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Abstract

Genetic linkage maps are cornerstones of a wide spectrum of biotechnology applications, including map-assisted breeding,
association genetics, and map-assisted gene cloning. During the past several years, the adoption of high-throughput
genotyping technologies has been paralleled by a substantial increase in the density and diversity of genetic markers. New
genetic mapping algorithms are needed in order to efficiently process these large datasets and accurately construct high-
density genetic maps. In this paper, we introduce a novel algorithm to order markers on a genetic linkage map. Our method
is based on a simple yet fundamental mathematical property that we prove under rather general assumptions. The validity
of this property allows one to determine efficiently the correct order of markers by computing the minimum spanning tree
of an associated graph. Our empirical studies obtained on genotyping data for three mapping populations of barley
(Hordeum vulgare), as well as extensive simulations on synthetic data, show that our algorithm consistently outperforms the
best available methods in the literature, particularly when the input data are noisy or incomplete. The software
implementing our algorithm is available in the public domain as a web tool under the name MSTMAP.
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Introduction

Genetic linkage mapping dates back to the early 20th century

when scientists began to understand the recombinational nature

and cellular behavior of chromosomes. In 1913 Sturtevant studied

the first genetic linkage map of chromosome X of Drosophila

melanogaster [1]. Genetic linkage maps began with just a few to

several tens of phenotypic markers obtained one by one by

observing morphological and biochemical variations of an

organism, mainly following mutation. The introduction of DNA-

based markers such as restriction fragment length polymorphism

(RFLP), randomly amplified polymorphic DNA (RAPD), simple

sequence repeats (SSR) and amplified fragment length polymorp-

shim (AFLP) caused genetic maps to become much more densely

populated, generally into the range of several hundred to more

than a thousand markers per genome. More recently, the number

of markers has surged well above 1,000 in a number of organisms

with the adoption of DArT, SFP and especially SNP markers, the

latter providing avenues to 100,000 s to millions of markers per

genome. In plants, one of the most densely populated maps is that

of Brassica napus [2], which was developed from an initial set of

13,551 markers. High density genetic maps facilitate many

biological studies including map-based cloning, association

genetics and marker assisted breeding. Because they do not

require whole genome sequencing and require relatively small

expenditures for data acquisition, high density genetic linkage

maps are currently of great interest.

A genetic map usually is built using input data composed of the

states of loci in a set of meiotically derived individuals obtained

from controlled crosses. When an order of the markers is

computed from the data, the recombinational distance is also

estimated. To characterize the quality of an order, various

objective functions have been proposed, e.g., minimum Sum of

Square Errors (SSE) [3], minimum number of recombination events

(COUNT) [4], Maximum Likelihood (ML) [5], Modified Maximum

Likelihood (MML) [6] which tries to incorporate the presence of

possible genotype errors into the ML model, maximum Sum of

adjacent LOD scores (SALOD) [7], minimum Sum of Adjacent

Recombination Fractions (SARF) [8], minimum Product of Adjacent

Recombination Fractions (PARF) [9]. Searching for an optimal order

with respect to any of these objective functions is computationally

difficult. Enumerating all the possible orders quickly becomes

infeasible because the total number of distinct orders is

proportional to n!, which can be very large even for a small

number n of markers.

The connection between the traveling salesman problem and a

variety of genomic mapping problem is well known, e.g., for the

physical mapping problem [10,11], the genetic mapping problem

[12,13] and the radiation hybrid ordering problem [14]. Various

searching heuristics that were originally developed for the traveling

salesman problem, such as simulated annealing [15], genetic algorithms

[16], tabu search [17,18], ant colony optimization, and iterative

heuristics such as K-opt and Lin-Kernighan heuristic [19] have been

applied to the genetic mapping problem in various computational

packages. For example, JOINMAP [5] and TMAP [6] implement

simulated annealing, CARTHAGENE [12,20] uses a combination of

simulated annealing, tabu search and genetic algorithms, ANTMAP

[21] exploits the ant colony optimization heuristic, [22] is based on
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genetic algorithms, and [23] takes advantage of evolutionary

algorithms. Finally, RECORD [4] implements a combination of

greedy and Lin-Kernighan heuristics.

Most of the algorithms proposed in the literature for genetic

linkage mapping find reasonably good solutions. Nonetheless, they

fail to identify and exploit the combinatorial structures hidden in

the data. Some of them simply start to explore the space of the

solutions from a purely random order (see, e.g., [12,23,5,21]),

while others start from a simple greedy solution (see, e.g., [4,3]).

Here we show both theoretically and empirically that when the

data quality is high, the optimal order can be identified very

quickly by computing a minimal spanning tree of the graph

associated with the genotyping data. We also show that when the

genotyping data is noisy or incomplete, our algorithm consistently

constructs better genetic maps than the best available tools in the

literature. The software implementing our algorithm is currently

available as a web tool under the name MSTMAP.

Materials and Methods

We are concerned with genetic markers in the form of single

nucleotide polymorphism (SNP), more specifically biallelic SNPs. By

convention, the two alternative allelic states are denoted as A and

B respectively. The organisms considered here are diploids with

two copies of each chromosome, one from the mother and the

other from the father. A SNP locus may exist in the homozygous

state if the two allele copies are identical, and in the heterozygous

state otherwise.

Various population types have been studied in association with

genetic mapping, which includes Back Cross (BC1), Doubled Haploid

(DH), Haploid (Hap), Recombinant Inbred Line (RIL), advanced RIL, etc.

Our algorithm can handle all of the aforementioned population

types. For the sake of clarity, in what follows we will concentrate

on the DH population (see the section on barley genotyping data

for details on DH populations). The application of our method to

Hap, advanced RIL and BC1 populations is straightforward. In

Supplementary Text S1, we will discuss the extension of our

method to the RIL population (see, e.g., [24] for an introduction

to RIL populations).

Building a genetic map is a three-step process. First, one has to

partition the markers into linkage groups, each of which usually

corresponds to a chromosome (sometimes multiple linkage groups

can reside on the same chromosome if they are far apart). More

specifically, a linkage group is defined as a group of loci known to be

physically connected, that is, they tend to act as a single group

(except for recombination of alleles by crossing-over) in meiosis

instead of undergoing independent assortment. The problem of

assigning markers to linkage groups is essentially a clustering

problem. Second, given a set of markers in the same linkage group,

one needs to determine their correct order. Third, the genetic

distances between adjacent markers have to be estimated. Before

we describe the algorithmic details, the next section is devoted to a

discussion on the input data and our optimization objectives.

Genotyping Data and Optimization Objective Functions
The doubled haploid individuals (a set collectively denoted by

N) are genotyped on the set M of markers, i.e., the state of each

marker is determined. The genotyping data are collected into a

matrix A of size m6n, where m = |M| and n = |N|. Each entry in

A corresponds to a marker and individual pair, which is also called

an observation. Due to how DH mapping populations are produced

(please refer to section on barley genotyping data for details), each

observation can exist in two alternative states, namely homozygous

A or homozygous E, which are denoted as A and B respectively.

The case where there is missing data will be discussed later in this

manuscript.

For a pair of markers l1, l2 M M and an individual c M N, we say

that c is a recombinant with respect to l1 and l2 if c has genotype A on

l1 and genotype B on l2 (or vice versa). If l1 and l2 are in the same

linkage group, then a recombinant is produced if an odd number

of crossovers occurred between the paternal chromosome and the

maternal chromosome within the region spanned by l1 and l2
during meiosis. We denote with Pi,j the probability of a

recombinant event with respect to a pair of markers (li,lj). Pi,j

varies from 0.0 to 0.5 depending on the distance between li and lj
At one extreme, if li and lj belong to different LGs, then Pi,j = 0.5

because alleles at li and lj are passed down to next generation

independently from each other. At the other extreme, when the

two markers li and lj are so close to each other that no

recombination can occur between them, then Pi,j = 0.0. Let (li,lj)

and (lp,lq) be two pairs of markers on the same linkage group. We

say that the pair (li,lj) is enclosed in the pair (lp,lq) if the region of the

chromosome spanned by li and lj is fully contained in the region

spanned by lp and lq. A fundamental law in genetics is that if (li,lj) is

enclosed in (lp,lq) then Pi,j#Pp,q.

As mentioned in the Introduction, a wide variety of objective

functions have been proposed in the literature to capture the

quality of the order (SSE, COUNT, ML, MML, SALOD, SARF,

PARF, etc.). With the exception of SSE and MML, the rest of the

objective functions listed above can be decomposed into a simple

sum of terms involving only pairs of markers. Thus, we introduce a

weight function w: M6MRR to be defined on pairs of markers.

The function w is said to be semi-linear if w(i, j)#w(p, q) for all (li,lj)

enclosed in (lp,lq). For example, if we have three markers in order

{l1,l2,l3} and an associated weight function w that satisfies semi-

linearity, we have w(1,3)$w(1,2) and w(1,3)$w(2,3) since (l1,l2) and

(l2,l3) are enclosed in (l1,l3), but it is not necessary the case that

w(1,3) = w(1,2)+w(2,3). The concept of semi-linearity is essential for

the development of our marker ordering algorithm as explained

below.

For example, the function w(i, j) = Pi,j is semi-linear. Another

commonly used weight function is wlp(i, j) = log(Pi,j). Since the

logarithm function is monotone, then wlp(i, j) is also semi-linear. A

more complicated weight function is wml(i, j) = 2[Pi,jlog(Pi,j)+(12

Pi,j)log(12Pi,j)]. It is relatively easy to verify that wml(i, j) is a

monotonically increasing function of Pi,j when 0#Pi,j#0.5, and

therefore wml is also semi-linear. Observe that all these weight

functions are functions in Pi,j. Although the precise value of Pi,j is

unknown, we can compute their estimates from the total number

of recombinants in the input genotyping data. For DH

populations, the total number of recombinants in N with respect

to the pair (li,lj) can be easily determined by computing the number

di,j of positions in which row A i,½ � and row A j,½ � do not match,

which corresponds to the Hamming distance between A i,½ � and A j,½ �.
It is easy to prove that di,j/n corresponds to the maximum likelihood

Author Summary

Genetic linkage maps are cornerstones of a wide spectrum
of biotechnology applications. In recent years, new high-
throughput genotyping technologies have substantially
increased the density and diversity of genetic markers,
creating new algorithmic challenges for computational
biologists. In this paper, we present a novel algorithmic
method to construct genetic maps based on a new
theoretical insight. Our approach outperforms the best
methods available in the scientific literature, particularly
when the input data are noisy or incomplete.
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estimate (MLE) for Pi,j. When we replace Pi,j by its maximum

likelihood estimate di,j/n, we obtain the following approximate

weight functions: wp9(i, j) = di,j/n, wlp9 (i, j) = log(di,j/n), and

wml
’ i,jð Þ~{

di,j

n
log

di,j

n

� �
z 1{

di,j

n

� �
log 1{

di,j

n

� �h i
.

Our optimization objective is to identify a minimum weight

traveling salesman path with respect to either of the aforemen-

tioned approximated weight functions, which will be discussed in

further details below. We should mention that if wp9 is used as the

weight function, then our optimization objective is equivalent to

the SARF or COUNT objective functions (up to a constant). If

instead wlp9 is used, then our optimization objective is equivalent to

the logarithm of the PARF objective function (up to a constant).

Lastly, if wml9 is employed, our objective function is equivalent to

the negative of the logarithm of the ML objective function as being

employed in [3,5,12,20] (again, up to a constant). Unless otherwise

noted, wp9 is the objective function being employed in the rest of

this paper. The experimental results will show that the specific

choice of objective function does not have a significant impact on

the quality of the final map. In particular, both functions wp9 and

wml9 produce very accurate final maps.

Clustering Markers into Linkage Groups
First observe that when two markers li and lj belong to two

different linkage groups, then Pi,j = 0.5 and consequently di,j will be

large with high probability. More precisely, let li and lj be two

markers that belong to two different LGs, and let di,j be the

Hamming distance between A i,½ � and A j,½ �. Then,

E di,j

� �
~n=2 and P di,jvd

� �
ƒe{

2 n=2{dð Þ2
n where d,0.5. The proof

of this bound can be found in Supplementary Text S1.

In order to cluster the markers into linkage groups, we construct

a complete graph G(M, E) over the set of all markers. We set the

weight of an edge (li, lj) M E to the pairwise distance di,j between li
and lj. As shown in Theorem 1 of Supplementary Text S1, if two

markers belong to different LGs, then the distance between them

will be large with high probability. Once a small probability E is

chosen by the user (default is E= 0.00001, in general one should

choose E,0.0001.), we can determine d by solving the equation

22(n/22d)2/n = logeE. We then remove all the edges from G(M, E)

whose weight is larger than or equal to d. The resulting graph will

break up into connected components, each of which is assigned to

a linkage group.

A proper choice of E appears critical in our clustering algorithm.

In practice, however, this is not such a crucial issue because the

recombinant probability between nearby markers on the same

linkage group is usually very small (usually less than 0.05 in dense

genetic maps). According to our experience, our algorithm is

capable of determining the correct number of LGs for a fairly large

range of values of E (see Results and Discussion).

Ordering Markers in Each Linkage Groups
Let us assume now that all markers in M belong to the same

linkage group, and that M has been preprocessed so that di,j.0 for

all i, j M M. The excluded markers for which di,j = 0 are called co-

segregating markers, and they identify regions of chromosomes that

do not recombine. In practice, we coalesce co-segregating markers

into bins, where each bin is uniquely identified by any one of its

members. Let G(M, E) be an edge-weighted complete undirected

graph on the set of vertices M, and let w be one of the weight

functions defined above. A traveling salesman path (TSP) C in G is a

path that visits every marker/vertex once and only once. The

weight w(C) of a TSP C is the sum of the weights of the edges on C.

The main theoretical insight behind our algorithm is the

following. When w is semi-linear, the minimum weight TSP of G

corresponds to the correct order of markers in M. Furthermore

when the minimum spanning tree (MST) of G is unique, the

minimum weight TSP of G (and thus, the correct order) can be

computed by a simple MST algorithm (such as Prim’s algorithm).

Details of these mathematical facts (with proofs) are given in

Supplementary Text S1.

We now turn our attention to the problem of finding a

minimum weight TSP in G with respect to one of the approximate

weight functions. When the data are clean and n is large, the

maximum likelihood estimates di,j/n will be close to the true

probabilities Pi,j. Consequently it is reasonable to expect that those

approximate weight functions will be also semi-linear, or ‘‘almost’’

semi-linear. Although only in the former case our theory (in

particular, Lemma 1 in Supplementary Text S1) guarantees that

the minimum weight TSP will correspond to the true order of the

markers, in our simulations the order is recovered correctly in

most instances. In order to find the minimum weight TSP, we first

run Prim’s algorithm on G to compute the optimum spanning tree,

which takes O(nlogn). If the MLEs are accurate so that the

approximate weight function is semi-linear, our theory (in

particular Lemma 2 in Supplementary Text S1) ensures that the

MST is a TSP.

In practice, due to noise in the genotyping data or due to an

insufficient number of individuals, the spanning tree may not be a

path – but hopefully ‘‘very close’’ to a path. This is exactly what we

observed when running MST algorithm on both real data and

noise-free simulated data – the MST produced is always ‘‘almost’’

a path. In Results and Discussion we compute the fraction r of the

total number of markers in the linkage group that belong to the

longest path of the MST. The closer is r to 1.0, the closer is the

MST to a path. Table 1 on the barley datasets and Figure 1 on

simulated data show that r is always very close to 1.0 when the

data is noise-free.

When a tree is not a path, we proceed as follows. First, we find

the longest path in the MST, hereafter referred to as the backbone.

The nodes that do not belong to the path will be first disconnected

from it. Then, the disconnected nodes will be re-inserted into the

backbone one by one. Each disconnected node is re-inserted at the

position which incurs the smallest additional weight to the

backbone. The path obtained at the end of this process is our

initial solution, which might not be locally optimal.

Table 1. Summary of the clustering results for the barley data
sets.

Data set
# markers
(# bins) # LGs Sizes of the LGs �rr

OWB 1562(509) 7 168(65), 235(73),
255(91), 211(60),
278(89), 202(64),
213(67)

0.9978

SM 1270(396) 8 148(49), 217(57),
242(63), 130(49),
225(80), 122(40),
183(57), 3(1)

0.9971

MB 1652(443) 8 215(60), 279(72),
246(77), 141(39),
299(74), 219(54),
248(65), 5(2)

1.0000

�rr is the average r of the seven largest LGs in each population. The numbers
inside the parentheses are the number of bins.
doi:10.1371/journal.pgen.1000212.t001
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Once the initial solution is computed, we apply three heuristics

that iteratively perform local perturbations in an attempt to improve

the current TSP. First, we apply the commonly-used K-opt (K = 2 in

this case) heuristic. We cut the current path into three pieces, and try

all the possible rearrangements of the three pieces. If any of the

resulting paths has less total weight, it will be saved. This heuristic is

illustrated in Figure 2-C1. This procedure is repeated until no

further improvement is possible. In the second heuristic, we try to

relocate each node in the path to all the other possible positions. If

this relocation reduces the weight, the new path will be saved. The

second heuristic is illustrated in Figure 2-C2.

In our experiments, we observed that K-opt or node relocation

may get stuck in local optima if a block of nodes have to be moved

as a whole to a different position in order to further improve the

TSP. In order to work around this limitation, we designed a third

local optimization heuristic, which is called block-optimize. The

heuristic works as follows. We first partition the current TSP into

blocks consisting of consecutive nodes. Let l1, l2,…, lm be the

current TSP. We will place li and li+1 in the same block if (1) w(i,

i+1)#w(i, j) for all i+1,j#m and (2) w(i, i+1)#w(k, i+1) for all 1#i.

Intuitively, the partitioning of the nodes into blocks reflects the fact

that the order between the nodes within a block is stable and

should be fixed, while the order among the blocks needs to be

further explored. After partitioning the current TSP into blocks,

we then carry out the K-opt and node relocation heuristics again

by treating a block as a single node. The last heuristic, block-

optimize, is illustrated in Figure 2-C3.

We apply the 2-opt heuristic, the relocation heuristic and the

block-optimize heuristic iteratively until none can further reduce

the weight of the path. The resulting TSP represents our final

solution. A sketch of our ordering algorithm is presented as

Algorithm 1 in Supplementary Text S1.

Dealing with Missing Data
In our discussion so far, we assumed no missing genotypes. This

assumption is not very realistic in practice. As it turns out, it is

common to have missing data about the state of a marker. Our

simulations shows that missing observations do not have as much

negative impact on the accuracy of the final map as do genotype

errors. Thus, it appears beneficial to leave uncertain genotypes as

missing observations rather than arbitrarily calling them one way or

the other.

We deal with missing observations via an Expectation Maximiza-

tion (EM) algorithm. Observe that if we knew the order of the

markers (or, bins, if we have co-segregating markers), the process

of imputing the missing data would be relatively straightforward.

For example, suppose we knew that marker l3 immediately follows

marker l2, and that l2 immediately follows marker l1. Let us denote

with P̂i,j the estimate of the recombinant probabilities between

markers li and lj. Let us assume that for an individual c the

genotype at locus l2 is missing, but the genotypes at loci l1 and l3
are available. Without loss of generality, let us suppose that they

are both A. Then, the posterior probability for the genotype at

locus l2 in individual c is

P genotype in c at l2 is Af g~
1{P̂P1,2

� �
1{P̂P2,3

� �
1{P̂P1,2

� �
1{P̂P2,3

� �
zP̂P1,2P̂P2,3

and P{genotype in c at l2 is B} = 12P{genotype in c at l2 is A}.

This posterior probability is the best estimate for the genotype of

the missing observation. Similarly, one can compute the posterior

probabilities for different combinations of the genotypes at loci l1
and l2.

In order to deal with uncertainties in the data and unify the

computation with respect to missing and non-missing observations,

we replace each entry in the genotype matrix A that used to

contain symbols A/B with a probability. The probability stored in

A i,j½ � now represents the confidence that we have about marker li
in individual cj of being in state A. For the known observations, the

probabilities are fixed to be 1 or 0 depending whether the

Figure 2. An illustration of the MST-based algorithm. (A) The
MST obtained for a synthetic example; the MST is not a TSP yet; the
backbone of the MST is shown with dotted edges. (B) An initial TSP
obtained from the backbone (see text for details). The dotted edges
represent marker pairs in the wrong order. Several local improvement
operations are applied to further improve the TSP, namely 2-OPT (C1),
node-relocation (C2) and block-optimize (C3). The final TSP is shown in
(D).
doi:10.1371/journal.pgen.1000212.g002

Figure 1. Average r (rho) for thirty runs on simulated data for
several choices of the error rates (and no missing data). The
variable n represents the number of individuals, and m represents the
number of markers.
doi:10.1371/journal.pgen.1000212.g001
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genotype observed is A or B, respectively. The probabilities for the

missing observations will be initially set to 0.5.

Our EM algorithm works as follows. We first compute a

reasonably good initial order of the markers by ignoring the

missing data. To do so, we compute the normalized pairwise

distance di,j as di,j = xn/n9, where n9 is the number of individuals

having non-missing genotypes at both loci li and lj, x is the number

of individuals having different genotypes at loci li and lj among the

n9 individuals being considered, and n is the total number of

individuals. With the normalized pairwise distances, we rely on the

function ORDER (Supplementary Text S1, Algorithm 1) to

compute an initial order.

After an initial order has been computed, we iteratively execute

an E-step followed by an M-step. In the E-step, given the current

order of the markers, we adjust the estimate for a missing

observation at marker li2 on individual cj as follows

A i2,j½ �~
X

a[ A,Bf g,c[ A,Bf g
La,A,c

, X
a[ A,Bf g,b[ A,Bf g,c[ A,Bf g

La,b,c ð1Þ

where li1 is the marker immediately preceding li2 in the most

recent ordering, li3 is the marker immediately following li2 , and

La,b,c is the likelihood of the event li1~a,li2~b,li3~cð Þ at the three

consecutive loci. The right hand side of Equation (1) is simply the

posterior probability of the missing observation li2 ,jð Þ being A.

The quantity La,b,c is straightforward to compute. For example,

LA,A,A~A i1,j½ � 1{P̂Pi1,i2

� �
1{P̂Pi2,i3

� �
A i3,j½ �, where P̂Pi1,i2~

di1,i2=n, P̂Pi2,i3~di2,i3=n are the MLEs for Pi1,i2 and Pi2,i3

respectively, and di1,i2 and di2,i3 are the pairwise distance computed

in the previous M step or the initialization step when the initial

order is computed. In the case where the missing observation is at

the beginning or at the end of the map, the above estimates must

be adjusted slightly.

Following the E-step, we execute an M-step. We need to re-

compute the pairwise distances according to the new estimates of

the missing data. Given that now A contains probabilities, the

expected pairwise distance between two markers li and lj can be

computed as follows

di,j~
X

1ƒkƒn

A i,k½ � 1{A j,k½ �ð Þz 1{A i,k½ �ð ÞA j,k½ � ð2Þ

With the updated pairwise distances, we use the function ORDER

again to compute a new order of the markers.

An E-step is followed by another M-step, and this iterative

process continues until the marker order converges. In our

experimental evaluations, the algorithm converges quickly, usually

in less than ten iterations. The pseudo-code for the EM algorithm

is presented as Algorithm 2 in Supplementary Text S1.

We should mention that our EM algorithm is significantly

different from the EM algorithms employed in MAPMAKER [25] or

CARTHAGENE [12]. The EM algorithms used in MAPMAKER and

CARTHAGENE are not used to determine the order, but rather to

estimate the recombination probabilities between adjacent mark-

ers in the presence of missing data. In MSTMAP, our EM method

deals with missing data in a way which is very tightly coupled with

the problem of finding the best order of the markers.

Detecting and Removing Erroneous Data
As commonly observed in the literature (see, e.g., [26,27]), with

conventional mapping software such as JOINMAP, CARTHAGENE or

RECORD, the existence of genotyping errors can have a severe

impact on the quality of the final maps. With even a relatively

small amount of errors, the order of the markers can be

compromised. Therefore, it is necessary to detect erroneous

genotype data.

In practice, genotype errors do not distribute evenly across

markers. Usually a few ‘‘bad markers’’ tend to be responsible for

the majority of errors. Removing those bad markers is relatively

easy because they will appear isolated from the other markers in

terms of Hamming distance di,j. We can simply look for markers

which are more than a certain distance (a parameter specified by

the user, default is 15 cM) away from all other markers. Bad

markers are deleted completely from the dataset.

Residual sources of genotyping errors are more difficult to deal

with. Given that in practice missing observations have much less

negative impact on the quality of the map than errors, our strategy

is to identify suspicious data and treat them as missing

observations. When doing so, however, we should be careful not

to introduce too many missing observations.

In high density genetic mapping, a genotype error usually

manifests itself as a singleton (or a double cross-over) under a

reasonably accurate ordering of the markers. A singleton is a SNP

locus whose state is different from both the SNP marker

immediately before and after. An example of a singleton is

illustrated in Figure 3. A reasonable strategy to deal with

genotyping errors is to iteratively remove singletons by treating

them as missing observations and then refine the map by running

the ordering algorithm. The problem of this strategy is that at the

beginning of this process the number of errors might be high and

the marker orders are not very accurate. As a consequence, the

identified singletons might be false positives.

We deal with this problem by taking into consideration the

neighborhood of a marker instead of just looking at the

immediately preceding and following ones. Along the lines of the

approach proposed in SMOOTH [26], we define

EA i,j½ �~
X
k=i

d{2
i,k A k,j½ �

,X
k=i

d{2
i,j ð3Þ

where i is a marker and j is an individual. The quantity EA i,j½ �
estimates the state of a locus given its distance to other markers

(and their states). The estimate is a weighted average of the

information from all other markers, and the weight is proportional

to the inverse of the square of the distance. One can approximate

EA i,j½ � by considering only a small set (say 8) of the closest markers

to compute the estimate. When EA i,j½ � is far from A i,j½ �, then the

observation (i, j) is regarded as suspicious and is treated as a

missing observation. In our implementation, we consider an

observation suspicious when EA i,j½ �{A i,j½ �j jw0:75.

In our iterative process (1) we detect possible errors using

EA i,j½ �{A i,j½ �j j, (2) we refine the map by calling Algorithm 3

Figure 3. An example of a singleton (double crossover). Each
row refers to an individual and each column refers to a marker locus.
Given the current order, the entry (c1, l7) appears to be a possible error
because its state differs from both its immediately preceding and
following markers.
doi:10.1371/journal.pgen.1000212.g003
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(Supplementary Text S1), (3) we estimate the missing data and (4)

we re-compute the distances di,j according to Equation (2). The

number of iterations should depend on the quality of the data. If

the original data are noisy, more iterations are needed. We

propose an adaptive approach to dynamically determine when to

stop the iterative process. Let X be the total number of suspicious

observations that have been detected so far plus the total number

of cross-overs still present in the latest order. Observe that an error

usually result in two cross-overs (refer to Figure 3 for an example).

By treating an error as a missing observation, the total number of

suspicious observations will increase by one, but the total number

of crossovers will decrease by two. Overall, the quantity X will

decrease by one in the next iteration. On the other hand, if an

observation is indeed correct but is mistakenly treated as a missing,

X will increase by one in the next iteration. Based on this analysis,

we stop the iterative process as soon as the quantity X begins to

increase.

In passing, we should mention that Equation (3) can also be

used to estimate missing data. According to our experimental

studies, it gives comparable performance to the EM algorithm we

proposed in the previous section. Our complete algorithm, which

incorporates clustering markers into linkage groups, missing data

estimation, and error detection, is presented in Supplementary

Text S1 as Algorithm 3. We named our algorithm MSTMAP since

the initial orders of the markers are inferred from the MST of a

graph.

Computing the Genetic Distances
Mapping functions are used to convert the recombination

probabilities r to a genetic distance D that reflects the actual

frequency of crossovers. They correct for undetected double

crossovers and cross over interference. The Haldane mapping

function [28] assumes that crossovers occur independently and

thus do not adjust for interference, while the Kosambi mapping

function [29] adjusts for crossover interference assuming that one

crossover inhibits another nearby. The Haldane distance function

is defined as r~{ 1
2

e{D=50{1
� �

, whereas the Kosambi distance

function is r~ 1
2

eD=25{1
eD=25z1

� �
. Both functions are defined for

0,r,0.5. When the crossover interference is not known, Kosambi

should be used by default. If the frequency of crossover is low or in

the case of high density maps when the distance between adjacent

markers is low, either of them can be safely used [30].

Results/Discussion

We implemented our algorithm in C++ and carried out

extensive evaluations on both real data and simulated data. The

software is available in the public domain at the address http://

www.cs.ucr.edu/,yonghui/mstmap.html.

The four tools benchmarked here were run on relatively fast

computers by contemporary standards. MSTMAP was run on a

Linux machine with 32 1.6 GHz Intel Xeon processors and

64 GB memory, CARTHAGENE was executed on a Linux machine

with a dual-core 2 GHz Intel Xeon processor and 3 GB memory

whereas RECORD and JOINMAP were both run on a Windows XP

machine with a dual-core 3 GHz Intel Pentium processor and

3 GB of main memory. We had to use different platforms because

some of these tools are platform-specific (i.e., RECORD and

JOINMAP only run on Windows, CARTHAGENE only runs on Linux).

Note that MSTMAP was run on the platform with the slowest

CPU. The fact that MSTMAP was run on a machine with multiple

CPUs and large quantity of main memory did not create an unfair

advantage. MSTMAP is single threaded and thus it exploits only

one CPU. The space complexity of MSTMAP is O(n2), where n is

the number of markers per linkage group. Under our simulation

studies, n is less than 500, which translates in about of 1 GB

memory which is a relatively small amount.

Barley Genotyping Data
The real genotyping data come from an ongoing genetic

mapping project for barley (Hordeum vulgare) (see http://barleycap.

org/ and http://www.agoueb.org/ for more details on this

project). In total we made use of three mapping populations, all

of which are DH populations. Doubled haploid (DH) technology

refers to the use of microspore or anther culture (ovary culture in

some species) to obtain haploid embryos and subsequently double

the ploidy level. Briefly, a DH population is prepared as follows.

Let M be the set of markers of interest. Pick two highly inbred

(fully homozygous) parents p1 and p2. We assume that the parents

p1 and p2 are homozygous for every marker in M (those markers

that are heterozygous in either p1 or p2 are simply excluded from

consideration), and the same marker always has different allelic

states in the two parents (those markers having the same allelic

state in both parents are also excluded from M). By convention, we

use symbol A to denote the allelic states appearing in p1 and B to

denote the allelic states appearing in p2. Parent p1 is crossed with

parent p2 to produce the first generation, called F1. The

individuals in the F1 generation are heterozygous for every

marker in M, with one chromosome being all A and the other

chromosome being all B. Gametes produced by meiosis from the

F1 generation are fixed in a homozygous state by doubling the

haploid chromosomes to produce a doubled haploid individual.

The ploidy level of haploid embryo could be doubled by chemical

(example colchicine) treatment to obtain doubled haploid plants

with 100% homozygosity. This technology is available in some

crops to speed up the breeding procedure (see, e.g., [31]).

The first mapping population is the result of crossing Oregon

Wolfe Barley Dominant with Oregon Wolfe Barley Recessive (see

http://barleyworld.org/oregonwolfe.php). The Oregon Wolfe

Barley (OWB) data set consists of 1,562 markers genotyped on

93 individuals. The second mapping population is the result of a

cross between Steptoe with Morex (see http://wheat.pw.usda.

gov/ggpages/SxM/), which consists of 1,270 markers genotyped

on 92 individuals. It will be referred to as the SM dataset from

here on. The third mapping population is the result of a cross

between Morex with Barke recently developed by Nils Stein and

colleagues at the Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK), which contains 1,652 markers on 93

individuals. This latter dataset will be referred to as MB in our

discussion. The genotypes of SNPs for the above data sets were

determined via an Illumina GoldenGate Assay. Very few of the

genotypes are missing. The three mapping populations together

contain only 51 missing genotype calls out of the total of 417,745.

The three barley data sets are expected to contain seven LGs, one

for each of the seven barley chromosomes.

Synthetic Genotyping Data
The simulated data set is generated according to the following

procedure (which is identical to the one used in [4]). First four

parameters are chosen, namely the number m of markers to place on

the genetic map, the number n of individuals to genotype, the error

rate g and the missing rate c. Following the choice of m, a ‘‘skeleton’’

map is produced, according to which the genotypes for the

individuals will be generated. The markers on the skeleton map are

spaced at a distance of 0.5 centimorgan plus a random distance

according to a Poisson distribution. On average, the adjacent

markers are 1 centimorgan apart from each other. The genotypes

for the individuals are then generated as follows. The genotype at
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the first marker is generated at random with probability 0.5 of being

A and probability 0.5 of being B. The genotype at the next marker

depends upon the genotype at the previous marker and the distance

between them. If the distance between the current marker and the

previous marker is x centimorgan, then with probability x/100, the

genotype at the current locus is the opposite of that at the previous

locus, and with probability 12x/100 the two genotypes are the

same. Finally, according to the specified error rate and missing rate,

the current genotype is flipped to purposely introduce an error or is

simply deleted to introduce a missing observation. Following this

procedure, various datasets for a wide range of choices of the

parameters were generated.

Evaluation of the Clustering Algorithm
First, we evaluated the effectiveness of our clustering algorithm

on the three datasets for barley. Since the genome of barley

consists of seven chromosome pairs, we expected the clustering

algorithm to produce seven linkage groups. Using the default value

for e, our algorithm produced seven linkage groups for the OWB

data set, eight linkage groups for the MB data set and eight linkage

groups for the SM data set. The same results can be obtained in a

rather wide range of values of E. For example, for any choice of

E M [0.000001,0.0001] the OWB data set is always clustered into

seven LGs. The smallest linkage group in the SM data set contains

three markers in a single bin. The smallest linkage group in the

MB data set contains five markers in two bins. By comparing the

three maps with each other, we determined that these small

isolated linkage groups in the SM and MB populations are at the

telomere far away from the rest of the markers on the same

chromosome. The result of the clustering algorithm is summarized

in Table 1. We also compared our clusters with those produced by

JOINMAP. The clusters were identical.

Evaluation of the Quality of the Minimum Spanning Trees
In this second evaluation step, we verified that on real and

simulated data, the MSTs produced by MSTMAP are indeed very

close to TSPs. This experimental evaluation corroborates the fact

that the MSTs produced are very good initial solutions. Here, we

computed the fraction r of the total number of bins/vertices in the

linkage group that belong to the longest path (backbone) of the

MST. The closer is r to 1, the closer is the MST to a path.

Table 1 shows that on the barley data sets, the average value for

r for the seven linkage groups (not including the smallest LG in the

SM data set) is always very close to 1. Indeed, 19 of the 21 MSTs

are paths. The remaining 2 MSTs are all very close to paths, with

just one node hanging off the backbone. When the MSTs

generated by our algorithm are indeed paths, the resulting maps

are guaranteed to be optimal, thus increasing the confidence in the

correctness of the orders obtained.

On the simulated dataset with no genotyping errors, r is again

close to one (see Figure 1) for both n = 100 and n = 200 individuals.

When the error rate is 1%, the ratio drops sharply to about 0.6.

This is due to the fact that the average distance between nearby

markers is only one centimorgan. One percent error introduces an

additional distance of two centimorgans which is likely to move a

marker around in its neighborhood. The value for r for error rates

up to 15% are computed and are presented in Figure 1. At 15%

error rate, the backbone contains only about 40% of the markers.

However, this relatively short backbone is still very useful in

obtaining a good map since it can be thought as a sample of the

markers in their true order. Also, observe that increasing the

number of individuals will slightly increase the length of the

backbone. However, the ratio remains the same irrespective of the

number of markers we include on a map (data not shown).

Evaluation of the Error Detection Algorithm
Third, we evaluated the accuracy and the effectiveness of the

error detection algorithm. Synthetic datasets with a known map

Table 2. Summary of the accuracy and effectiveness of our
error detection scheme for m = 100, n = 100 and various
choices of g and c.

n, m = 100 E

c g %f_pos %t_pos %f_neg wp9 w9ml

wp9 no
err.

0.00 0.00 0.00186 0.00000 0.00000 1.50 1.43 1.80

0.00 0.01 0.00441 0.00956 0.00049 15.10 15.80 38.93

0.00 0.05 0.00442 0.04643 0.00357 41.37 42.93 165.50

0.00 0.10 0.00682 0.08754 0.01229 96.53 96.07 468.63

0.00 0.15 0.01086 0.12188 0.02720 221.03 238.77 1187.60

0.01 0.00 0.00177 0.00000 0.00000 1.83 3.27 1.27

0.05 0.00 0.00150 0.00000 0.00000 6.47 6.17 5.23

0.10 0.00 0.00135 0.00000 0.00000 18.07 18.60 9.23

0.15 0.00 0.00124 0.00000 0.00000 16.13 16.40 10.00

0.01 0.01 0.00357 0.00966 0.00050 11.47 11.83 44.20

0.05 0.05 0.00421 0.04305 0.00433 52.90 54.13 144.67

0.10 0.10 0.00631 0.07641 0.01300 140.67 150.40 532.47

0.15 0.15 0.00994 0.09494 0.03277 379.17 353.53 1040.70

Each row in the table is an average of 30 independent runs. The columns wp9

and w9ml correspond to the number of erroneous marker pairs (E) made by
MSTmap under the objective function wp9 and w9ml respectively with error
detection. The column ‘‘wp9 no err.’’ corresponds to the number of erroneous
markers pairs made by MSTMAP under the objective function wp9 without error
detection.
doi:10.1371/journal.pgen.1000212.t002

Table 3. Comparison between MSTMAP, JOINMAP, CARTHAGENE

and RECORD for n = 100 and m = 100.

n, m = 100 MSTMAP RECORD CARTHAGENE JOINMAP

c g E time E time E time E time

0.00 0.00 1.50 1.3 1.3 2.1 2.5 255.0 1.7 ,60

0.00 0.01 15.10 4.0 46.6 1.7 58.2 275.7 - -

0.00 0.05 41.37 7.7 129.1 2.3 300.3 267.4 - -

0.00 0.10 96.53 12.0 450.8 3.2 680.0 265.2 - -

0.00 0.15 221.03 17.0 1064.8 3.7 1378.5 276.8 - -

0.01 0.00 1.83 1.3 34.7 2.0 2.8 300.1 - -

0.05 0.00 6.47 1.2 44.0 2.4 5.4 363.1 - -

0.10 0.00 18.07 1.1 49.7 2.7 7.0 416.6 - -

0.15 0.00 16.13 1.0 64.8 2.9 9.0 486.2 - -

0.01 0.01 11.47 4.2 54.8 2.7 49.0 310.0 53.7 ,60

0.05 0.05 52.90 9.9 164.1 3.9 296.4 368.4 370.2 ,60

0.10 0.10 140.67 17.1 683.4 6.0 837.0 430.2 - -

0.15 0.15 379.17 23.7 1387.4 7.6 1273.3 500.1 - -

Each number presented in the table is averaged over 30 independent runs,
except for those of JOINMAP, which are averaged over 10 independent runs.
Column E reports the average number of erroneous marker pairs. The running
time is reported as number of seconds.
doi:10.1371/journal.pgen.1000212.t003
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and various choices of error rate and missing rate were generated.

We ran our tool on each dataset, and by comparing the map

produced by MSTMAP with the true map we collected a set of

relevant statistics.

Given a map produced by MSTMAP we define a pair of markers

to be erroneous if their relative order is reversed when compared to

the true map. The number E of erroneous marker pairs ranges

from 0 to m(m21)/2, where m is the number of markers. We have

E = 0 when the two maps are identical, and E = m(m21)/2 when

one map is the reverse of the other. Since the orientation of the

map is not important in this context, whenever E.m(m21)/4, one

of the maps is flipped and E is recomputed. Notice that E is more

sensitive to global reshuffling than to local reshuffling. For

example, assume that the true order is the identity

permutation. The value of E for the following order
m
2

, m
2
z1, m

2
z2, . . . ,m,1,2,3, . . . , m

2
{1 is m(m21)/4, whereas E

for the order 2,1,4,3,6,5,…,m,m21 is m(m21)/2. For reasonably

large m, m(m21)/2 is much smaller than m(m21)/4. The fact that

E is more sensitive to global reshuffling is a desirable property

since biologists are often more interested in the correctness of the

global order of the markers than the local order.

The number of erroneous marker pairs conveys the overall

quality of the map produced by MSTMAP, however E depends

on the number m of markers. The larger is m, the larger E will

be. Sometimes it is useful to normalize E by taking the

transformation 12(4E/(m(m21))). The resulting statistic is

essentially the Kendall’s t statistic. The t statistic ranges from

0 to 1. The closer is the statistic to 1, the more accurate the map

is. We will present the t statistic along with the E statistic when

it is necessary.

The next three statistics we collected are the percentage of true

positives, the percentage of false positives, and the percentage of

false negatives, which are denoted as %t_pos, %tf_pos and %f_neg

respectively. For each dataset, the list of suspicious observations

identified by MSTMAP is compared with the list of true erroneous

observations that were purposely added when the data was first

generated. The value of %t_pos is the number of suspicious

observations that are truly erroneous divided by the total number

nm of observations. The value %f _pos is the number suspicious

observations that are in fact correct divided by the total number of

observations. Likewise, %f_neg is the number of erroneous

observations that are not identified by MSTMAP. The three

Table 4. Comparison between MSTMAP and RECORD for m = 300,500 and n = 100.

MSTMAP MSTMAP no err. detection RECORD

c g E t time E t time E t time

M = 300, n = 100

0.00 0.00 5.2 0.9998 12.1 6.3 0.9997 11.4 6.6 0.9997 25.7

0.00 0.01 42.7 0.9981 39.0 135.0 0.9940 29.1 135.5 0.9940 17.5

0.00 0.05 136.9 0.9939 80.1 407.9 0.9818 55.4 423.0 0.9811 23.3

0.00 0.10 338.1 0.9849 147.7 1104.5 0.9507 67.9 2946.3 0.8686 26.3

0.00 0.15 612.0 0.9727 221.0 5662.3 0.7475 78.8 8202.9 0.6342 31.9

0.01 0.00 6.1 0.9997 13.5 6.7 0.9997 11.5 107.5 0.9952 19.6

0.05 0.00 19.6 0.9991 12.8 14.4 0.9994 10.6 133.0 0.9941 25.4

0.10 0.00 34.8 0.9984 13.1 17.7 0.9992 10.0 156.8 0.9930 28.8

0.15 0.00 52.1 0.9977 11.5 30.3 0.9986 8.4 197.4 0.9912 32.3

0.01 0.01 32.6 0.9985 41.1 134.4 0.9940 31.6 153.5 0.9932 26.6

0.05 0.05 150.6 0.9933 114.1 399.1 0.9822 73.5 510.7 0.9772 34.7

0.10 0.10 402.0 0.9821 228.1 1089.9 0.9514 84.2 3626.1 0.8383 42.4

0.15 0.15 757.8 0.9662 356.7 5605.2 0.7500 95.6 10970.7 0.5108 54.5

m = 500, n = 100

0.00 0.00 8.6 0.9999 33.6 10.6 0.9998 32.4 10.4 0.9998 32.5

0.00 0.01 68.8 0.9989 105.4 219.8 0.9965 83.4 233.5 0.9963 57.0

0.00 0.05 207.4 0.9967 239.5 663.5 0.9894 171.6 1308.4 0.9790 75.3

0.00 0.10 532.1 0.9915 467.6 2226.6 0.9643 198.8 9797.2 0.8429 78.8

0.00 0.15 1014.9 0.9837 698.7 9652.8 0.8452 247.7 32850.8 0.4733 90.2

0.01 0.00 11.5 0.9998 32.4 11.9 0.9998 32.2 183.3 0.9971 60.2

0.05 0.00 30.0 0.9995 29.2 20.6 0.9997 28.7 225.6 0.9964 84.4

0.10 0.00 63.4 0.9990 27.4 34.6 0.9994 27.0 249.1 0.9960 95.8

0.15 0.00 86.2 0.9986 24.7 55.8 0.9991 24.4 312.0 0.9950 104.1

0.01 0.01 53.7 0.9991 106.5 224.8 0.9964 91.9 238.3 0.9962 81.4

0.05 0.05 238.0 0.9962 349.3 639.6 0.9897 234.5 4794.9 0.9231 99.0

0.10 0.10 629.0 0.9899 739.0 1694.7 0.9728 291.0 23968.4 0.6157 121.6

0.15 0.15 1256.5 0.9799 1256.0 8501.9 0.8637 267.0 37382.9 0.4007 162.0

The columns under ‘‘MSTMap no err. detection’’ contains results obtained when running MSTMAP with no error detection. We report Kendall’s t statistic and the number
E of erroneous marker pairs. The running time is reported in seconds.
doi:10.1371/journal.pgen.1000212.t004
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performance metrics are intended to capture the overall accuracy

of the error detection scheme. Finally, we collected the running

time on each data set.

Table 2 summarizes the statistics for n = 100, m = 100, when the

error rate and the missing rate range from 0% to 15%. An

inspection of the table reveals that irrespective of the choice of g

Table 5. Comparison between MSTMAP and RECORD for m = 100,300,500 and n = 200.

MSTMAP MSTMAP no err. detection RECORD

c g E t time E t time E t time

M = 100, n = 200

0.00 0.00 3.2 0.9987 4.0 0.8 0.9997 3.9 0.5 0.9998 4.4

0.00 0.01 6.7 0.9973 8.3 19.1 0.9923 6.3 18.4 0.9926 3.8

0.00 0.05 19.1 0.9923 12.2 65.5 0.9735 7.2 55.6 0.9775 5.0

0.00 0.10 58.5 0.9764 17.1 192.3 0.9223 8.4 196.0 0.9208 6.5

0.00 0.15 112.0 0.9548 22.6 533.0 0.7847 9.1 513.9 0.7924 7.9

0.01 0.00 2.3 0.9991 4.2 0.6 0.9998 3.8 16.9 0.9932 4.0

0.05 0.00 5.3 0.9979 3.8 1.2 0.9995 3.6 19.2 0.9922 4.5

0.10 0.00 11.2 0.9955 3.4 2.0 0.9992 3.2 22.7 0.9908 5.2

0.15 0.00 11.2 0.9955 3.2 3.2 0.9987 3.0 26.1 0.9895 5.6

0.01 0.01 4.5 0.9982 8.4 19.9 0.9919 6.5 22.9 0.9908 4.9

0.05 0.05 25.2 0.9898 15.6 67.8 0.9726 7.7 91.1 0.9632 10.3

0.10 0.10 71.2 0.9712 24.8 171.8 0.9306 8.5 293.2 0.8815 13.5

0.15 0.15 138.2 0.9442 40.0 587.0 0.7628 9.3 1020.9 0.5875 13.2

m = 300, n = 200

0.00 0.00 8.2 0.9996 38.1 1.9 0.9999 34.9 2.4 0.9999 98.1

0.00 0.01 19.7 0.9991 75.8 59.1 0.9974 58.1 59.6 0.9973 35.7

0.00 0.05 64.4 0.9971 111.8 188.3 0.9916 73.5 186.6 0.9917 49.0

0.00 0.10 169.3 0.9925 187.0 525.8 0.9766 93.9 534.0 0.9762 55.2

0.00 0.15 328.2 0.9854 254.3 1350.3 0.9398 94.0 2269.8 0.8988 63.5

0.01 0.00 8.5 0.9996 35.4 1.8 0.9999 34.9 48.3 0.9978 38.3

0.05 0.00 15.9 0.9993 32.4 3.8 0.9998 31.7 54.1 0.9976 43.1

0.10 0.00 28.4 0.9987 29.6 8.9 0.9996 29.0 62.5 0.9972 49.6

0.15 0.00 38.2 0.9983 27.5 12.2 0.9995 26.8 81.0 0.9964 55.4

0.01 0.01 16.7 0.9993 75.7 63.5 0.9972 61.0 66.1 0.9971 45.6

0.05 0.05 66.9 0.9970 146.9 194.0 0.9914 84.3 227.3 0.9899 63.9

0.10 0.10 205.7 0.9908 281.3 517.4 0.9769 96.8 758.6 0.9662 82.3

0.15 0.15 418.5 0.9813 457.8 1179.5 0.9474 113.5 5464.8 0.7563 104.7

m = 500, n = 200

0.00 0.00 12.1 0.9998 99.0 2.8 1.0000 97.1 4.2 0.9999 123.9

0.00 0.01 32.3 0.9995 206.7 100.1 0.9984 162.1 100.0 0.9984 113.8

0.00 0.05 104.1 0.9983 295.5 282.5 0.9955 223.2 323.6 0.9948 149.9

0.00 0.10 291.3 0.9953 495.0 810.5 0.9870 287.8 1011.1 0.9838 158.7

0.00 0.15 542.5 0.9913 772.4 2099.5 0.9663 323.0 11335.7 0.8183 184.6

0.01 0.00 15.1 0.9998 96.9 3.3 0.9999 95.5 79.8 0.9987 120.9

0.05 0.00 28.7 0.9995 90.1 6.0 0.9999 88.4 88.6 0.9986 133.5

0.10 0.00 47.4 0.9992 83.0 10.7 0.9998 81.3 107.1 0.9983 146.5

0.15 0.00 56.5 0.9991 77.0 17.7 0.9997 75.5 123.1 0.9980 167.2

0.01 0.01 30.2 0.9995 216.0 98.4 0.9984 172.7 183.8 0.9971 143.9

0.05 0.05 112.0 0.9982 463.0 331.4 0.9947 260.9 632.2 0.9899 193.2

0.10 0.10 342.1 0.9945 852.5 940.9 0.9849 349.4 2110.1 0.9662 226.1

0.15 0.15 725.9 0.9884 1506.2 2190.2 0.9649 368.7 15200.3 0.7563 274.5

The columns under ‘‘MSTMap no err. detection’’ contains results obtained when running MSTMAP with no error detection. We report Kendall’s t statistic and the number
E of erroneous marker pairs. The running time is reported in seconds.
doi:10.1371/journal.pgen.1000212.t005
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and c our error detection scheme is able to detect most of the

erroneous observations without introducing too many false

positives. When the input data are noisy, the quality of the final

maps with error detection is significantly better than those without.

However, if the input data are clean (corresponding to rows in the

table where g = 0), the quality of the maps with error detection

deteriorates slightly. Results for other choices of m and n are

presented in Table 4 and Table 5. Similar conclusions can be

drawn.

In Table 2, we also compare the quality of the final maps

under different objective functions. The objective functions wp
’

(SARF) and wml
’ (ML) give very similar results. Similar results are

observed for other choices of n and m (data not shown).

Evaluation of the Accuracy of the Ordering
In the fourth and final evaluation, we use simulated data to

compare our tool against several commonly used tools including

JOINMAP [5], CARTHAGENE [12] and RECORD [4]. JOINMAP is a

commercial software that is widely used in the scientific

community. It implements two algorithms for genetic map

construction, one is based on regression [3] whereas the other

based on maximum likelihood [5]. Our experimental results for

JOINMAP are obtained with the ‘‘maximum likelihood based

algorithm’’ since it is orders of magnitude faster than the

‘‘regression based algorithm’’ (see the manual of JOINMAP for

more details). Due to the fact that JOINMAP is GUI-based (non-

scriptable), we were able to collect statistics for only a few datasets.

CARTHAGENE and RECORD on the other hand are both scriptable,

which allows us to carry out more extensive comparisons.

However, due to the slowness of CARTHAGENE (when n = 300, it

takes more than several hours to finish), we applied it only to small

data sets (n = 100). The most complete comparison was carried out

between MSTMAP and RECORD.

As we have done in the previous subsection, we employ the

number of erroneous pairs to compare the quality of the maps

obtained by different tools. The results for n = 100 and m = 100 are

summarized in Table 3. A more thorough comparison of MSTMAP

and RECORD is presented in Table 4 and Table 5. Several

observations are in order. First, MSTMAP constructs significantly

better maps than the other tools when the input data are noisy.

When the data are clean and contain many missing observations

(i.e., g = 0 and c is large), CARTHAGENE produces maps which are

slightly more accurate than those by MSTMAP. However, if we

knew the data were clean, by turning off the error-detection in

MSTMAP we would obtain maps of comparable quality to

CARTHAGENE in a much shorter running time. Please refer to the

‘‘wp9 no err’’ column for the E statistics of MSTMAP when the error

detection feature is turned off. Second, CARTHAGENE appears to be

better than RECORD when the data are clean (g = 0). When the

data are noisy, RECORD constructs more accurate maps than

CARTHAGENE. Third, MSTMAP and RECORD are both very efficient

in terms of running time, and they are much faster than

CARTHAGENE. A clearer comparison of the running time between

MSTMAP and RECORD is presented in Figure 4. The figure shows

that MSTMAP is even faster than RECORD when the data set

contains no errors. However as the input data set becomes noisier,

the running time for MSTMAP also increases. This is because our

adaptive error detection scheme needs more iterations to identify

erroneous observations, and consequently takes more time.

However, this lengthened execution does pay off with a

significantly more accurate map. Fourth and last, Table 3, 4 and

5 show that the overall quality of the maps produced by MSTMAP

is usually very high. In most scenarios, the t statistic is greater than

0.99.

An extensive comparison of MSTMAP and RECORD for other

choices of m and n is presented in Table 4 and Table 5. Notice that

Figure 4. Running time of MSTMAP and RECORD with respect to error rate or missing rate or error and missing rate. Every point in the
graph is an average of 30 runs. The lines ‘‘missing only’’ correspond to data sets with no error (g = 0, c is on the x-axis). Similarly, lines ‘‘error only’’
correspond to data sets with no missing (c= 0, g is on the x-axis), and lines ‘‘error and missing’’ correspond to data sets with equal missing rate and
error rate (g = c is on the x-axis).
doi:10.1371/journal.pgen.1000212.g004
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even without error detection, MSTMAP is more accurate than

RECORD.

We have also compared MSTMAP, RECORD, JOINMAP and

CARTHAGENE on real genotyping data for the barley project. We

carried out several rounds of cleaning the input data after

inspecting the output from MSTMAP (in particular, we focused on

the list of suspicious markers and genotype calls reported by

MSTMAP), then the data set was fed into MSTMAP, RECORD,

JOINMAP and CARTHAGENE. The results show that the genetic

linkage maps obtained by MSTMAP and JOINMAP are identical in

terms of marker orders. MSTMAP, CARTHAGENE and RECORD differ

only at the places where there are missing observations. At those

locations, MSTMAP groups markers in the same bin, while

CARTHAGENE and RECORD split them into two or more bins (at a

very short distance, usually less than 0.1 cm).

Conclusion
We presented a novel method to cluster and order genetic

markers from genotyping data obtained from several population

types including doubled haploid, backcross, haploid and recom-

binant inbred line. The method is based on solid theoretical

foundations and as a result is computationally very efficient. It also

gracefully handles missing observations and is capable of tolerating

some genotyping errors. The proposed method has been

implemented into a software tool named MSTMAP, which is

freely available in the public domain at http://www.cs.ucr.edu/

,yonghui/mstmap.html. According to our extensive studies using

simulated data, as well as results obtained using a real data set

from barley, MSTMAP outperforms the best tools currently

available, particularly when the input data are noisy or

incomplete.

The next computational challenge ahead of us involves the

problem of integrating multiple maps. Nowadays, it is increasingly

common to have multiple genetic linkage maps for the same

organism, usually from a different set of markers obtained with a

variety of genotyping technologies. When multiple genetic linkage

maps are available for the same organism it is often desirable to

integrate them into one single consensus map, which incorporates all

the markers and ideally is consistent with each individual map.

The problem of constructing a consensus map from multiple

individual maps remains a computationally challenging and

interesting research topic.

Supporting Information

Text S1 Supplementary Text: Efficient and Accurate Construc-

tion of Genetic Linkage Maps.

Found at: doi:10.1371/journal.pgen.1000212.s001 (0.08 MB PDF)
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