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Abstract: This work addresses the problem of tracking a signal-emitting mobile target in wireless
sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to
acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received
signal, while the target transmit power is assumed not known. We start by showing how to linearize
the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine
the linearized observation model with prior knowledge extracted from the state transition model.
Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework,
we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile
sensor navigation procedure, which allows us to further enhance the estimation accuracy of our
algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge
about the path loss exponent (PLE) and the true mobile sensors’ locations, are taken into consideration.
We have carried out an extensive simulation study, and our results confirm the superiority of the
proposed algorithms, as well as the effectiveness of the proposed navigation routine.

Keywords: target tracking; sensor navigation; received signal strength (RSS); angle of arrival (AoA);
maximum a posteriori (MAP) estimator; Kalman filter (KF)

1. Introduction

The problem of accurate localization of a moving object in real time has motivated a great
deal of scientific research recently, owing to a constant growth of the range of enabling devices and
technologies and the requirement for seamless solutions in location-based services [1–18]. In order
to maintain low implementation cost, making use of existing technologies (such as terrestrial
radio frequency sources) when providing a solution to the object tracking problem is strongly
encouraged. Spatial information may be inferred from measurements that include, for example, time
of arrival [8,10,16], received signal strength (RSS) [6,11,12], angle of arrival (AoA) or a combination of
these [7,14,15,18].

The authors in [8–18] considered only a classical target localization problem, where they
disregarded any prior knowledge and gave all importance to observations exclusively. The works
in [3,4,7] investigated target tracking problems where the observations were combined with some prior
knowledge to enhance the estimation accuracy. However, they all examined the purely RSS-based
target tracking problem only. In [6], the authors investigated the target tracking problem by employing
hybrid, RSS and AoA, measurements. The authors first linearized the highly non-linear measurement
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model, and on top of the linearized model, they applied a Kalman filter (KF). Therefore, the main
contribution of the work in [6] is the linearization technique, since a direct application of the KF
to the considered non-linear measurement model is not possible. In [6], the measurement model
was linearized by using a very simple and intuitive approach. It can be summarized as forming a
line and using the RSS measurements to determine the length of the line. At one point of the line,
the authors situated a known anchor and used the AoA to determine the slope of the line. In that
way, an estimate of the target location was obtained at the other point of the line. Although this
is an effective way to tackle the non-linearity of the measurement model, the authors in [6] treated
all links as equal, and no mitigation technique was used to deal with potentially negative impact
from distant links. Besides the KF, a particle filter (PF) algorithm was also proposed in [6], as well
as a generalized pattern search method for estimating the path loss exponent (PLE) for each link
in every time step. Nevertheless, the authors considered the tracking problem with static anchors
only. In addition to the mentioned algorithms specifically designed for RSS- and RSS-AoA-based
target tracking, various other traditional methods (essentially modifications of the KF) are available
in the literature. For instance, the extended KF (EKF) [19–22] requires no assumptions about the
linearity of the state or observation models. Instead, it approximates the non-linear models by their
first-order Taylor series expansion (which requires calculation of the Jacobian matrix). The unscented
KF (UKF) utilizes the unscented transformation, which is founded on the intuition that it is easier to
approximate a probability distribution than it is to approximate an arbitrary non-linear function or
transformation [23]. The basic idea is to represent the state distribution by a minimal set of carefully
selected points, called sigma points. These points completely capture the mean and covariance of the
distribution, and when passed through the non-linear system, they capture the mean and covariance
up to the third order (Taylor series expansion) for any non-linearity [23–25]. Similarly to the UKF, the
PF approximates the posterior probability distribution function (PDF) of the state with sample points,
called particles, but with the key difference that these particles are selected at random. Essentially, it is
an ordinary randomization technique whose performance and computational complexity are directly
proportional to the number of particles used [3,6]. The particles are iteratively updated according
to new observations, and no linearity nor Gaussianity assumptions are required [25,26]. Moreover,
the works presented in [27,28] tackled the target tracking problem with mobile sensors. Still, hybrid
RSS-AoA target tracking was not a part of their study.

In this work, the problem of tracking a mobile target by employing hybrid RSS-AoA measurements
is considered. We assume that the target transmit power is unknown and start by describing our
linearization process of the highly non-linear observation model. The proposed linearization technique
is fundamentally different from the existing one described in [6], since we apply a Cartesian to polar
(spherical for three-dimensional space) conversion to deal effortlessly with the non-linear terms in the
measurement model. Moreover, in contrast to [6], where the authors treat all links as equal, here we
apply weights to give more importance to nearby links and mitigate the potential negative impact of
remote ones. Next, we describe the target state by its location and velocity, and we incorporate the prior
knowledge given by the state transition model and previous target state together with the linearized
model in order to enhance the estimation accuracy. Then, by following the maximum a posteriori
(MAP) criterion, we propose a novel MAP algorithm to efficiently track the target in real time. We also
show that the application of the KF criterion on top of the derived linearized measurement model is
straightforward, resulting in a novel KF algorithm. Finally, we propose a simple sensor navigation
routine, which leads to great improvement in the estimation accuracy, even for a low number of
sensors. A realistic scenario where the PLE and the true sensors’ locations are not perfectly known is
also taken into consideration. Compared with the existing KF algorithm for RSS-AoA target tracking
in [6], i.e., the existing linearization technique, the proposed KF algorithm lowers the estimation error
by about 1 m, or roughly 25%. Furthermore, in comparison with other existing and well-known
methods, such as EKF, UKF and PF, the proposed MAP algorithm matches their performance with
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lower execution time, and in our simulations, it always converged, independently of the chosen
initialization point, in contrast to the existing methods.

This paper is organized as follows. In Section 2, we introduce the target state transition model,
as well as the measurement model, and we formulate the target tracking problem in a Bayesian
framework. Section 3 describes our technique to linearize the measurement model. Section 4 presents
the proposed tracking algorithms, as well as the proposed sensor navigation routine for mobility
management. In Section 5, simulation results are presented for two different target trajectories in
order to validate the performance of the proposed algorithms. Finally, Section 6 summarizes the
main conclusions.

2. Problem Formulation

We consider a wireless sensor network (For simplicity, and without loss of generality, this
paper focuses on two-dimensional scenarios. The extension to three dimensions is straightforward.)
(WSN) composed of N mobile sensors with known locations, ai,t = [aix,t, aiy,t]

T for i = 1, ..., N, and a
moving target whose location, xt = [xx,t, xy,t]T , we wish to determine at each time instant t. We assume
an almost constant velocity target motion model (e.g., perturbed only by wind gust) such that the
velocity components in the x and y directions at time t are given by:

vt = vt−1 + rv,t, (1)

where rv,t represents the noise perturbations. Hence, from the equations of motion [19], the target
location at time t is:

xt = xt−1 + vt−1∆ + rx,t, (2)

where ∆ and rx,t are the sampling interval between two consecutive time steps and location process
noise, respectively. Now, if we describe the target state at t by its location and velocity, i.e.,
θt = [xT

t , vT
t ]

T , from (1) and (2), we get:

θt = S θt−1 + rt, (3)

where rt = [rT
x,t, rT

v,t]
T is the state process noise [2–7], assumed to be zero-mean Gaussian with

covariance matrix Q, i.e., rt ∼ N (0, Q). The symbol S in (3) stands for the state transition matrix.
The noise covariance and the state transition matrices are given by:

Q = q


∆3

3 0 ∆2

2 0
0 ∆3

3 0 ∆2

2
∆2

2 0 ∆ 0
0 ∆2

2 0 ∆

, S =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

,

with q denoting the state process noise intensity [2,4,29].
At each time instant, the target emits a signal to sensors, which extract both the RSS and AoA

information from it. Thus, the measurement equation can be formulated as:

zt = h(yt) + nt, (4)

where zt = [PT
t , φT

t ]
T (zt ∈ R2N) is the observation vector comprising RSS, Pt = [Pi,t]

T , and AoA,
φt = [φi,t]

T , measurements at time instant t, with Pi,t and φi,t denoting the RSS and AoA measurement
of the i-th anchor at time instant t. The function h(yt) = [hi(yt)]

T in (4), where yt = [xT
t , ρ]T

represents the vector of all unknowns (the location of the target, xt, and ρ = exp
(

P0
ηγ

)
being a

term corresponding to unknown transmit power, as we will show in Section 3) at time instant t,
is defined as hi(yt) = P0 − 10γ log10

‖xt−ai,t‖
d0

for i = 1, ..., N [30], and hi(xt) = tan−1
( xy,t−aiy,t

xx,t−aix,t

)
for
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i = N + 1, ..., 2N [31], where P0 (dBm) is the reference power at a distance d0 (d0 = 1 m, usually) and
γ is the PLE. The measurement noise, nt, is modeled as nt ∼ N (0, C), where the noise covariance is
defined as C = diag([σ2

ni
, σ2

mi
]), with σni (dB) and σmi (rad) being the noise standard deviation of the

RSS and AoA measurements, respectively.
In Bayesian estimation theory, the prior knowledge, obtained through the state transition

model (3), is combined with the noisy observations (4) to obtain the marginal posterior PDF, p(θt|z1:t).
Through p(θt|z1:t), we can quantify the belief we have in the values of the state θt given all the past
measurements z1:t, and we can obtain an estimate at any time instant we desire. The main steps of the
Bayesian estimation are described below [2–7].

• Initialization: The marginal posterior PDF at t = 0 is set to the prior PDF p(θ0) of θ0.
• Prediction: By using the state transition model (3), the predictive PDF of the state at t is given by:

p(θt|z1:t−1) =
∫

p(θt|θt−1)p(θt−1|z1:t−1)dθt−1. (5)

• Update: By following Bayes’ rule [2,29], we have:

p(θt|z1:t) =
p(zt|θt)p(θt|z1:t−1)

p(zt|z1:t−1)
, (6)

where p(zt|θt) is the likelihood and p(zt|z1:t−1) =
∫

p(zt|θt)p(θt|z1:t−1)dθt is just a normalizing
constant, independent of θt, needed to ensure that p(θt|z1:t) integrates to one [19]. In general,
the marginal PDF at t − 1 cannot be calculated analytically, and the integral in (5) cannot be
obtained analytically if the state model is non-linear. Therefore, some approximations are required to
obtain p(θt|z1:t).

In the next section, we show how to efficiently linearize the non-linear measurement model in (4)
for small noise power, for both the cases of known and unknown target transmit power. This technique
is a crucial part of our work, since the linearized measurement model will be used as a base for the
development of our algorithms in Section 4. Our linearization technique is different from the one used
in the EKF, since it does not require calculation of the first-order partial derivatives. This simplifies
substantially the linearization process, since calculating Jacobian matrices can be a very arduous
(sometimes even not possible) and error-prone process, which might even lead to divergence of the
filter [21–24].

3. Linearization of the Measurement Model

In this section, we neglect the prior knowledge completely and concentrate on the measurement
model exclusively. We describe our linearization technique in detail, and we show that, by applying a
least squares (LS) criterion to the derived model, it can be seen as an approximation of the likelihood
function in (6). Thus, an estimate of the target location can be readily obtained from the derived model.
However, because the prior knowledge is neglected here, we will refer to this approach as a naive one.

The considered measurement model (RSS-AoA) is highly non-linear, which makes the likelihood,
i.e., the marginal PDF, non-convex. To deal with the non-convexity, one could resort to convex
relaxation techniques and convert the non-convex problem into a convex one [32]. Nevertheless,
this would severely raise the computational complexity (and thus, the execution time) of an algorithm,
making it difficult to use it in real-time applications. Therefore, in this section, we show how to
efficiently linearize the measurement model without engaging convex relaxation techniques, and we
do so for both cases of known and unknown transmit power. Furthermore, by applying an LS criterion
to the derived linearized measurement model, we show that, if we disregard the prior knowledge,
an estimate of the target location can be obtained directly from the derived model. This estimate
represents a solution to the classical localization problem (not the tracking one) and will be used
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for comparison in Section 5 in order to demonstrate the importance of the prior knowledge for
Bayesian approaches.

In practice, network testing and calibration are often not the priority, especially in low-cost
systems that use RSS as a surrogate for range [1]. Hence, some parameters, such as target transmit
power, might not be calibrated, i.e., not known beforehand. Not knowing the transmit power matches
not knowing P0 in (4) [1].

From the RSS measurement model in (4), we can write:

exp
(

P0 − Pi,t + ni

ηγ

)
= ‖xt − ai,t‖, for i = 1, ..., N, (7)

where we used the fact that d0 = 1 m and η = 10
ln(10) . By breaking down the first term on the left-hand

side, (7) can be rewritten as:

ρ exp
(

ni
ηγ

)
= µi,t‖xt − ai,t‖, for i = 1, ..., N, (8)

where ρ = exp
(

P0
ηγ

)
and µi,t = exp

(
Pi,t
ηγ

)
. Assuming that the noise term is sufficiently low,

we can use the first-order Taylor series approximation (of the form exp(ϕ) ≈ 1 + ϕ for small ϕ),
to approximate (8) as:

ρ + εi,t ≈ µi,t‖xt − ai,t‖, for i = 1, ..., N, (9)

where εi,t ∼ N
(

0, ( ρ
ηγ σni )

2
)

. Then, (9) yields:

εi,t ≈ µi,t‖xt − ai,t‖ − ρ, for i = 1, ..., N. (10)

By converting from Cartesian to polar coordinates, we can express xt − ai,t = ri,tui,t : ri,t ≥ 0,
‖ui,t‖ = 1, where the unit vector can be approximated by employing the available AoA information,
i.e., ui,t = [cos(φi,t), sin(φi,t)]

T . If we apply this conversion in (10) and multiply by uT
i,tui,t, we get:

εi,t ≈ µi,tuT
i,t(xt − ai,t)− ρ, for i = 1, ..., N. (11)

Similarly, for small noise power, from the AoA model in (4), we can write:

cT
i,t(xt − ai,t) ≈ 0, for i = N + 1, ..., 2N, (12)

where ci,t = [− sin(φi,t), cos(φi,t)]
T .

Assuming that the noise term is sufficiently small and introducing weights, wt = [
√wi,t], where

wi,t = Pi,t/ ∑N
j=1 Pj,t, in (11) and (12), such that more importance is given to nearby links, gives:

wi,tµi,tuT
i,t(xt − ai,t) ≈ wi,tρ, for i = 1, ..., N, (13a)

wi,tcT
i,t(xt − ai,t) ≈ 0, for i = N + 1, ..., 2N. (13b)

Therefore, we can rewrite (13) in a linear vector form as:

Atyt ≈ bt, (14)
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where yt = [xT
t , ρ]T , and:

At =



...
...

wi,tµi,tuT
i,t −wi,t

...
...

wi,tcT
i 0

...
...


, bt =



...
wi,tµi,tuT

i,tai,t
...

wi,tcT
i,tai,t
...


.

Note that (14) is a linear approximation of (4) for small noise power. The relationship between the
two models is described in detail in the text above, and it can be summarized as zt = b, h(yt) = Atyt.

By applying the LS criterion to the linearized measurement model in (14), we can approximate
the likelihood function in (6) to get an estimate of the target location by solving:

ŷt = arg min
yt=[xT

t ,ρ]T
‖Atyt − bt‖2, (15)

whose solution is readily obtained as ŷt = (AT
t At)−1(AT

t bt).
Subsequently, one could take advantage of the solution, x̂t = ŷt,1:2, where ŷt,1:2 represents the

first two coordinates of the vector ŷt, obtained through (15), to additionally improve its quality (in the
case where the true value of the transmit power is available beforehand, one would simply substitute
P̂0 by P0 in the upcoming steps), i.e., the solution could be exploited to find the maximum likelihood
(ML) estimate (Note that an estimate of P0 could also be obtained directly from the estimate of ρ after
solving (15). Nevertheless, our simulations showed that a more precise estimate of P0 is obtained
through its ML estimation.) of P0, P̂0, as:

P̂0 =
∑N

i=1 Pi,t + 10γ log10
‖x̂t−ai,t‖

d0

N
. (16)

Then, by using ρ̂ = exp
(

P̂0
ηγ

)
and following similar steps as described above (note that in this

case, we have that the function h(yt) depends on the target location only, i.e., h(yt) = h(xt)), we can
rewrite (11) and (12) in a vector form as:

Ãtxt ≈ b̃t, (17)

where:

Ãt =



...
wi,tµi,tuT

i,t
...

wi,tcT
i

...


, b̃t =



...
wi,t(µi,tuT

i,tai,t + ρ̂)
...

wi,tcT
i,tai,t
...


.

The model in (17) represents a linear approximation of the measurement model in (4) for known
(estimated) target transmit power. Similarly to above, the classical localization problem (disregarding
the prior knowledge) can be posed in an LS form:

x̂t = arg min
xt

‖Ãtxt − b̃t‖2, (18)

whose solution is obtained as x̂t = (Ã
T
t Ãt)−1(Ã

T
t b̃t).
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4. Target Tracking

In this section, we propose two novel tracking algorithms. For both of them, we use the derived
linearized measurement model as a base, and we built the new algorithms on top of it. Since in t = 0,
no prior knowledge is available, we initialize our algorithms by solving (15) and by estimating the
transmit power, after which we incorporate the prior knowledge as explained in the remainder of this
section. Note that h(yt) = h(xt) in the following text, since we estimate the transmit power in t = 0.
In addition to the tracking algorithms, the proposed sensor navigation technique is described in detail
in Section 4.3.

4.1. Maximum A Posteriori Estimator

Within the Bayesian methodology, one of the most common criteria for determining a state
estimate is the maximum a posteriori (MAP) criterion [19]. According to this estimation approach,
we choose a state estimate, θ̂t|t, that maximizes the marginal PDF, i.e.,

θ̂t|t = arg max
θt

p(θt|z1:t). (19)

Based on (6), we observe that (19) is equivalent to maximization of p(zt|θt)p(θt|z1:t−1). This is
evocative of the ML estimator except for the presence of the prior PDF. Consequently, the MAP
estimator is:

θ̂t|t = arg max
θt

p(zt|θt)p(θt|z1:t−1)

= arg max
θt

[ln p(zt|θt) + ln p(θt|z1:t−1)].
(20)

The problem in (20) is highly non-convex, and its analytical solution cannot be obtained in closed
form, in general. As such, some approximations are required in order to obtain θ̂t|t.

First, we can approximate p(θt−1|z1:t−1) as a Gaussian distribution [29], i.e.,
p(θt−1|z1:t−1) ∼ N (θ̂t−1|t−1, Σ̂t−1|t−1). Then, according to (5), we get:

p(θt|z1:t−1)≈
1
k1

exp
(
−1

2
(θt−θ̂t|t−1)

TΣ̂
−1
t|t−1(θt−θ̂t|t−1)

)
, (21)

where k1 is a constant and θ̂t|t−1 and Σ̂t|t−1 are the mean and the covariance of the one-step predicted
state acquired through (3) as:

θ̂t|t−1 = S θ̂t−1|t−1 (22a)

Σ̂t|t−1 = S Σ̂t−1|t−1 ST + Q. (22b)

The likelihood function can be written as:

p(zt|θt)=
1
k2

exp
(
−1

2
(zt − h(xt))

T C−1 (zt − h(xt))

)
, (23)

where k2 is a constant. Then, according to (20), we have:

θ̂t|t = arg min
θt

(zt − h(xt))
T C−1 (zt − h(xt))

+(θt − θ̂t|t−1)
TΣ̂
−1
t|t−1(θt − θ̂t|t−1).

(24)

We have shown in Section 3 how to approximate the likelihood function by another one, (18),
whose closed-form solution is readily available. By following similar reasoning, we can rewrite (24) as:

θ̂t|t = arg min
θt

‖Htθt − f t‖
2, (25)
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where Ht =
[

Ãt, 02N×2; Σ̂
−1/2
t|t−1

]
(Ht ∈ R(2N+4)×4), where the semi-colon is used to denote a new row

entry, f t =
[
b̃t; Σ̂

−1/2
t|t−1 θ̂t|t−1

]
( f t ∈ R2N+4), and 0D×L is a D by L matrix of all zeros. The solution

of (25) is obtained as θ̂t|t = (HT
t Ht)−1(HT

t f t).
The step by step proposed MAP-based algorithm (Notice that in Algorithm 1, we do not

update the state covariance matrix. This update could be accomplished through θ̂t|t and the use
of Karush–Kuhn–Tucker optimality conditions together with certain approximations (e.g., see the
approach in [29]), but we opted not to apply it here. Even though updating the state covariance matrix
does bring some gain to our uMAP algorithm, the gain is only marginal, and it does not justify its cost
in terms of computational complexity.) for the case where the target transmit power is not known
(Note that we do not include P0 in the state vector. The reason is that we assume that the transmit
power does not change during the entire trajectory. This is a reasonable assumption in practice, since
we are tracking the same device during a relatively short period of time.) (labeled here as “uMAP”) is
outlined in Algorithm 1, and its flowchart is represented in Figure 1.

Input: zt, for t = 0, ..., T − 1, Q, S

Initialize: x̂0|0 ← (15),
P̂0 ← (16),
θ̂0|0 ← [x̂T

0|0, 0, 0]T ,
Σ̂t|t ← I4, for t = 0, ..., T − 1

t← 1

• Prediction: θ̂t|t−1 ← (22a)
Σ̂t|t−1 ← (22b)

• Update: θ̂t|t ← (25)
P̂0 ← (16)

t < T?

Stop

t← t + 1

no

yes

Figure 1. Flowchart of the proposed uMAP algorithm.



Sensors 2017, 17, 2690 9 of 22

Algorithm 1 uMAP algorithm description.

Require: zt, for t = 0, ..., T − 1, Q, S
1: Initialization: x̂0|0 ← (15), P̂0 ← (16), θ̂0|0 ← [x̂T

0|0, 0, 0]T , Σ̂t|t ← I4 for t = 0, ..., T − 1
2: for t = 1, ..., T − 1 do

3: Prediction:

4:
• θ̂t|t−1 ← (22a)
• Σ̂t|t−1 ← (22b)

5: Update:

6:
• θ̂t|t ← (25)
• P̂0 ← (16)

7: end for

4.2. Kalman Filter

The Kalman filter (KF) may be thought of as a generalized sequential minimum mean square
estimator of a signal embedded in noise, where the unknown parameters are allowed to evolve in time
according to a given dynamical model [19]. If the state and the measurement models are linear and the
noise is assumed to be zero-mean with finite covariance, the KF provides the optimal solution in the
LS sense [2].

Even though the measurement model (4) is non-linear, we can linearize it as in (17). Therefore, by
following the KF recipe [19], the mean and the covariance are updated as:

θ̂t|t = θ̂t|t−1 + Kt(b̃t −Gtθ̂t|t−1), (26a)

Σ̂t|t = (I4 − KtGt) Σ̂t|t−1, (26b)

where Kt is the Kalman gain at time instant t and Gt = [Ãt, 02N×2] (Gt ∈ R2N×4).
The step by step proposed KF algorithm (It is worth noting that the KF estimator could also be

derived directly from (24) by simply setting the derivative of (24) to zero and then calculating the
updated covariance [19] as: P̂t|t = E

[
θ̂t|tθ̂

T
t|t

]
, at each time step t. However, to do so, one would have

to assume the measurement noise covariance to be perfectly known. Since this assumption might not
hold in practice, and the measurement model is linearized, a different estimator whose closed-form
solution is readily available (25) was derived instead.) for the case where the target transmit power
is not known (denoted here as “uKF”) is outlined in Algorithm 2, and its flowchart is represented
in Figure 2.

Algorithm 2 uKF algorithm description.

Require: zt, for t = 0, ..., T − 1, Q, C, S
1: Initialization: x̂0|0 ← (15), P̂0 ← (16), θ̂0|0 ← [x̂T

0|0, 0, 0]T , Σ̂0|0 ← I4

2: for t = 1, ..., T − 1 do

3: Prediction:

4:
• θ̂t|t−1 ← (22a)
• Σ̂t|t−1 ← (22b)

5: Kt ← Σ̂t|t−1GT
t (GtΣ̂t|t−1GT

t + C)−1

6: Update:

7:

• θ̂t|t ← (26a)
• Σ̂t|t ← (26b)
• P̂0 ← (16)

8: end for
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Input: zt, for t = 0, ..., T − 1, Q, S

Initialize: x̂0|0 ← (15),
P̂0 ← (16),
θ̂0|0 ← [x̂T

0|0, 0, 0]T ,
Σ̂0|0 ← I4

t← 1

• Prediction: θ̂t|t−1 ← (22a)
Σ̂t|t−1 ← (22b)

• Update: θ̂t|t ← (26a)
Σ̂t|t ← (26b)
P̂0 ← (16)

t < T?

Stop

t← t + 1

no

yes

Figure 2. Flowchart of the proposed uKF algorithm.

4.3. Sensor Navigation

Although the proposed algorithms described in Algorithms 1 and 2 provide efficient solutions
to the target tracking problem, their estimation accuracy can be further enhanced. Until now, we
have considered the sensors to be static and only the target to be mobile. By allowing sensor mobility,
such that they are permitted to move in certain directions based on pre-established rules, we can not
only improve the estimation accuracy of the proposed algorithms, but do so with a reduced number
of sensors. The price to pay for applying such a routine is somewhat increased computational cost
(required for determining the direction of sensor movement) and increased energy consumption
(depleted in the process of the actual sensor movement), in comparison with the static sensor routine.
Nevertheless, the interest in the target tracking problem using navigated mobile sensors is growing
rapidly, especially in areas such as autonomous surveillance, automated data collection and monitoring,
to name a few [27,28,33,34].

The proposed routine for sensor navigation is described in Algorithm 3. It represents a universal
addition to the proposed uMAP and uKF algorithms, which is realized by incorporating Lines 3–13
after Line 6 in the uMAP and after Line 7 in the uKF. The basic idea of our navigation routine is to let
the mobile sensors approach the target with the shortest possible path determined by the available
information (such as their estimated and the target’s estimated location) at time instant t, until a
certain threshold distance, τ. After the mobile sensors penetrate τ, our idea is to spread them around
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the target, so that we prevent possible sensor collision and possibly loss of information (in case the
sensors get physically too close, the acquired measurements could be very similar to one another).
More specifically, at Line 4, each mobile sensor estimates its candidate location, ăi,t, by resorting
only to its previous estimated location, the already available AoA measurement and its velocity, va.
With this candidate location, the mobile sensors then estimate the possible distance from the estimated
target location (as if they moved to the candidate location). If this estimated distance is greater than
or equal to τ, the candidate location is accepted as the new estimated location of the mobile sensor,
âi,t, Line 6; otherwise, the mobile sensors are spread around the target. To this end, we modify the
angle measurement, φ̆i,t−1 at Line 9 and use this modified value to estimate the updated location
of the mobile sensors, Line 10. However, to account for realistic model mismatches, at Lines 7 and
11, we include noise perturbations within the sensors’ actual movements, which result in imperfect
knowledge about the mobile sensors’ locations.

Algorithm 3 Sensor navigation algorithm description.

Require: ai,0, φi,t, for i = 1, ..., N, t = 0, ..., T − 1, ‖va‖, τ

1: Initialization: âi,0 ← ai,0
2: for t = 1, ..., T − 1 do
3: for i = 1, ..., N do
4: ăi,t ← âi,t−1 + ‖va‖∆[cos(φi,t−1), sin(φi,t−1)]

T

5: if ‖ăi,t − x̂t‖ ≥ τ then

6: âi,t ← ăi,t

7: ai,t ← ai,t−1 + ‖va‖∆[cos(φi,t−1), sin(φi,t−1)]
T + rx,t

8: else

9: φ̆i,t ← φi,t + (−1)i π/4
10: âi,t ← âi,t−1 + ‖va‖∆[cos(φ̆i,t−1), sin(φ̆i,t−1)]

T

11: ai,t ← ai,t−1 + ‖va‖∆[cos(φ̆i,t−1), sin(φ̆i,t−1)]
T + rx,t

12: end if
13: end for
14: end for

5. Performance Results

In this section, we validate the performance of the proposed algorithms through computer
simulations. All of the presented algorithms were solved by using MATLAB. We consider two
essentially different scenarios: one in which the target makes sharp maneuvers and another one
in which the target constantly changes its direction without making keen maneuvers; see Figure 3.
The target state changes according to the state transition model (3), and at each time instant, the radio
measurements are generated according to (4). The main simulation parameters are summarized in
Table 1. Note that the true value of the PLE for each link was drawn from a uniform distribution on the
interval [2.7, 3.3], i.e., γi,t ∼ U [2.7, 3.3], at every time instant. This was done in order to account for a
more realistic measurement model mismatch. Moreover, in the case where sensor mobility is allowed,
we set a threshold distance (In our simulations, we have also studied the influence of this parameter
on the performance of the proposed algorithms. It was concluded that it has no significant impact
on the performance, since similar results were attained for different values of τ (e.g., τ = 10 m or
τ = 0.5 m). However, we chose this particular value because it seems a reasonable practical threshold,
keeping in mind the estimation error and noise influence to prevent sensor collision.) so that we avoid
physical collisions between the sensors. The performance metric used here is the root mean square

error (RMSE), defined as RMSEt =
√

∑Mc
i=1

‖xi,t−x̂i,t‖2

Mc
, where x̂i,t denotes the estimate of the true target

location, xi,t, in the i-th Mc run at time instant t.
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(a) Scenario 1 (b) Scenario 2

Figure 3. True target trajectory and sensors’ initial locations. The direction of the movement of the
target is indicated by the arrow.

Table 1. Summary of the simulation parameters. PLE, path loss exponent; PF, particle filter.

Parameter Description Value

N The number of sensors 3 (for static case) or 2 (for mobile case)
ai,0 The true initial sensor locations [[70, 10]T , [40, 70]T [10, 40]T ] (m)
P0 The reference power −10 (dBm)
γ The assumed PLE 3

γi,t The true PLE for i-th link γi,t ∼ U [2.7, 3.3]
∆ The sampling interval 1 (s)
T The duration of the trajectory 150 (s)

Mc The number of Monte Carlo runs 1000
‖vt‖ The target’s speed 1 (m/s)
‖va‖ The sensors’ speed Varies in the simulations

τ The threshold distance 5 (m)
σni The RSS noise power 9 (dB)
σmi The AoA noise power 4 (degrees)
q The state process noise 2.5× 10−3 (m2/s3)

NPF The number of particles in the PF 200

The performance of the proposed uMAP and uKF algorithms is compared with the existing KF
in [6], where the initial target state (Although this initialization seems fair, in our simulations, we also
considered initializing the KF in [6] in the same way as the proposed algorithms. Even for such an
initialization, the proposed algorithms still outperformed the KF in [6].) was obtained by solving the
LS method used in [6] to linearize the observation model (since the authors in [6] proposed also a
method for PLE estimation, in order to make the comparison fair, the true value of the PLE for every
link is considered perfectly known for the KF [6] at any time step). Furthermore, we compare the
performance of the proposed algorithms with some well-known and more traditional methods that
were not specifically designed for RSS-AoA target tracking, but whose generalization to this scenario
is straightforward, i.e., we compare it with the performance of the EKF [19–22], UKF [23–25] and
PF [25,26] algorithms, labeled accordingly. To make the comparison as fair as possible, these algorithms
are initialized in the same manner as the proposed algorithms (In our simulations, we also examined
the influence of the initialization on these algorithms and on the proposed ones. We considered a
random initialization, as well as the initialization in the center of the considered area. It is worth
mentioning that the proposed algorithms always converged, independent of the initialization used,
while the EKF, UKF and PF did not always converge.). Moreover, in favor of testing the belief that the
Bayesian approaches (which integrate the prior knowledge with observations) outperform the classical
ones (which disregard the prior knowledge and are based merely on observations), we show the
results for the sequential localization method in (18) with perfect knowledge about the target transmit
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power and PLE, denoted here by “WLS”. Finally, to offer a lower bound on the performance of the
proposed algorithms their counterparts for known target transmit power are also included, labeled
here as “MAP” and “KF”.

Figure 4 illustrates the RMSE (m) versus t (s) comparison of all considered approaches in the first
scenario, for the static sensors case, i.e., ‖va‖ = 0 m/s. From it, we can observe that all algorithms
suffer deteriorations at each sharp maneuver of the target, especially in the proximity of the sensors.
This is somewhat anticipated, since the role of the prior knowledge is canceled out with each sharp
maneuver, and the vicinity of the target and any of the sensors creates an unbalance between the
significance of that particular measurement and all of the other ones. Nonetheless, all algorithms
recover fairly quickly from these impairments. Furthermore, the figure shows that the proposed
algorithms outperform the existing KF in [6] in general, as well as the naive WLS approach that only
makes use of the observations and disregards the prior knowledge for all t. Moreover, it can be seen
that the PF algorithm shows the most stable performance throughout the whole target trajectory and
that it slightly outperforms the proposed algorithms. Furthermore, it is worth mentioning that our
algorithms show robustness to not knowing the target transmit power, since they achieve their lower
bounds given by their equivalents for known transmit power. Finally, the new algorithms behave
excellent performance even for the case where the PLE is not perfectly known.

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
1

2

3

4

5

6

7

8

9

Figure 4. RMSE (m) versus t (s) comparison in the first scenario, when N = 3, ‖va‖ = 0 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], P0 = −10 dBm, q = 2.5× 10−3 m2/s3, Mc = 1000.

Figure 5 illustrates the RMSE (m) versus t (s) comparison of all considered approaches in the
second scenario, for the static sensor case. From the figure, one can observe that the performance
of most considered algorithms is significantly smoother in comparison with the first scenario.
This behavior is not surprising, since the target, although constantly changing its direction, is moving
much more smoothly now. Nevertheless, the figure shows that the EKF and UKF experience significant
performance deterioration during the initial target trajectory. Even though their performance recovers
in the later phase of the target trajectory, their overall localization accuracy is poor in the considered
scenario. This can be explained to some extent by the fact that, in the case of EKF, the error propagation
is not approximated sufficiently well by first-order Taylor series approximations, while for the case of
UKF, one has to choose values of certain parameters (e.g., the parameter κ in [23], which scales the
sigma points of the unscented transformation towards or away from the mean of the prior distribution),
which is usually done in a heuristic manner and might affect the performance of the UKF in some
scenarios (This problem of convergence for EKF and UKF might be solved by, e.g., introducing
additional constraints in the two sequential estimates of the algorithms such that large leaps in the
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estimation process are avoided, but this would increase their computational complexity and could also
affect their overall performance. Furthermore, in the case of the EKF, applying second-order Taylor
series expansion to approximate the original system could resolve this problem [21], but this comes at
the cost of increased computational complexity (computation of the Hessian matrix)). Furthermore,
Figure 5 shows that the proposed algorithms match the performance of the PF and outperform the
existing KF in general, and they show robustness to uncertainty in the transmit power.
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Figure 5. RMSE (m) versus t (s) comparison in the second scenario, when N = 3, ‖va‖ = 0 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], P0 = −10 dBm, q = 2.5× 10−3 m2/s3, Mc = 1000.

We present the average RMSE, RMSE (m), performance of the considered algorithms for static
sensors in both scenarios in Table 2. From the table, we can see that the proposed uMAP algorithm
performs very close to the PF in both scenarios and that the proposed linearization technique offers an
improvement of roughly 1 m in both scenarios, in comparison with the existing one [6].

Table 2. RMSE (m) of the considered algorithms.

Algorithm uMAP uKF KF [6] EKF UKF PF MAP KF WLS

Scenario 1 2.88 3.15 4.31 2.78 7.16 2.60 2.87 3.13 4.22
Scenario 2 2.97 3.22 4.14 24 22 2.63 2.97 3.22 4.30

In terms of computational complexity, the most expensive operation of an algorithm is matrix
multiplication and inversion [35]. This operation is a part of practically all considered algorithms
(except for PF, but this algorithm has other drawbacks related to the number of particles used).
Nevertheless, the UKF and the PF use a number of sigma points and particles, respectively, which affect
their computational complexities and consequently their execution times, as can be seen from Table 3.

Table 3. Running time (s) of the considered algorithms for Mc = 1000. Processor:
Intel(R)Core(TM)i7-4710HQ, CPU@2.50 GHz.

Algorithm uMAP uKF KF [6] EKF UKF PF WLS

Scenario 1 36.0 31.3 31.2 37.0 54.1 467.6 28.8
Scenario 2 36.1 31.4 31.9 37.1 55.2 468.9 28.8

Figure 6 illustrates a realization of the estimation process in the first scenario of the proposed
(a) uMAP and (b) uKF algorithm, respectively, when sensor mobility is allowed. Hereafter, we only
use N = 2 mobile sensors, and in particular, we use the first two sensors from the Table 1. From the
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figure, one can observe that both proposed algorithms solve very efficiently the target tracking problem
with only N = 2 sensors (each sensors measures both RSS and AoA values), owing to their mobility.
However, it can be seen that both uMAP and uKF algorithms require a number of iterations to stabilize
their performance. Nonetheless, this behavior is expected since we only use N = 2 sensors in this case.
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(a) uMAP
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(b) uKF

Figure 6. Illustration of the estimation process in the first scenario, when N = 2, ‖va‖ = 1 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3.

Figure 7 depicts the RMSE (m) versus t (s) performance comparison of the proposed algorithms
in the first scenario for the mobile sensor case. As foreseen, the figure shows the poorest estimation
accuracy in the first few time steps, which generally improves with time. This is because, in the
first few time instants, the mobile sensors are far away from the target, and as they get closer to it,
the performance improves in general. Essentially, impairments occur only at the critical points when
the target makes sharp turns. However, even though we use only N = 2 sensors now, due to their
mobility, we can see that these deteriorations are notably milder in comparison with the static N = 3
sensors case (Figure 4). Moreover, the proposed uKF algorithm slightly outperforms the proposed
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uMAP. Lastly, the new algorithms show exceptional behavior even for the case where the PLE and the
true mobile sensors’ locations are not perfectly known.
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Figure 7. RMSE (m) versus t (s) comparison in the first scenario, when N = 2, ‖va‖ = 1 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3,
Mc = 1000.

It might also be of interest for some applications to get an estimate of the target’s transmit power.
Hence, in Figure 8, we show the average ML estimate of P0, ̂̄P0 (dBm), in the first scenario through time
t (s) for the mobile sensors case. From Figure 8, we can see that both proposed algorithms provide an
excellent estimate of the transmit power in general. Similar to the case of location estimation, the only
significant impairments in the power estimates occur at the critical points.
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Figure 8. ̂̄P0 (dBm) versus t (s) comparison in the first scenario, when N = 2, ‖va‖ = 0 m/s, σni = 9 dB,
σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3, Mc = 1000.

Figure 9 illustrates a realization of the estimation process in the second scenario of the proposed
(a) uMAP and (b) uKF algorithms, respectively, when sensor mobility is allowed. As in the first
scenario, both proposed algorithms show exceptionally good performance.
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Figure 9. Illustration of the estimation process in the second scenario, when N = 2, ‖va‖ = 1 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3.

Figure 10 depicts the RMSE (m) versus t (s) performance comparison of the proposed algorithms
in the second scenario for the mobile sensors case. The figure reveals that both proposed algorithm
require a certain amount of time before they catch up with the target, after which their estimation
performance is outstanding and quite stable. Furthermore, a somewhat better performance of the
proposed uKF can be seen in comparison with the uMAP.
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Figure 10. RMSE (m) versus t (s) comparison in the second scenario, when N = 2, ‖va‖ = 1 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3,
Mc = 1000.

In Figure 11, we present the ̂̄P0 (dBm) versus t (s) performance comparison in the second scenario
for the mobile sensors case. Compared with the results in the first scenario, we can see that the
estimation accuracy of P0 is not as good. This result is interesting on its own, and it seems to be
an outcome of the peculiarity of the target’s trajectory (constant change of direction). Nonetheless,
a detailed analysis of this phenomenon is beyond the scope of this work. Furthermore, it can be noticed
that a considerably better P0 estimate is obtained through the proposed uKF.
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Figure 11. ̂̄P0 (dBm) versus t (s) comparison in the second scenario, when N = 2, ‖va‖ = 0 m/s,
σni = 9 dB, σmi = 4 π

180 rad, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3,
Mc = 1000.

It would also be interesting to investigate the influence of the mobile sensor’s velocity on the
performance of the proposed algorithms. Consequently, we present the RMSE (m) versus ‖va‖ (m/s)
performance comparison for the first and the second scenario in Figure 12. From the figure, it is
obvious that the performance of the proposed algorithms depends on the sensor’s velocity, and
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one can notice that the performance of all algorithms improves as ‖va‖ (m/s) is increased. This is
somewhat intuitive, since the mobile sensors catch the target more rapidly as they move at higher
velocity. Moreover, the overall performance of the proposed algorithms is very good, while for
‖va‖ ≥ ‖vt‖, their performance is remarkable.
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(a) First scenario
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(b) Second scenario

Figure 12. RMSE (m) versus ‖va‖ (m/s) comparison, when N = 2, σni = 9 dB, σmi = 4 π
180 rad,

‖vt‖ = 1 m/s, γ = 3, γi ∼ U [2.7, 3.3], τ = 5 m, P0 = −10 dBm, q = 2.5× 10−3 m2/s3, Mc = 1000.

6. Conclusions

In this work, we have addressed the target tracking problem in WSN where sensor mobility was
allowed. The mobile sensors made use of uncalibrated RSS measurements, where imperfect knowledge
about the PLE and unknown target transmit power was considered, which were combined with AoA
observations. We have shown that this highly non-linear measurement model can be linearized by
applying the described procedure. Then, by following the Bayesian methodology, we have managed
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to integrate the prior knowledge (extracted from the state transition model) with the observations
in order to further improve the estimation accuracy. As a result of our work, two novel tracking
algorithms were proposed, namely uMAP and uKF. Furthermore, a simple navigation procedure was
proposed, which even further improved the estimation accuracy of our algorithms. The new algorithms
were compared with the existing KF algorithm for RSS-AoA target tracking, as well as some general
ones, such as the EKF, UKF and PF. Furthermore, the proposed algorithms were compared with the
traditional approach, which neglects the prior knowledge and makes use of observations exclusively.
Two different scenarios were considered: where the target makes sharp maneuvers and where the
target follows a smoother trajectory. Extensive simulations have been carried out, and the results
have confirmed that incorporation of the prior knowledge into an estimator can significantly improve
its estimation accuracy. Furthermore, the simulation results showed that the proposed linearization
technique offers significant error reduction in comparison with the existing one [6]. Our simulations
have shown also that the proposed algorithms converge in all considered scenarios, while the same
cannot be said for the general ones. Moreover, the results corroborated the usefulness of the proposed
mobile sensor navigation routine, demonstrating not only a remarkable improvement in the estimation
accuracy, but doing so with a reduced number of sensors. Finally, the proposed algorithms exhibited
robustness to not knowing the transmit power, as well as to imperfect knowledge about the PLE and
the true sensors’ locations.
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