband acceler-

ated echo-planar-images were acquired for resting-state fMRI scans. Multiband slice accelera-

tion imaging acquires multiple slices simultaneously, which permits denser temporal sampling

of fluctuations and improves the detection sensitivity to signal fluctuation. The acquisition

parameters were: TR = 555 ms, TE = 22.00 ms, flip angle = 47˚, base resolution = 104, 64 slices

with a multiband acceleration factor of 8 (8 X 8 simultaneously acquired slices) with inter-

leaved ordering. High spatial resolution was obtained using isomorphic voxels of 2 X 2 X 2

mm, and signal-to-noise ratio was optimized by setting the field of view (FoV) to 208 mm.

Phase encoding direction was from posterior to anterior. The time of acquisition lasted 10 min

and 24 sec, during which 1,110 volumes were collected. The patients were asked to keep their

eyes open and to remain as still as possible during acquisition. The procedure was repeated

two times (20.4 minutes).

Preprocessing of functional images. The pre-processing was performed using FMRIB

Software Library (FSL) and in-house software as previously describe [29]. The first 120 vol-

umes of each functional dataset were removed in order to allow for magnetic field stabilization.

The decision to remove this number of volumes was taken arbitrarily (it was not motivated

upon examination of data) and we explored no other option. This left a total of 990 volumes

for functional connectivity analyses. The effect of intermediate to large motion was initially

removed using fsl_motion_outliers. Time series of BOLD signal were filtered with a
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Butterworth band-pass filter (0.008 Hz< f < 0.1 Hz) and a nonlinear spatial filter (using

SUSAN tool from FSL; FWHM = 5 mm). The six parameters obtained by rigid body correc-

tion of head motion, global signal averaged over all voxels of the brain, white matter signal

averaged over all voxels of eroded white matter region, and ventricular signal averaged over all

voxels of eroded ventricle region were then regressed out from the BOLD signal. These nine

vectors were filtered with the Butterworth band-pass filter prior to being regressed from the

time series. Multivariate Exploratory Linear Optimized Decomposition into Independent

Components (MELODIC tool in FSL) was used to identified components in the time series

that were most likely not representing neuronal activity. Components representing motion

artifact were identified if the ratio between activated edge (one voxel) and all activated regions

on a spatial component was >0.45, or if the ratio between activated white matter and ventricle

and whole-brain white matter and ventricles was >0.35. Moreover, noisy components were

identified if the ratio between high frequency (0.05–0.1) and low frequency (0.008–0.05)

was> 1. This ICA regression procedure was kept very conservative to identify only obvious

components related to motion or noise.

The functional image registration was optimized according to a two-step procedure. All

volumes of the functional images were averaged within each patient to generate a contrast

image representative of the 990 volumes. A common template specific to our CBP patients was

generated by linearly registering these mean images to the MNI template and averaging these

contrast images across all participants. All preprocessed functional images were nonlinearly

registered to this common template using FNIRT tool from FSL. The registered brains were

visually inspected to ensure optimal registration.

On average, relative head motion was relatively low (mean frame displacement (FD) = 0.11;

STD 0.07 for the first fMRI run, and mean FD = 0.11; STD 0.09 for the second run). Impor-

tantly, between-subject head motion was not related with any of the neurotraits (see below).

Parcellation schemes. The main parcellation scheme was the same as the one used in

[29]. The brain was divided into 264 spherical ROIs (5-mm radius) located at coordinates

showing reliable activity across a set of tasks and from the center of gravity of cortical patches

constructed from resting state functional connectivity[33]. In addition, 5-mm radius ROIs

were manually added in the bilateral amygdala, anterior hippocampus, posterior hippocam-

pus, and NAc. Linear Pearson correlations were performed on time courses extracted and

averaged within each brain parcel. Given a collection of 272 parcels, time courses were

extracted to calculate a 272 x 272 correlation matrix. These matrices were used for connec-

tome-based modeling, as described below.

A second parcellation scheme was used to test the robustness of the cross-validation results.

We used 400 ROIs from [34] varying from the Power parcellation scheme in the shape and the

number of ROIs (S2 Fig). In this parcellation scheme, every voxel was included in one ROI

and the ROIs were defined from task and resting state functional connectivity. Unlike the

Power atlas, the Schaefer atlas did not cover the subcortical structures and the cerebellum.

Exclusion of participants. One patient was excluded from all fMRI analyses because of

aberrant values in the correlation matrix (values were above 20 STD from the mean). This sub-

ject was a priori rejected during initial quality check and was never included in any of the anal-

yses (including the behavioral analyses). This subject was already identified as problematic and

excluded in [29].

A second participant was excluded because of signal dropout in ROIs near the ventricle.

This participant was included in our previous placebo study because we previously limited our

analyses to 122 a priori selected ROIs [29]. Here, we used the whole 272 ROIs and had to

exclude this participant. The final sample size for brain imaging collected at V2 was therefore

n = 61.
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The longitudinal data included a total of n = 56 patients that passed quality check for each

one of the four brain-imaging sessions.

Connectome-based modeling

We used a validated data-driven protocol to determine behaviors (chronic pain trait scores)

from brain connectivity measures between the ROIs of our parcellation scheme (i.e., the con-

nectome). We first divided the patients into a training set (2/3 of the sample) and a testing set

(1/3 of the sample). The training set was used to build the model, which was then applied to

the testing set. We defined the traits using a principal component analysis applied to the full

sample (as in Fig 1) and did not applied data reduction within the training set prior to applying

it to the test set. The robustness of the components was instead evaluated using a totally inde-

pendent group of 46 chronic pain patients without brain imaging. The consistency of the prin-

cipal components across data sets can be appreciated in S1 Fig.

To train our model, we used robust regression between each one of the 36,856 connections

with score on Pain-trait and Emote-trait (P< 0.05). We tested the stability of each using a

leave-one-out procedure and selected only the edges correlating with the trait in each of the n
− 1 iterations. The end result was a number of stable edges positively or negatively correlating

with Pain-trait score and Emote-trait. These edges’ strengths were summed to generate a single

value, tracking each subject’s trait score.

To determine chronic pain traits in new subjects, we extracted the summed strength of

edges identified in the training set from the brain connectivity data in the testing set. This

cross-validation procedure was repeated for the three folds, rotating, and substituting the 1/3

of the patients used in the test set.

Two steps were used to ensure that motion did not influence the predictive patterns of

brain connectivity. The first one was performed at the edge level, where removing the edges

correlating with motion did not change the results. For instance, removing the edges related to

motion at an arbitrary cutoff of P< 0.05 yielded very similar prediction accuracy in the test set

(neurotrait 1: r2 = 0.13, P = 0.004; r2 = 0.08, P = 0.03; r2 = 0.07; P = 0.04). Secondly, we tested

the effect of motion at the individual level by regressing out interindividual head motions.

Thus, the pattern of functional connectivity (neurotraits) was uncorrelated with the mean

head motion (Frame Displacement, FD) (all P values > 0.13) and regressing out the effect of

the mean FD did not change the relationship between the Neurotrait 1 with Pain-trait (without

covariates r = 0.83, P< 0.001; covarying for mean FD: r = 0.83, P< 0.001), Neurotrait 2 Pain-

trait (without covariates r = 0.91; P< 0.001; covarying for mean FD: r = 0.91, P< 0.001), and

Neurotrait 3 with Emote-trait (without covariates r = 0.87, P< 0.001; covarying for mean FD:

r = 0.87, P< 0.001).

ICC

We computed the ICC for each neurotrait using a two-way random model in SPSS to assess

the absolute consistency of the metric across all four scans.

The numerical data are available in S1 Data, the raw data are available at http://www.

openpain.org/placebo_1/, and the code is available at https://github.com/EtienneVP.

Supporting information

S1 Fig. Number of components from the PCA and correspondence between the groups. A.

PCA was performed in Group 1 and Group 2 separately. The components with eigenvalues

greater than 2.0 (symbols in red) were retained and correlated with pain outcomes. Other

components with eigenvalues below 2.0 (white symbols) were used as components of
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personality and no exploratory analyses were performed with these. B. The PCA performed on

the same variables in Group 2 CBP identified the same four components (validation). Scatter-

plots show strong correspondences between loading values of each component, across the two

groups (validation). CBP, chronic back pain; PCA, principal component analysis.

(TIF)

S2 Fig. Cross-parcellation reproducibility. A–B. The Power atlas used to derive the neuro-

traits as presented in Fig 3. C. The Schaefer atlas was used as a second atlas to test the robust-

ness of our results. D. Pain-trait was determined from both positive (r2 = 0.08; P = 0.006) and

negative (r2 = 0.04; P = 0.04) links and Emote-trait could be determined by positive (r2 = 0.06;

P = 0.03) but not negative links. E. The interindividual correlations between the cross-vali-

dated links from the two atlases showed that the cross-parcellation yielded robust results. This

suggests that the neurotraits were not specific to our choice of parcellation scheme and provide

evidence that they represent a robust metric. Significance was determined with a permutation

test (10,000 permutation). �P< 0.05, ��P<0.01, ���P< 0.001.

(TIF)

S3 Fig. Other measures of socioeconomic status related with income (displayed when pool-

ing Group 1 and Group 2). Income depended on race/ethnicity (A) and education (B). HA,

AA, WA, HS (�12 [yoe]), AD (12 yoe> AD< 16 yoe), BD (�16 yoe). All post-hoc compari-

sons are Bonferroni corrected for three comparisons. &P< 0.08, ��P< 0.01. AA, African

American; AD, Associate degree; BD, Bachelor’s degree; HA, Hispanic American, HS, high

school; WA, White American; yoe, years of education.

(TIF)

S4 Fig. Traits predisposing patients’ responses to placebo pills. Character-trait and Aware-

trait predisposed patients to the placebo response (% analgesia). Correlation P values were

Bonferroni corrected for four comparisons �P< 0.05.

(TIF)

S1 Table. Basic demographics for both groups. Group 1 was on average 5 years younger than

Group 2 (unpaired t test(106); t = 4.67, P = 0.03). There were no significant differences between

the groups for gender, pain duration, or education level.

(PDF)

S2 Table. List of questionnaires administered to patients for profiling psychological factors

and personality traits. Thirteen self-report measures (36 measures total if divided into respec-

tive subscales) were completed at designated visits in the study. The names and abbreviation

are provided for each questionnaire, along with the rationale for why each measure was

included in our battery.

(DOCX)

S3 Table. Baseline values of back pain characteristics in both CBP groups prior to treat-

ment. There were no differences in absolute scores of pain measurements between the groups,

with the exception of physical health (SF-12p), which was higher in Group 1 than in Group 2.

CBP, chronic back pain.

(PDF)

S4 Table. Details of statistical tests for results shown in Figs 1–6.

(PDF)

S1 Data. Data underlying figures.

(XLSX)
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