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Abstract: Bone marrow, besides the known functions of hematopoiesis, is an active organ of the
immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence
suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly
sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is
harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases,
which show a dysregulated immune microenvironment. The bone marrow microenvironment in
myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune
dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell
expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with
features that augment immune evasion and suppression. In this review, we will outline some of the
functions of the bone marrow with immunological significance and describe the alterations in the
immune landscape of MDS and AML that drive disease progression.

Keywords: myelodysplastic syndromes; acute myeloid leukemia; immune evasion; bone marrow
microenvironment

1. Introduction

Bone marrow (BM) is a sophisticated organ, providing more than just passive hematopoiesis.
BM supports the immune system through lymphopoiesis and myelopoiesis and is not an
indifferent organ immune-wise, but rather a highly active one, with its components reacting
to an array of immune and noxious stimuli, influencing the function of hematopoietic stem
cells (HSCs) and hematopoietic niche cells [1]. Moreover, BM acts as a sanctuary for many
immune cells, such as plasma cells and mature lymphoid cells [2]. Alterations in the niche
components are associated with malignancies [3].

The BM immune landscape significantly changes with myeloid malignancies. In
myelodysplastic syndromes (MDS) (a malignancy characterized by myelodysplasia and in-
effective hematopoiesis [4], the HSC reactivity to environmental stimuli proves detrimental,
as chronic inflammatory signaling drives MDS progression and normal HSC suppres-
sion [1,5,6]. Studies suggest that the difference between low-risk and high-risk diseases
also manifests in their different immune microenvironments [7,8].

Acute myeloid leukemia (AML) is a highly heterogenous disease, which results in
normal hematopoiesis failure, owing to immature myeloid cell proliferation [9]. The BM
immune microenvironment is significantly dysregulated in AML and even though AML
has been considered an immune responsive disease [10], AML cells are capable of evading
and suppressing host immune responses [11].

In this review, we highlight the immune functions of the normal BM and further
outline the dysregulations of the immune landscape that augment disease progression in
MDS and AML (summarized in Table 1).
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Table 1. Summarizing evidence regarding immunology in low-risk/high-risk MDS/AML. MDSC:
myeloid-derived suppressor cells, MSCs: mesenchymal stem cells.

Low-Risk MDS High-Risk MDS AML

Cell intrinsic factors

Increased
NLRP3-inflammasome

activation and Pyroptosis
Apoptosis induction

NLRP3 inflammasome
activation

Downregulation of mismatched
HLAs, class II HLAs

(in alloHSCT)
Impaired antigen presentation

Cytokines/Metabolites
Increased proinflammatory
cytokine production (TNFa,

IL-1β, etc.)

Immunosuppressive cytokine
production (IL-10)

Increased
Il-1β/IL-6/TNFa/IL-35

Decreased TGFβ
Increased immunosuppressive
metabolic factors (IDO1, ArgII,

iNOS, FAO, etc.)
Vascular remodeling with

immunosuppressive sequelae

T-lymphocytes

Increased CD8+ lymphocytes
with autoreactive potential
Increased Th17 helper cell

numbers
Decreased Treg number

Diminished and dysfunctional
CD8+ lymphocytes

Increased immune checkpoint
molecule expression

Increased Th22 helper cells
Tregs with increased number

and functionality

Reduced CD8+ lymphocyte
function/Increased immune

checkpoint molecule expression
Increased Treg numbers with

immunosuppressive properties

NK-lymphocytes Decreased NK-cell numbers
with reduced function NK-cell impairement

MDSCs MDSC expansion MDSC expansion correlating
with Treg increase MDSC expansion

Macrophages M2 macrophage expansion
INOS+ subtype increase M2 macrophage expansion M2 macrophage expansion

MSCs Reduced
differentiation potential

Increased with
immunosuppressive properties

Increased
immunosuppressive behavior

1.1. BM in Immunity and Inflammation

BM is the premier organ to produce different blood components during both steady-
state and stress hematopoiesis. Hematopoietic stem and progenitor cells (HSPC) represent
the functional unit; they self-renew and differentiate in a tightly regulated manner in
heterogenous microenvironmental domains.

BM supports the immune system through myelopoiesis and lymphopoiesis, as well
as a sanctuary for mature lymphoid cell types [2]. A topic of great interest is the function
of BM besides that of a hematopoietic organ, having a key role in sustaining protective
immune responses through plasma cell survival and immune memory maintenance [12,13],
as well as being a dynamic entity capable of directly sensing and modulating its response
to inflammatory signals [1]. Aberrancy in the components of the hematopoietic stem cell
niche can induce and/ or sustain myeloid malignancy

1.2. Lymphopoiesis

HSCs differentiate into multipotent progenitors (MPPs) [14], which will differentiate
into lymphoid and myeloid lineages through common lymphoid (CLPs) and common
myeloid progenitors (CML), respectively [15]. Different HSC populations exhibit heteroge-
nous potential for lymphoid commitment, suggesting the existence of intrinsic lymphoid
bias [2], although HSC differentiation leans towards myelopoiesis with aging [16]. During
lymphoid development, early T-cell progenitors migrate to the thymus, while B-cell pro-
genitors maturate in the BM [2]. Distinct cellular niches guide B-cell developmental stages.
Early-stage lymphopoiesis is associated with osteoblasts, osteoclasts, and CXCL12-abundant
reticular (CAR) cells, whereas later development is regulated by interleukin (IL)-7 producing
cells and sinusoidal endothelial cells [2]. IL-7 is pivotal in B-cell development [17].
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1.3. Interplay between Lymphoid Lineage Cells and the BM

In addition to lymphopoiesis, BM harbors multiple mature lymphoid cells [2]. Naive T-
/B-cells recirculate and populate the dendritic cell (DC) rich perisinusoidal space, forming
a possible defense for blood-borne pathogens [18,19]. CD4+ and CD8+ memory T-cells
can also be maintained in the BM after antigen experience. Whether memory T-cells are
temporary inhabitants or a fraction of them permanently reside in the BM is an area of
active research [20]. The current consensus is that a non-migratory CD69+ memory T cell
subset exists, permanently localized in the BM [12], and a CD 69- memory T-cell subset
exists in a state of equilibrium between the BM and the peripheral blood [12]. Regulatory
T-cells (Tregs) are known immune mediators and have a crucial role in the success of
allogeneic hematopoietic stem cell transplantation (allo-HSCT), as well as the progression
of myeloid malignancies [3]. Tregs also regulate IL-7 production, and therefore, B-cell
development [21]. T-cells also function in the context of inflammation by impairing HSC
renewal through interferon (IFN)-γ [22,23] and inducing myelopoiesis through tumor
necrosis factor (TNF)-a [24].

Plasma cells survive in the BM with stimuli from the microenvironment. These stimuli
include the secretion of cytokines such as CXCL12, IL-6, B-cell activating factor (BAFF), and
a proliferation-inducing ligand (APRIL) in specialized domains termed survival niches [25].
Ligation of B-cell maturation antigen (BCMA) by APRIL/ BAFF is a crucial step for plasma
cell survival [26]. Mature cells of hematopoietic progeny and non-hematopoietic stromal
cells contribute to the formation of the plasma cell niche [12,27].

Even though the BM is not a secondary lymphoid organ, some of its functions re-
semble one. The BM can conduct primary immune reactions (CD4+ and CD8+ T-cells)
in response to blood-borne antigens [28,29], without forming organized B-/T-cell areas,
which characterize secondary lymphoid organs, but rather aggregates of dendritic cells
and T-cells [16]. Moreover, memory CD4+ T-cell responses, leading to cluster formation
between major histocompatibility complex type II (MHC II) presenting cells and antigen-
specific T-cells have been documented [30]. Histologically, lymphoid follicle-like structures,
which are devoid of traditional B-/T-cell organized areas can expand during inflammation
and autoimmunity [31].

1.4. Myelopoiesis

The BM microenvironment controls myeloid progenitor differentiation and distribu-
tion through opposing signals from different cell types [17,32]. For instance, Hérault et al.
showed that granulocyte–macrophage progenitors (GMP) are scattered single cells during a
steady state. However, GMPs expand and form clusters during regeneration and leukemia.
G-CSF and IL-1 nurtured GMP cluster manifestation, whereas megakaryocyte-derived
signals inhibited GMP promotion [33].

As stated above, the BM is not an organ that only produces immune cells, but also ac-
tively responds to harmful and inflammatory stimuli. HSCs are capable of directly sensing
exogenous noxious and/or inflammatory signals such as cytokines, pathogen-associated
molecular patterns (PAMPS), and damage-associated molecular patterns (DAMPS) with
an inventory of intracellular and extracellular receptors. The resulting effects are HSPC
mobilization and differentiation to augment immune cell production [1,34,35]. Moreover, it
is known that a differentiation program can be preferred under specific conditions, as in the
case of emergency myelopoiesis (sacrificing lymphopoiesis) during severe infection [34,36].

An array of different inflammatory cytokines such as IFN-a, IFN-γ, TNF-a, trans-
forming growth factor (TGF)-β,IL-1, IL-6, macrophage-colony stimulating factor (M-CSF)
secreted by hematopoietic progeny and non-hematopoietic cells affect HSC function and
preferentially induce myeloid differentiation [1]. However, the effects of cytokines may be
context-dependent and when maintained can have deleterious consequences on HSCs [1,37].
Toll-like receptors (TLRs), specifically TLR2 and TLR4, are expressed on HSPC and their
activation by DAMPs and PAMPs results in myeloid differentiation [38]. Pattern recogni-
tion receptors (PRRs), such as TLRs and NOD-like receptors exist on hematopoietic and
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non-hematopoietic cells affecting HSC upon their activation. BM microenvironment cells of
non-hematopoietic progeny such as endothelial cells, osteocytes, adipocytes, and neurons
can modulate HSC functions in stressed conditions [1]. For instance, TLR-4 and NOD-like
receptor 1/2 by microenvironment cells resulted in granulocyte-CSF(G-CSF) and induced a
myeloid differentiation in HSCs [39,40]. Furthermore, HSCs and their BM niche respond
to transient BM injury and inflammation by chemotherapy and radiotherapy to reinstate
normal hematopoiesis [1].

In recent years, the concept of trained immunity of the innate immune system–
analogous to the immunological memory of the adaptive immune system- has emerged,
with its basis being epigenetic reprogramming of innate immune cells [41]. This trained
immunity may come down to its effects on HSPCs giving another layer of complexity to
the immune response [1,42].

1.5. HSCs and Allo-HSCT

HSCT is an effective method for treating hematologic malignancies; however, the
myeloablative regimens enlisted are damaging to the recipients’ BM microenvironment,
subsequently compromising donor HSCs’ function and transplant success (negative by-
stander effect) [3,43]. Transplanted HSC in order to reconstitute hematopoiesis must
home and establish themselves in the damaged/reconstituting BM [44], with CXCL12
being critical (among many chemo-attractants) in mediating HSC engraftment [45,46].
Interestingly, donor HSCs can also influence the recipient’s BM microenvironment into aug-
menting their engraftment potential [44]. The elevated O2 levels (attributed to transplant
pre-conditioning [47], metabolic switch to OXPHOS, and the resulting increase in ROS
levels [48,49], are insults that transplanted HSC need to address in order to be functionally
intact and balance between self-renewal and differentiation [44].

Immune reconstitution post-HSCT commences gradually at different phases, with the
innate component being the first to function, with different transplantation procedures
characterized by different neutrophil engraftment dates (umbilical cord HSCT being the
slowest) [50,51], followed by NK and CD4+/CD8+ T-cells and lastly B-cell reconstitu-
tion [52]. Different transplantation modalities result in different immune reconstitution
kinetics, with haploidentical HSCT having delayed immune reconstitution compared to
matched-sibling donor transplantation [53]. Moreover, it is suggested that better immune
recovery correlates with superior transplantation outcomes [54].

Now that some immune functions of the BM have been outlined, the contribution and
perturbation of the immunological landscape of the BM in the context of MDS and AML
will be discussed.

2. The Immune Landscape in MDS

The Revised International Prognostic Scoring System (IPSS-R) is used to estimate
the MDS patients’ risk of AML progression and overall survival (OS). In clinical settings,
patients with an IPSS-R score of 3.5 or less represent a lower-risk MDS group (median
survival; 5.9 years), whereas an IPSS-R score > 3.5 falls into the higher-risk MDS group
(median survival; 1.5 years) [55]. The lower-risk disease is associated with an inflammatory
microenvironment and increased cell death, in contrast to higher-risk disease, which is
delineated by immunosuppression and clonal expansion (Figure 1) [7,56]. Herein, the
role of inflammation and immunosuppression regarding their constituting cell types will
be discussed.
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Figure 1. The immune landscape in low (top half) and high-risk (bottom half) MDS. NLRP3 inflam-
masome recruitment (by means of TLR signaling pathways (through DAMPs, PAMPs, S100A8/A9)
and somatic mutations) by cancer cells is central in MDS pathogenesis driving proinflammatory
cytokine production and pyroptosis. In low-risk disease, cytotoxic T-lymphocytes are increased,
whereas Tregs are reduced. Cytotoxic T-cells suppress both malignant and normal HSCs further
augmenting the cytopenic phenotype. High-risk disease is characterized by MDS clone expansion
driven by immunosuppressive cytokine production, reduced efficiency of NK cells, and cytotoxic
T-cells with concomitant expansion of Tregs and MDSCs. MSCs and M2-phenotype mac.

2.1. The Inflammatory Microenvironment of MDS

Aberrant innate immune system activation leads to dysfunctional hematopoiesis and
induces excessive cellular death; a hallmark of MDS [56]. Several factors, intrinsic and
extrinsic of the malignant clone, contribute to the intricate inflammatory network.

2.1.1. Predisposing Factors Driving Inflammation (Mutations, Aging/Chronic Immune
Stimulation)

The genetic lesions of MDS are complex and dynamic and may enable a reciprocal
mechanism in which gene mutations upregulate inflammation pathways and the inflam-
matory milieu contributes to genomic instability and mutagenesis [7]. Recurrent mutations
entail spliceosome machinery, epigenetic and transcription regulation, DNA repair, sig-
naling pathways, and the cohesin complex [4]. Spliceosome mutations such as SF3B1,
SRSF2, U2AF1, and mutations in epigenetic regulators, e.g., TET2, and ASXL1, which drive
clonal dominance and evolution in MDS [7], trigger innate immune signaling pathways
and NRP3-inflammasome activation [7,57]. Haploinsufficiency of microRNAs (miR-145,
miR-146a), as well as genes, in del (5q) MDS altered signaling intermediates, such as
Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP) and TNF receptor
factor-6 (TRAF6), stimulating TLR activation and cytokine (IL-6) production [58,59].

Aging represents a smoldering inflammatory process (“inflammaging”) [60] character-
ized by immunosenescence leading to malfunctioning adaptive immune responses [61,62].
As analyzed, HSCs are capable of directly sensing DAMPs/PAMPs through PRRs, skewing
their differentiation program to myeloid lineages [16,38]. Such conditions create a fertile
environment for mutated MDS clones to propagate [7]. Moreover, MDS is associated with a
variety of autoimmune diseases, providing another example of chronic immune stimuli [8].

2.1.2. Significant Signalling Pathways

Innate immune signaling is central in the pathogenesis of MDS. Genes related to
immune signaling are overexpressed in more than 50% of MDS patients [63,64]. TLRs and
their downstream intermediates (MyD88, IRAK1/4, TRAF6) are hyperactivated, whereas



Diseases 2022, 10, 33 6 of 21

inhibitory regulators are repressed [5]. Sustained TLR activation is damaging to HSCs and
their niche [65] and excessive TLR4 signaling results in genotoxicity, possible carcinogen-
esis [37], and cell death (along with TLR2) [66,67]. Alarmins S100A8 and S100A9 are of
particular importance in MDS, because—via autocrine and paracrine actions—they drive
TLR4 activation, NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome
assembly, and microenvironmental immunosuppression [6]. Pyroptosis—a form of pro-
grammed cell death—being driven by NLRP3 inflammasome activation, is responsible for
cellular death in MDS, being a point of convergence for cell-intrinsic, (e.g., gene mutations)
and cell-extrinsic, (e.g., DAMPs) pathogenesis mechanisms [57]. The NLRP3-pyroptosis
axis functioned independently of specific gene class mutations [57]; however, pyroptotic
cell death observed in erythroid progenitors was proportional to mutational allelic burden
and complexity [6]. The cytopenic phenotype of MDS is further augmented by evidence of
increased apoptotic signaling; activation of death receptor Fas–Fas ligand pathway through
cytokine induction (like TNFa, IFN-γ), TNF receptor 1 and 2 (TNFR1 and 2) induced
apoptosis and p38 mitogen-activated protein kinase (MAPK) apoptotic signalling [8].

2.1.3. Cytokines

Aberrancy in the cytokine network has been observed in MDS patients by several
investigators [8,56,68], with increased levels of inflammatory cytokines, such as TNFa,
IFN-γ, TGF-β, IL-6, and IL-8, indicating abnormal inflammatory signaling and myeloid
differentiation [8]. Various cell types can secrete cytokines in MDS, such as myeloid-derived
suppressor cells (MDSCs) and MDS-derived myeloid cells [5]. Cytokine pressure from
chronic immune stimulation has toxic effects on normal HSCs and may provide an evolu-
tionary edge in MDS clones, driving their expansion [56]. In a first-of-its-kind meta-analysis,
Xin et al. showed an increased level of inflammatory cytokines implicated in MDS patho-
genesis and a cytokine profile changing along with the natural history of the disease [69].
Low-risk disease and its pyroptotic/ inflammatory microenvironment are associated with
elevated levels of inflammatory cytokines (TNFa, IL-6, IFN-γ) [70] and type 1 cytokines
(IL-1β, IL-7, IL-8), whereas high-risk disease has increased immunosuppressive cytokines
(like IL-10), reflecting tumor immune escape [71]. Moreover, a positive correlation can be
made between cytokine expression, clinical outcomes [56], and cytogenetic features [68].

2.2. Defective Cellular Immune Responses Result in MDS Progression

Cellular immune response dysregulation is another important immunological mecha-
nism driving MDS pathogenesis, as it closely interacts with the coexisting inflammatory
microenvironment and seems to have distinct features in different disease states [7].

2.2.1. T-Lymphocytes in MDS

Low-risk MDS is characterized by increased numbers of cytotoxic (CD8+) T-cells and
diminished counts of Tregs [72,73], contradicting the general finding of lymphopenia. The
T-cell response of high-risk disease manifests itself with lower levels of CD8+ T-cells and
higher numbers of Tregs [71,73].

CD8+ T-cells in low-risk MDS have the potential of suppressing both malignant and
normal hematopoiesis in vitro, further augmenting cellular death in this disease state,
because of the existence of epitopes on MDS HSCs that can activate cytotoxic T-cells [74]. In
younger MDS patients, CD8+ autoreactivity seems to be correlated with reduced numbers
of CD4+ helper T-cells [75]. Potential epitopes include Wilms tumor protein 1 (WT1), over-
expressed in MDS with trisomy 8, cancer-testis antigen (CTA), proteinase 3, and MHC-I [8].
However, the impact of immunogenic neo-antigens is unexplored territory, with early
studies pointing to the presence of a protective effect [7,76]. In high-risk MDS, failing
immunosurveillance and anti-MDS function is the major characteristic of the adaptive
immune response, possibly through immune checkpoint molecule upregulation [8], mainly
cytotoxic T lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1
(PD-1) [77]. MDS blasts in high-risk diseases overexpress PD-L1 in comparison to normal
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controls [78] and this can be further augmented by the effects of cytokines, such as TNF-a,
and IFN-γ, which induce PD-1 and PD-L1 expression, on T-cells and MDS cells, respec-
tively [79]. Interestingly, Sand et al. reported increased numbers of BM cytotoxic T-cells;
however, they were accompanied by dysfunctional T-cell receptor (TCR) cytotoxicity [80].

Regarding helper T cells (Th); Th1/Th2 ratio imbalance might reflect CD4/CD8
imbalance [81]. Shao et al. reported no difference in Th1 in MDS patients and healthy
controls, as well as between low versus high-risk diseases. Moreover, Th17 numbers
were increased in MDS patients, with greater expansion in low-risk disease, denoting the
auto-reactive, possible anti-tumor nature of the process [82,83], whereas Th22 cells were
increased in high-risk disease, correlating with increased IL-6 and TNF-a [82].

Tregs are a subset of helper T-cells tasked with immune response modulation and
immune tolerance [8]. As a result, reduced Treg functionality is associated with autoimmu-
nity and increased Treg function with cancer cell immune evasion [84]. This is evident in
low versus high disease states, where in low-risk disease, patients had diminished Treg
numbers and function, in contrast to high-risk disease; increased Treg population and
functionality, along with MDS clone expansion [81,85,86].

Apropos of the MDS mutational landscape, the presence of MDS founder muta-
tions on the lymphoid lineage may lead to defective immune responses [7]. Furthermore,
the TP53 mutated subset of MDS was associated with increased PD-L1 expression on
MDS/secondary AML specimens, as well as ICOS High/PD-1neg Treg expansion, leading
to an immunosuppressive microenvironment [87].

2.2.2. Dendritic Cells in MDS

Dendritic cells are essential for tumor recognition, antigen presentation [88], and
T-cell activation [89]. In MDS, dendritic cells have reduced T-cell activation potential
and maturation defects—possibly stemming from the malignant clone [90]—along with a
different cytokine profile between immature and mature monocytic dendritic cells (high
IL-10 and low IL-12) [91]. Moreover, the high-risk disease has been shown to have reduced
numbers of myeloid and plasmacytoid precursor dendritic cells [92].

2.2.3. Natural Killer Cells in MDS

Natural killer cells (NK cells) are a lymphoid subset of innate immunity and their
aberration in MDS represents another aspect of defective immune surveillance. Studies
have shown low NK cell numbers and impaired NK cell performance [93,94]. Cytotoxic
impairment was especially evident in high-risk MDS, which correlated with advanced
disease burden (excess blasts, high IPSS score, cytogenetics) [95,96]. Shared genetic lesions
with the malignant clone and NK populations might explain an intrinsic defect in the
functionality of NK cells [97].

2.2.4. Myeloid-Derived Suppressor Cells in MDS

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of the
myeloid lineage, which expand in pathological conditions such as cancer [98]. They
have the ability to suppress non-myeloid immune cell activity, such as T-cell, B-cell, and
NK-cells [99,100] and modulate macrophage cytokine production [101]. They can also
assist Treg expansion through IL-10 and TGF-β secretion [102]. In MDS, high counts of
MDSCs were reported in the BM [103] and peripheral blood of patients [104]. MDSC
expansion can be induced by a number of pro-inflammatory cytokines such as IL-6, IL-10,
IL-1β, and IFN-γ [102]. Alarmin S100A9 seems to drive MDSC expansion in MDS [103].
Moreover, concomitant age-related myeloid skewing, senescence, and “inflammaging” are
involved in age-related MDSC increase [100,105]. In high-risk diseases, Kittang et al. [106]
showed MDSC and Treg associated expansion, assisting in immune evasion and cancer
progression. MDSCs also play a role in ineffective hematopoiesis [103]. Interestingly,
MDSCs in MDS patients seem to evolve from a non-MDS clone, as they did not harbor the
same mutations [103].
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2.2.5. Macrophages in MDS

Macrophages come from monocytic differentiation and exhibit a diverse set of biologi-
cal roles [107]. Defective macrophage function may result from reduced CD206 and signal
regulatory protein alpha (SIRPa) expression, as well as increased inducible nitric oxide
synthase (iNOS), which aids cancer progression through NO production [108]. INOS+
macrophages were associated with low-risk disease [109]. Macrophages are divided into
M1 and M2 subtypes, with M1 having antitumor effects [110]. M2 subtype, but not M1
expansion was observed in MDS, suggesting a further reduced antitumor effect [111].

2.2.6. Mesenchymal Stem Cells in MDS

MSCs are an essential non-hematopoietic subset for hematopoiesis. Although inconclu-
sive, MSCs might have a role in MDS initiation and maintenance, through pro-inflammatory
signaling contributing to immune suppression and mutagenesis [7,8]. MSCs exhibit an
age-related wane in functionality [112]. This is accompanied by the fact that MDS/AML-
derived MSCs have functional deficits, as well as chromosomal aberrations different from
the malignant clone [7]. Meydouf et al. elegantly showed the influence of MDS HSCs on
their microenvironment with their ability to induce gene expression changes in healthy
MSCs giving them an MDS-like phenotype [113]. MDS-MSCs produce factors such as
S100A8/9 and immunomodulators that enable MDS clone expansion [114–116]. Interest-
ingly, MSCs seem to exhibit different characteristics between risk groups [8]. Low-risk
disease MSCs showed reduced DC maturation and differentiation efficiency, whereas high-
risk disease MSCs demonstrated immunosuppressive properties, higher TGF-β production,
apoptosis, and Treg induction [117,118].

3. Immune Evasion in Acute Myeloid Leukemia

From an immunological perspective, AML blasts and leukemic stem cells (LSCs)
recruit several intrinsic and extrinsic immune evasion mechanisms, that along with an
assisting BM microenvironment remodeling drive disease progression (Figure 2).Diseases 2022, 10, x FOR PEER REVIEW 9 of 23 
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Figure 2. The immune landscape in AML. A complex network of AML cell-extrinsic and intrinsic
factors characterize the immune microenvironment of AML. AML-related somatic mutations are
implicated in immune alterations (with NPM1mut involved in effective T-cell immune responses).
HLA molecule downregulation and defective antigen presentation are also recruited. Altered cy-
tokine balance also assists AML cell expansion, Treg function, and immune suppression. A number
of metabolic factors (IDO1/iNOS/ArgII elevation, increased fatty acid oxidation, and oxidative
phosphorylation) contribute to immunosuppression. MDSC expansion (possibly through MUC1
containing extracellular vesicles) and M2-macrophages also augment AML immune escape. Immune
checkpoint molecule overexpression on AML and CD8+ T-cells (e.g., PD-1/PD-L1, TIM-3/galectin-9),
poor immune synapse function, and impaired NK –cell function (through NK-cell receptor down-
regulation, defective NK degranulation, and perforin binding). BM vascular remodeling impedes
anti-AML immune responses through reduced cell migration and hypoxia induction.
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3.1. Cell Intrinsic Factors in AML

Intrinsic characteristics of the heterogenous AML population form the foundation of
the defective immune response [11]. The mutational landscape of AML is characterized
by an average of 13 mutations in coding genes per patient, with 5 genes being recur-
rently mutated [119]. Genetic stratification systems assess the impact of these recurrent
mutations on survival [120]; however, the reciprocity between genetic lesions and the
immune dysregulation of AML is less characterized (reviewed in [121]). Herein we present
the immunological consequences of the commonest mutations. Evidence suggests that
nucleophosmin1 (NPM1) mutations, mostly associated with favorable prognosis, have
the potential to elicit T-cell responses [121]. Fms-like tyrosine kinase 3 (FLT3) mutations,
i.e., internal tandem duplication (ITD) and tyrosine kinase domain (TKD) have been corre-
lated with immune response alterations in AML [121]. Clinical studies have shown that
ITD was associated with high populations of DCs, pre-DCs, and Tregs [122]. Moreover,
immunological extensions of FLT3 inhibitor therapy have been reported [123]. The effects
of mutant IDH1/2 and the oncometabolite R-2-hydroxyglutarate (R2-HG) on the immune
system have been studied in gliomas extensively, with evidence of T-cell suppression
and reduced innate immune system function [121]. In the setting of AML, R-2-HG was
associated with Treg development [39]. In addition to functioning as the guardian of the
genome, TP-53 may have tumor-suppressing properties stemming from the regulation
of immune responses, and p53 mutations may reduce immunosurveillance and create a
cancer-promoting immunosuppressing microenvironment [121] (in parallel with MDS [87]).

Immunoediting properties of leukemic blasts, such as downregulation of mismatched
HLAs in AML blasts [124–126] and epigenetic downregulation of class II HLAs [127,128],
have been observed in the context of alloHSCT (different donor settings). This gives a
fitness advantage in AML blasts and contributes to Graft versus Leukemia (GvL) evasion
and post-HSCT relapse [129]. Impaired antigen presentation via HLA class II may also play
a role in immune evasion [130]. Moreover, immunosuppressive class I molecule HLA-G
may contribute to the immunosuppressive microenvironment through DC, T-cell, NK cell,
and monocyte inhibition [129]; however, these findings are not solid [131].

As described in the above section, NLRP3 inflammasome activation is central in
the pathophysiology of MDS. On the contrary, the role of NLRP3 inflammasome in the
pathogenesis of AML is not well documented. Zhong et al. showed that AML cells overex-
pressed NLRP3 inflammasome components and the NRLP3 inflammasome assisted in AML
propagation in an IL-1β dependent manner [132]. The same authors also demonstrated
immunological implications of the NLRP3 inflammasome, which is associated with an
aryl-hydrocarbon receptor (AHR) contributed to AML T helper cell abnormalities [133].

Immune checkpoint molecules and secretion of factors with immunomodulating
capacities will be presented in later sections.

3.2. Cytokines in AML

Cytokine network aberrations have been reported mainly in primary AML and dys-
regulation between pro-inflammatory and anti-inflammatory cytokines provides a fertile
tumor-promoting microenvironment [134]. Regarding pro-inflammatory cytokines, IL-1β
is the premier cytokine studied in AML and is known to assist in AML cell growth [134].
IL-6 and TNF-a are also implicated in leukemic growth, survival, and drug resistance [134].
IFN-γ effects on AML cells maybe be determined by the microenvironmental cytokine
network [135]. IL-2 produces two-sided effects by supporting lymphocyte function, how-
ever, also promotes Treg expansion and therefore immunosuppression [129]. On the other
hand, TGF-β was shown to inhibit AML growth [136] and lower levels of TGF-β were
found in AML patients [137,138] indicating that diminished TGF-β effects promote AML
survival [134]. IL-10 may impede AML cell growth [134] and has been shown to be el-
evated in AML patients [138]; however, its impact on survival is unclear [138,139] and
may also depend on the local cytokine/ cellular microenvironment [134]. Interestingly,
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anti-inflammatory cytokine IL-35 is elevated in AML and correlated with Treg expansion
(IL-35 is secreted primarily by Tregs), as well as CD4+ and CD8+ inhibition [134].

3.3. Metabolic, Soluble, and Vascular Factors with Immunological Significance in AML

In addition to cytokines, several soluble factors and metabolites contribute to the
immunosuppressive microenvironment of AML. AML blasts, MSCs and MDSCs have
the capacity of secreting indoleamine 2,3- dioxygenase 1 (IDO1) [140]. IDO1 (a catabolic
enzyme of tryptophan metabolism) activity leads to local tryptophan depletion and accu-
mulation of noxious tryptophan metabolites, resulting in Treg expansion and effector T-cell
inhibition and apoptosis [140,141], as well as dismal prognosis [142]. Increased arginase
II levels associate with inhibition of T-cells and hematopoietic progenitors and macrophage
skewing towards M2-phenotype [143]. In addition, iNOS upregulation by AML cells is
also associated with suppressed T-cell proliferation and NKT cell numbers, along with
increased Tregs [144].

Evidence suggests that AML-induced metabolic remodeling, inhibitory molecule
production, (e.g., ROS), and competition for nutrients are associated with immune sup-
pression [145]. MSCs are skewed towards adipocyte differentiation in AML and directly
provide metabolic support to AML blasts [146] by enhancing fatty acid oxidation [147,148].
Fatty acids and FAO impede T-cell effector functions and aid in Treg and M2 macrophage
generation [149]. MSCs also assist in AML OXPHOS through mitochondrial transfer medi-
ated by AML NOX2 activity [150]. High amounts of ROS generated by NOX and OXPHOS
activity [151] assist in T and NK cell suppression via PARP-1 dependent apoptosis [152].

Abnormal remodeling of the vascular component in the AML niche translates into
further immune dysregulation [140]. Firstly, poor BM perfusion and hypoxia result in T
and NK cell suppression through adenosine [153]. High extracellular amounts of ATP in
AML lead to adenosine production through CD73 and CD39 enzymes on AML cells, Tregs,
and MDSCs [154]. NO-mediated vascular remodeling promotes the hypoxic niche [155].
Moreover, vascular remodeling obstructs T-cell trafficking [140] and impaired immune cell
adhesion to the endothelium has been reported, due to elevated E-selectin [156].

3.4. Cellular Immune Response Dysregulation
3.4.1. T-Cells in AML

No consensus has been made regarding T-cell distribution and function in AML,
possibly because of disease and patient heterogeneity along with different approaches
in T-cell investigation [157]. Le Dieu et al. reported increased numbers of circulating
T-lymphocytes in AML patients (in contrast to healthy controls), with a marked increase in
a less clonal CD8+ population compared to CD4+ T-cells. Interestingly, BM T-cells were
comparable between the two groups [158]. Increased CD8+ T-cells have also been reported
by other groups [159]. Moreover, the T-cell activation signature was also elevated [158].
However, some studies demonstrated no increase in lymphocyte numbers between AML
and controls but exhibited reduced CD4/CD8 ratios [160,161]. Nevertheless, higher BM
lymphocytes with predominant T-cells were associated with superior OS [162] and strong
lymphocytic increase post chemotherapy with decreased relapse risk [163].

Data suggest that T-cell dysfunction/exhaustion is present at diagnosis and T-cell
functional status may be in a dynamic relationship with disease phase and treatment [157].
Le Dieu et al. showed that AML T-cells had different transcription profiles compared
to controls, with some distinctively expressed genes contributing to cytoskeleton forma-
tion [158]. Subsequently, they showed an in vitro T-cell impairment in immune synapse
formation [158]. A significant immune evasion mechanism is the expression of immune
checkpoint ligands by leukemic blasts [128,164]. Human studies also demonstrated that
T-cells from AML (co-) expressed higher levels of immune checkpoint molecules (PD-1 and
TIM3, PD-1 and LAG3) compared to controls and their expression frequency increased
with disease progression [165]. PD-L1 levels on AML cells were wide-ranging across dif-
ferent studies (from 18% to more than 50%) and PD-L1 expression was associated with
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acute monocytic leukemia and correlated with dismal prognosis [10]. TIM3 and its ligand
galectin-9 (expressed on AML cells) induce β-catenin and NF-κB mediated self-renewal
and NK-/T-cell suppression [166]. Furthermore, elevated mRNA levels of CTLA4 and
LAG3 were found in T-cells correlating with inferior prognosis [167]. Similarly, several
studies have shown that immune checkpoint expression in CD8+ is associated with T-cell
dysfunction and leukemia relapse [10]. A study by Schnorfeil et al. demonstrated that
cytokine production and proliferation of T-cells from AML patients with different diseases
are unimpaired (in addition to reduced CD4+ IFN-γ production), with PD-1 overexpression
representing differentiated effector T-cells, not exhaustion [168]. AML CD8+ T-cell cytokine
production may not diverge from normal controls, even though exhausted subsets have
been identified as stated [10]. Moreover, transcriptional signature reversibility of CD8+
cells in induction chemotherapy responders was demonstrated [165,169–172]. Remarkably,
Radpour et al. suggested that in favorable-risk AML the BM CD8+ T-cells assisted in
LSC expansion. Transcriptomic analysis of these CD8+ T-cells revealed epigenetic alter-
ations affecting T-cell function [173]. On the contrary, high-risk disease LSC growth was a
cell-intrinsic event and T-cell independent [173].

Regarding T helper cell function, Th1 cell numbers and functional capacity (IFN-γ
production) may be decreased [168] with Th17 increase along with elevated IL-17 secretion
associated with diminished Th1 and IFN-γ levels [108,174].

Treg numbers and function might be upregulated, as shown by several studies. In
one study, peripheral and BM Tregs were increased compared to controls and BM Tregs
exhibited higher immunosuppressive capabilities than their peripheral counterparts [175].
AML blasts that express inducible T-cell-co- stimulator ligand (ICOSL), promote Treg
proliferation that contributes to disease maintenance via IL-10 secretion [176]. Furthermore,
CXCL12/ CXCR4 may be crucial for Treg accumulation in the BM [177]. Variable levels
of Tregs during treatment have been demonstrated [178,179]. Murine models and clinical
studies have shown higher Treg levels at diagnosis contribute to disease propagation and
inferior outcomes [175]. Contradictive results were demonstrated by a retrospective study;
higher Tregs levels during lymphocytic recovery after induction were associated with
improved response and survival [180].

3.4.2. Dendritic Cells in AML

A study in AML patients by Derolf et al. demonstrated that DCs were diminished or
even absent in AML BM at diagnosis compared to control, with DC regeneration observed
in CR patients (even though plasmacytoid dendritic cells (pDC) were still reduced) [181].
The authors found no correlation between DC levels and survival [181]. Xiao et al. showed a
significant reduction of plasmacytoid dendritic cells (pDC) in AML patients, as well as blast:
pDC ratio correlated with positive measurable residual disease and poor outcome [182].
On the contrary, elevated DC proportions of peripheral blood mononuclear cells have been
reported accompanied by immunosuppressive characteristics [122], an effect reversed with
a TLR7/8 agonist [183,184]. Additionally, tissue forming-pDC (TF-pDCs) positive patients
had inferior prognosis [185].

3.4.3. NK Cells in AML

NK cell impairment in AML further contributes to the immune-evasive nature of the
disease. Experimental studies have shown that TGF-β and IL-10 impede NK activity [186].
Tregs are capable of inhibiting NK activity through a TGF-β mediated mechanism [187].
NK dysfunction in AML-derived NK cells is a result of poor expression of natural cytotoxic
receptors (NCR) [188]. The functional and phenotypic alterations of NK cells were re-
versible in patients who achieved remission, in contrast to treatment non-responders [189].
Moreover, the activating receptor NKG2D is poorly expressed in AML [186,190,191]. AML
cells downregulated NCR-ligand expression leading to NK cytotoxicity evasion [188],
with epigenetic mechanisms contributing to this [188,192–194].AML blasts can also avoid
NK-mediated cell-lysis through weakened perforin binding [195].
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3.4.4. MDSCs in AML

Similarly, MDSCs in AML are an important medium in T- and NK- cell immuno-
suppression. MDSC numbers in AML patients are elevated in BM and PB, with MDSC
increase correlating with MRD positivity [196]. MDSC proliferation can be induced by
AML blasts themselves, via oncoprotein MUC1 containing extracellular vesicle production
(EV). MUC1 increases cMYC expression in EVs resulting in MDSC growth [196]. The
Akt/mTOR pathway is also implicated in the AML-EV mediated transition of monocytes
to MDSCs [197]. MDSC suppressing mechanisms include V-domain Ig suppressor of
T-cell activation (VISTA), PD-L1, IDO1, TGF-β, IL-10, ROS, peroxynitrite, PGE2, and exo-
somes [198].

3.4.5. Macrophages in AML

Macrophages demonstrate endogenous plasticity capable of driving cell polarization
under tissue-specific conditions [199] and in AML leukemia blasts have the ability to
reprogram macrophages towards leukemia promoting the M2 phenotype [199]. AML
blasts can induce M2 polarization via arginase II production [143,200]. Furthermore, higher
numbers of M2-like macrophages were found in AML patients’ BM compared to controls
and AML cells could induce an M2-like phenotype, possibly through dependence on
transcription factor Gfi-1 [201]. Epigenetic and miRNA contributors may also be involved
in M1 polarization impairment [200].

3.4.6. MSCs in AML

AML-derived MSCs show higher immunosuppressive behavior like lymphocyte sup-
pression and reduced proinflammatory cytokine production, compared to normal con-
trols [139]. MSCs in AML diagnosis demonstrate higher VEGFA, CXCL12, PGE2, IDO1,
IL-1β, IL-6, and IL-32, with reduced IL-10 compared to MSCs in AML relapse [116]. AML
patient-derived MSCs exhibit Treg induction and IDO1 upregulation abilities [202]. More-
over, MSCs protected AML blasts from NK killing in co-culture systems [203], with TLR4
playing a role [204]. MSCs also inhibit NK expansion through IDO and PGE2 [204].

It should also be noted that the BM microenvironment assists in cancer resistance to
chemotherapy via various different mechanisms (soluble factor-mediated or cell-adhesion
mediated) from endothelial cells, MSCs, and osteoblasts [205]. Activated endothelial cells
for example are important factors that drive leukemia relapse. AML-induced endothelial
activations result in AML cell proliferation and cytarabine resistance [206]. Age-associated
BM alterations have also been described in mice to affect young HSC engraftment and
T-cell production when they were transplanted to old recipients compared to young [207].

4. Conclusions

Evidence suggests that the BM can participate in sophisticated immune responses
since it harbors the appropriate immune cell types. The HSCs themselves have proper
adaptation mechanisms to exogenous immune and inflammatory factors, which may
become deleterious when sustained in time, leading to HSC malfunction, myeloid bias, and
propagation of malignancies. MDS is a neoplastic disease, in which—as outlined above—
chronic microenvironmental inflammatory signaling leads to neoplastic clone progression.
Current studies indicate a dichotomy between low- and high-risk MDS immune milieu low-
risk MDS manifests with an inflammatory cytopenic phenotype, whereas high-risk MDS
clones take advantage of the suppression and reduction of various effector cell types and
the upregulation of immunosuppressive cells. Similar to high-risk MDS, AML also recruits
an inventory of mechanisms aimed at immune suppression and evasion of anti-leukemic
cytotoxic cells. Of course, in reality, these diseases are much more complicated, as shown
by Guo et al. who reported a highly heterogenous AML immune landscape with newly
defined exotic immune cell subsets [208]. Our review only outlines the increasingly complex
immunological landscape of these myeloid malignancies, provided by an ever-expanding
number of studies. Nonetheless, the understanding of the immune dysregulation in MDS
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and AML will pave the way for the development of novel treatments that are so much
needed for this patient population.
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