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Abstract

Just as complex electronic circuits are built from simple Boolean gates, diverse biological functions, including signal
transduction, differentiation, and stress response, frequently use biochemical switches as a functional module. A relatively
small number of such switches have been described in the literature, and these exhibit considerable diversity in chemical
topology. We asked if biochemical switches are indeed rare and if there are common chemical motifs and family
relationships among such switches. We performed a systematic exploration of chemical reaction space by generating all
possible stoichiometrically valid chemical configurations up to 3 molecules and 6 reactions and up to 4 molecules and 3
reactions. We used Monte Carlo sampling of parameter space for each such configuration to generate specific models and
checked each model for switching properties. We found nearly 4,500 reaction topologies, or about 10% of our tested
configurations, that demonstrate switching behavior. Commonly accepted topological features such as feedback were poor
predictors of bistability, and we identified new reaction motifs that were likely to be found in switches. Furthermore, the
discovered switches were related in that most of the larger configurations were derived from smaller ones by addition of
one or more reactions. To explore even larger configurations, we developed two tools: the ‘‘bistabilizer,’’ which converts
almost-bistable systems into bistable ones, and frequent motif mining, which helps rank untested configurations. Both of
these tools increased the coverage of our library of bistable systems. Thus, our systematic exploration of chemical reaction
space has produced a valuable resource for investigating the key signaling motif of bistability.
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Introduction

Most chemical reaction systems have a single steady state, but a

few interesting cases are known to oscillate [1], form spatial patterns

[2], or have multiple stable states [3,4]. Aside from their intrinsic

mathematical and chemical significance, systems with multiple

stable states are of particular biological interest because they can

retain a ‘‘memory’’ of past inputs and cellular decisions [3,4].

Bistability is a particularly interesting case of multi-stability, as it

leads to switch-like behavior. Chemical stimuli can trigger a state

change from one stable state to another. The current state of the

chemical system is therefore a ‘‘memory’’ of this earlier stimulus.

A few biochemical switches have been extensively analyzed,

including complex enzyme mechanisms [5,6], kinase feedback

[7,8], dual phosphorylation [9], the cell cycle [10], triggering of

caspases [11], and synaptic memory switches [12–14]. Two

observations emerge from this set of known switches. First,

relatively few switches are known. A recent computational

exploration yielded only about 2% bistable models among those

tested [15]. Furthermore, no entries are annotated as bistable in

either KEGG (331 pathways) or BIOCARTA (355 pathways).

Somewhat at odds with this absence of bistable pathways in

pathway databases, kinetic models of bistable pathways are more

common. There are several bistable models in the signaling model

databases DOQCS (10/69; [16]) and BioModels.net (12/147;

[17]), coming to about 10% of recorded models. This may be an

overrepresentation, due to modeling interest in bistability. In

particular, there are several signaling models that explore

bistability as a basis for synaptic memory [12–14].

A second observation about the known bistable switches is that

they are quite different in their chemical topologies. While

feedback loops are a recurring motif [3,18], there are some cases

where enzyme saturation appears to play a role [13], and others

where the balance between competing reactions itself generates

bistability [9].

While signaling models tend to result in rather complex reaction

systems, a distinct approach to the study of chemical bistability is

driven from theoretical analyses of enzyme kinetics and flux reaction

systems [3,5]. These studies show that very few reactions are needed

to achieve bistability. This raises the interesting question of whether

there are core sets of reactions, or motifs, that are embedded in all

bistable chemical reaction systems, despite their diversity. A

corollary is whether such a set of motifs may help to detect bistable

sub-systems in complex biological signaling networks.

Necessary conditions for bistability, such as positive loops in the

system Jacobian, have been well characterized [18]. Earlier work

by Clarke [19] parametrically defines all steady states of a given

reaction system, but does not yield specific solutions when

concentrations and rate constants are given. Recent studies detect

chemical switches by testing for correlates of bistability [3,5] or by
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looking for properties that frequently co-occur with bistability and,

optionally, engineering bistability by minor modifications to such

networks [15,20,21]. We sought to identify bistable systems

without placing any ‘‘top-down’’ requirement on the mechanistic

details, and use this unbiased search to reconstruct relationships

between the switches.

Here we systematically explore chemical reaction space to show

that bistable chemical switches are remarkably common. We show

that all small bistable systems are related, and that larger ones

frequently share motifs that may be predictive of bistability.

Results

Bistables Are Common
In our first phase of analysis, we began with a basis set of 12

reactions (Figure 1A) and systematically tested all reaction configu-

rations involving 2 molecules, 3 molecules from 1 to 6 reactions, and

4 molecules from 1 to 3 reactions. In our second phase of analysis, we

sampled a subset of possible reaction configurations involving 3

molecules from 7 to 15 reactions, 4 molecules from 4 to 5 reactions,

and 5 molecules from 1 to 4 reactions. The number of possible

configurations rose rapidly with the number of molecules and

reactions (Figure 1D), and it took longer to test each configuration for

bistability, hence we sampled a small subset of configurations for the

second phase of analysis. For each configuration we generated ,100

models using Monte Carlo assignment of concentration and rate

parameters (see Methods section) and tested each for bistability. The

propensity of a configuration for bistability was defined as the fraction

of tested models for that configuration that exhibited two or more

stable steady states.

We observed a large number of bistable systems even with our

very sparse sampling of reaction parameter space (Figure 1E). 3,562

of the fully sampled configurations (,10%) had at least one bistable

model, and 918 of the larger reaction systems (,5%) did. This large

percentage was surprising for two reasons. First, known bistable

configurations from biology are rare, as discussed above. Second,

our sampling of parameter space was very sparse, so we would be

likely to detect bistable configurations only if they remained bistable

in a substantial portion of parameter space. Most known chemical

bistable switches exhibit bistability in a relatively narrow range of

parameters rarely exceeding a factor of two [9,22]. While a factor of

two may be substantial from a biological viewpoint, we required a

30-fold range to detect bistability. This was because even small

models have a large number of parameters. For instance, a 3

molecule, 3 reaction system has 7 parameters. In order to obtain

bistability in 1% of tested models of this configuration, bistability

would have to be present over approximately half the sampling

range (Figure 1F) for each parameter: (0.5)7,0.01. Our logarithmic

sampling spanned 3 orders of magnitude, so half this range is about

30-fold for each parameter. A few configurations had a propensity

of over 50% (Figure 1G). This suggests that bistability in these

systems is very robust.

Admittedly, due to our sparse sampling of parameter space,

there could be undetected bistables in the space of systems

sampled here. While a single configuration is sufficient to prove

that a network has the capability for exhibiting bistability, our

analysis methods do not support an impossibility proof for

bistability. The range in which a system exhibits bistability can

depend intricately on how the phase space is structured in terms of

the system parameters such as molecule concentrations and rate

constants. Bifurcation analysis can shed insight into parameter

ranges feasible for realizing bistability. Nevertheless, even with the

possibility of false negatives, it is significant that nearly 10% of

explored systems are bistable and this percentage can only

improve with greater analysis and exploration.

Bistables Are Diverse
The simplest bistable system (362M101) involved 3 molecules

and 2 reactions (Figure 2A). We tested its switch-like behavior by

introducing perturbations from its stable states (Figure 2C). Small

perturbations in 362M101 (small arrows in Figure 2C) caused

transients which return to the originating stable state whereas large

perturbations (large arrows) caused state flips. An intuitively

appealing simpler system with only 2 molecules (Figure 2B) turned

out not to be bistable with our mass-action formulation for

enzymes (Text S1).

Positive feedback loops, such as autocatalysis and catalytic

loops, have been implicated as a common motif leading to

bistability in signaling [3,18,23]. In our study, autocatalysis

(reactions D and L) was frequently present in bistable models,

but it was not necessary. When we excluded autocatalysis from

small reaction systems with only 3 molecules, there were fewer

possible reaction configurations and a ten-fold reduction in

percentage of bistable configurations. However, autocatalysis

had little effect on the percentage of bistable configurations for 4

and 5 molecules (Figure 3).

In addition to autocatalysis, we found several cases where

bistability arose from more subtle chemical interactions (e.g.,

Figure 2G and 2F and 363M40 in Figure 2E). Such reaction sets

would have been difficult to identify as bistable by searching for

similarities to published networks [24,25]. Interestingly, all our

switches had exactly two stable states; the lack of higher levels of

multi-stability may simply be due to our sparse sampling of

parameter combinations.

Uniqueness of Bistables
Are all discovered bistables distinct? Because isomorphisms were

removed at the time of generating possible reaction signatures, we

ensured that each discovered bistable mapped to a unique signature

composed of the 12 basic reaction types. A remaining concern was

that there might be equivalences in terms of the underlying

dynamical system when the chemical systems were converted to

mathematical models. We investigated this possibility by reducing

all the composite reactions to approximate equivalences in the form

Author Summary

How does a cell know what type of cell it is supposed to
become? How do external chemical signals change the
underlying ‘‘state’’ of the cell? How are response pathways
triggered on the application of a stress? Such questions of
differentiation, signal transduction, and stress response,
while seemingly diverse, all pertain to the storage of state
information, or ‘‘memory,’’ by biochemical switches. Just as
a computer memory unit can store a bit of 0 or 1 through
electrical signals, a biochemical switch can be in one of
two states, where chemical signals are on or off. This lets
the cell record the presence/absence of an environmental
stimulus, the level of a signaling molecule, or the result of
a cell fate decision. There are a small number of published
ways by which a group of chemical reactions come
together to realize a switch. We undertook an exhaustive
computational exploration to see if chemical switches are
indeed rare and found, surprisingly, that they are actually
abundant, highly diverse, but related to one another. Our
catalog of switches opens up new bioinformatics ap-
proaches to understanding cellular decision making and
cellular memory.

Biochemical Switches
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Figure 1. Finding Bistability. (A) Basis set of reactions with signatures and examples. Reactions C, D, J, K, and L are enzymatic and the enzyme
name is at the bend of the arrow. (B) Flowchart for finding bistability. (C) Example of steps 1–4 in the flowchart. (D) Number of possible configurations
rises steeply with increasing number of molecules and initially also with the number of reactions. Shaded region indicates configurations fully
sampled in this study, the remainder were subsampled. (E) Bistable configurations initially become more common with increasing numbers of
reactions, and for 3 molecules the percentage declines for more than 6 reactions. (F) Bistability must persist over a wide parameter range to be
detected. Fraction of parameter range = #parameters!(Propensity). Model class is expressed as m6n where m is the number of molecules and n is the
number of reactions. (G) Frequency of occurrence of bistability as a function of propensity. Some configurations exhibit bistability over 30% of any
parameter set in our selected range.
doi:10.1371/journal.pcbi.1000122.g001

Biochemical Switches
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of either a single reactant-single product reaction (type A) or a

double reactant-single product reaction (type E) (see Methods

section and Figure S2). We emphasize that these are ‘‘approximate’’

equivalences, for the following three reasons. First, many higher-

order reactions required the inclusion of intermediate molecular

species which were not present in the mathematical formulation of

the original basis reactions. Second, the expanded reactions treated

enzyme-substrate complexes as distinct molecular species having

their own trajectories beginning from non-zero concentrations,

whereas E-S complexes in the original reactions were initialized to

zero in our modeling (see methods). Third, backward rates from the

E-S complexes to the reactants were assumed to be zero in our

original modeling (e.g., for reactions C, D, J) whereas in the

expanded modeling all reactions (forward and backward) have non-

zero reaction rates. With these caveats in mind, we found situations

where configurations were isomorphic according to our approxi-

mate mappings and both were bistable (Figure S2, frame B), and

also cases where the configurations were approximately equivalent

but one was bistable, and the others were not (Figure S2, frames C

and D). These examples reveal that composite reactions such as are

commonly used in biochemistry and in our study, complicate

stability analysis in two ways. First, they may hide mechanistic

similarities between systems. This can be addressed by expanding

composite reactions into more basic steps, as we have done. Second,

they may hide key assumptions such as intermediate species and

fundamental reaction steps, which may cause major differences in

the dynamical behavior of the reaction system. While this issue is

important from a rigorous mathematical viewpoint, we point out

that such approximations are inevitable when translating cellular

biochemistry into idealized mathematical forms. We suggest that in

many cases bistability is indeed preserved across approximations

(e.g., Figure S2, frame B). Our study provides a framework for

further systematic analysis of this question.

Bistables Are Related
Does bistability ‘‘run’’ in families of related reaction topologies?

To test this hypothesis, we constructed a directed acyclic graph

(DAG) of configurations where each bistable configuration was a

node, and each addition/removal of a reaction between nodes was

an edge. We found that almost all bistable configurations from the

first phase (3,415/3,562 = 95.9%) formed a single, highly inter-

connected set, i.e., a giant component. Most of the 147 ‘‘orphans’’

occurred at the boundaries of our sampling (98 at 366 and 47 at

463). These may simply represent novel ‘roots’ that connect

further up in the reaction hierarchy. In Figure 4A, the DAG is

represented as a multiply rooted ‘‘banyan-tree’’ like diagram

where there is one main root (362M101) and multiple higher-

order roots linked to the primary root through more complex,

bistable ‘‘branches’’. We may have missed low-propensity bistable

configurations, so it is possible that isolated islands of lower

propensity may be present. Conversely, it is also possible that finer

sampling may uncover intermediate bistable systems that link

Figure 2. Example Bistable Models. (A) The simplest configuration,
362M101, i.e., having 3 molecules, 2 reactions, and being the 101st
configuration in this class. (B) A simpler model that is bistable with
Michaelis–Menten/Briggs–Haldane kinetics, but not with a mass action
explicit representation of the enzyme-substrate complex. (C) Time-
course of response of 362M101 to perturbations. (D) Stability diagram
of 362M101, as a function of c0 (initial concentration of c). The bistable

region is shaded. The specific model in panel A has c0 indicated by the
dashed line. (E) All the 363 bistable configurations. (F) Two
configurations with bistability propensity .70%. Model 363M445 in
(E) is also over 70%. Note the model similarities and symmetry. (G) Three
non-autocatalytic configurations with propensity 26%, 23%, and 16%,
respectively. (H) Schematic of stability curve for an autocatalytic
reaction (inset, thin arrow). There is a stable point at 0, and a saddle
at 1. Addition of a rapidly saturating fast back-reaction (inset, thick
arrow, and graph, crosses) converts this to a bistable model with the
same configuration as (A). Now the stability curve (thick line) has a
stable at 0, a saddle at ,0.05, and another stable at ,0.9.
doi:10.1371/journal.pcbi.1000122.g002
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orphan configurations into the DAG. We constructed a radial

diagram restricted to those configurations that were derived from

the simplest bistable configuration (362M101, Figure 4B). In

Figure 4A and 4B, there was an apparent clustering of high-

propensity nodes. We investigated this further by comparing

projections of Figure 4A onto high-propensity nodes. A giant

component persisted even when we increased the threshold for

bistability propensity from .0 to $0.3 (Figure S1, frame A). This

showed that highly bistable systems form a connected subgraph in

the graph of all bistable systems. The much smaller non-

autocatalytic subset of bistables was also multiply rooted with a

giant component and a few separated nodes (Figure S1, frame B).

These graphs suggested that most bistable systems were derived

from smaller ones. As reactions were added (Figure 4C), we

encountered a decreasing number of novel bistables (i.e., cases that

could not be derived by addition of a reaction to a smaller bistable

configuration). This suggests that bistable systems involving small

numbers of molecules may form the architectural core of more

complex reaction networks that are also bistable.

Relationship to Published Bistables
We tested two implications of the ‘‘bistables are related’’

observation. First, we asked if we could take a large published

bistable system and remove one reaction at a time without losing

bistability. If we could continue this process till we ended up at a

bistable configuration present in our dataset, then we had a

continuous trajectory from our known DAG of bistables to the

published model. Second, we asked if the large bistable system was

a superset of a known bistable configuration, without requiring

that there were intermediate bistables between the two. We

performed this analysis on several known bistable reaction systems

from published work (Figure 5). We found that in four of these

cases, the published bistables were either already among our

catalog, or had a subset of reactions that was bistable. In the

remaining three configurations, there was neither a connection

between the published models to the tree, nor was there a subset of

reactions that was bistable in the DAG.

We therefore hypothesized that the DAG of bistables may be

nearly complete for small systems, but the increasing degrees of

freedom afforded by greater numbers of molecules and reactions

helped realize bistability in new, unseen, ways. We developed two

analysis tools that work in complementary ways to explore such

larger configurations.

The ‘‘Bistabilizer’’
A suggestive observation from our first phase was that a large

fraction of configurations (,60%) contained saddle points and line

solutions (Text S1). Most of these saddles (80.8% of the non-

bistable set) occurred when the concentration of all but one

molecule in the system was zero. A simple example of this is in

Figure 2H, where molecule b catalyzes its own formation from a.

When b is at zero, a does not change – it is metastable. However,

the addition of a small amount of b causes the system to ‘fall’ into

a truly stable state where all molecules have been converted into b.

As has been previously analyzed [20] a rapid but saturating back-

reaction is one way to convert this into a true stable system. This

can be done using an enzyme to remove b more rapidly than it

builds up, at low levels of b (Figure 2H). In this case, we

reconstruct our original simplest bistable system (compare

Figure 2A and 2H). We developed an algorithm that introduced

Figure 3. Effects of Autocatalysis. (A) Number of nonautocatalytic configurations as a function of number of reactions. (B) Percentage of bistable
configurations for 3, 4, and 5 molecules as a function of number of reactions. Same symbols as in (A). (C) Comparison of bistability percentage for
entire dataset (x axis) and set without autocatalysis (y axis). The thick line indicates equal percentages. 3-molecule systems have fewer bistables
without autocatalysis, but 4 and 5 molecule systems have nearly equal bistables if autocatalytic reactions are excluded. The different points on each
plot are for numbers of reactions. As bistability declines for large reaction numbers for 3 molecules, this curve folds back on itself.
doi:10.1371/journal.pcbi.1000122.g003
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several reactions to achieve bistability using this approach, in a

general but not necessarily minimal manner. Due to the added

reaction complexity, we generated bistables from non-bistable

systems involving only 3 molecules and up to 5 reactions. The

bistabilizer added at least 2 molecules, 3 enzymes and a reaction

for each converted saddle point. We were able to generate a 5-fold

higher proportion of bistables than were present in the source

configurations in a sample of 70,000 models. This construction

may usefully complement bifurcation discovery tools [26] to

generate and refine bistable configurations.

Frequent Motif Mining
Our second tool used motif matching. We analyzed the

configurations of smaller bistables plus the sparsely sampled larger

bistables to find frequently occurring groups of reactions, and then

searched for these motifs in unexplored configurations. We

analyzed bistables in each configuration class (3 molecules, 4

molecules, 5 molecules) separately for frequent motifs. A motif

must occur with sufficient frequency in the given class to be

detected (see Text S1 for frequency thresholds used). Because

motifs are subsets of chemical reaction systems, they may not quite

have the same number of molecules as the class of systems from

which they are mined; for instance, a motif mined from 5-molecule

bistable systems may not itself have 5 molecules. Furthermore,

observe that while a motif is a subset of reactions that is well-

represented in bistable systems, it may not be bistable. We found

the greatest number of motifs (1615) from 3-molecule systems, and

smaller numbers for 4 and 5 molecules (143 and 28, respectively),

probably because our initial harvesting of bistables in the larger

systems had yielded fewer confirmed bistables to scan for motifs.

The motifs were mostly independent and only one motif

occurred in all three reaction classes. Coincidentally, this common,

two-reaction, motif (composed of reactions DabX and Jbca) was

identical to a bistable found both in our analysis and in previous

work ([20]; Figure 2A and 5A). This motif/bistable also occurred

in the top-5 motifs mined for each class when the motifs were

ranked by their frequencies (Figure 6A–C). Interestingly, four of

the top-5 motifs in the 3 molecule case contained at least one of

reaction D or reaction J and all of the top-5 motifs in the 4

molecule case contained at least one of these two reactions. In the

case of 5 molecules, only two of the top-5 motifs involved either D

or J, though our much smaller sample set may have led to skewed

results in this case. The remaining top-5 motif among the 3

Figure 4. Bistability Runs in Families. (A,B) Representations of relationships between bistable configurations. Node color represents bistability
propensity. Color scales for (A) and (B) are the same. (A) ‘‘Banyan tree’’ diagram showing multiple ‘‘root’’ bistable configurations that cannot be
generated by addition of a single reaction to a smaller bistable configuration but are connected through larger configurations. Model classes are
labeled on the left. Nodes are staggered vertically within bands for visualization. ‘‘Root’’ edges are in sky blue and deeper edges are in green. On the
left are orphan models. (B) Minimum spanning tree rooted at 362M101. Inner nodes with smaller reaction sizes are drawn as larger circles. A few 363
bistables and the primarily low propensity systems they derive are not shown to minimize crowding. The ‘‘pie’’ denotes restriction of exploration of 4
molecule systems to only 3 reactions in this study. (C) The number of novel bistables drops sharply in larger reaction systems.
doi:10.1371/journal.pcbi.1000122.g004

Figure 5. Known Bistables. (A,B) Published bistables from [20]. These
are already present in our DAG. (C,D) Published bistables from [6] and
[9]. These can be reduced to smaller models and have some bistable
motifs from our dataset. (E,F) Bistables from [5]. (G) Bistable from [11].
None of (E), (F), and (G) had motifs from our dataset.
doi:10.1371/journal.pcbi.1000122.g005

Biochemical Switches
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molecule systems and the three other top-5 motifs in the 5-

molecule systems utilized basic reversible reaction types such as A,

B, F, G, H, and I that did not involve autocatalysis or even basic

enzyme catalysis.

Just as a motif occurred in multiple bistable systems, a given

bistable system could exhibit many distinct motifs. We used this

property to advantage to help rank untested configurations for

their potential to exhibit bistability. In each configuration class (3-

molecule, 4-molecule, or 5-molecule systems), we searched for

motifs specific to that class, and ranked the (untested) configura-

tions in terms of the number of motifs they exhibited. We

evaluated $100 of the top configurations for each class, exploring

120 parameter sets for each. We found bistability in 96% of the 3

molecule systems (214/222), 49% of the 4 molecule systems (49/

100), and 13% of the 5 molecule systems (82/641). These numbers

significantly improved upon the random sampling results of the

second phase of analysis (Figure 6D).

Finally, we compared the motifs across the three classes (3, 4,

and 5 molecule systems) to investigate whether there were any

overlaps in mechanisms by which 3-molecule, 4-molecule, and 5-

molecule systems exhibit bistability. On face value, there was little

overlap between the motif sets taken pairwise (Figure 6E). To

understand the distinctions better, we searched for all three sets of

motifs in all three classes of bistable systems. For each motif, we

counted its frequency in each class and identified the absolute

value of the difference in frequencies across classes. The median

difference in frequency is cataloged in Table 1 which shows that

the motifs in 4-molecule systems were more similar to those in 5-

molecule systems than either to 3-molecule systems. This suggests

that there are qualitatively different mechanisms for bistability vis-

à-vis 3 molecule systems and higher molecular systems.

Discussion

Our study draws the first stability map of chemical reaction

space. We find that bistables are common, especially in smaller

reaction systems. They are also very robust, i.e., we find many

configurations that are bistable over a very wide parameter range.

Smaller bistables are all related to each other in a tree-like

manner. While the overall configurations that support bistability

are very diverse, there are frequently recurring motifs of reaction

groupings in such configurations. These motifs serve to identify

promising candidates in higher order systems.

A Resource for Studying Bistability
Signaling motifs have been regarded as a good way to abstract

out the chemical complexity of signaling [4,24]. Specifically,

positive feedback loops have long been considered good indicators

for bistability. Our study shows that such broad network features

are inadequate. The simplest form of positive feedback, that is,

autocatalysis, is a good predictor for bistability only in very small

Figure 6. Motifs in Bistable Switches. (A–C) Top 5 motifs mined for
3-molecule, 4-molecule, and 5-molecule bistable systems. (D) Motifs
improve search for bistables by about 7-fold, for each of the reaction
classes tested. (E) Venn diagram of motifs among different classes of
reaction configurations. The one motif shared by all classes of
configurations is the same as the smallest bistable, model M101.
doi:10.1371/journal.pcbi.1000122.g006

Table 1. Median Difference in Frequency of Motif Sets
Searched across Different Classes of Bistable Systems.

3xn 4xn 5xn

3xn – 15% 29%

4xn 21.5% – 1.6%

5xn 45% 3.5% –

Rows: Motif set. Columns: Class of bistable systems.
doi:10.1371/journal.pcbi.1000122.t001

Biochemical Switches
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reaction sets. In reactions with 4 or 5 molecules the proportion of

bistables does not seem to depend on the presence or absence of

autocatalysis (Figure 3). Instead we propose that our library of

bistable configurations is a more complete and stronger approach.

Our catalog, available from the DOCSS (Database of Chemical

Stability Space) website at http://docss.ncbs.res.in, provides

complete model descriptions in chemical reaction signature

format, as well as selected bistables in SBML format. Together

with recent methods to reduce chemical networks to their core

reactions [27,28], our catalog may open up chemical and

bioinformatics approaches to searching for bistability in biochem-

ical signaling pathways.

Evolutionary Implications
Bistable switches are important in biology in maintaining cellular

history and decisions. Our study shows that there is a large repertoire

of such switches for natural selection to draw upon, including many

very simple switches. Furthermore, several of these switches are

highly robust with respect to parameter variations. This has two

implications for evolution. First, it is easy for evolving biochemical

networks to stumble upon parameters that will give a switch. Second,

such switches themselves will work effectively over a wide range of

parameter conditions. The relatedness of the switches through

addition or removal of individual reactions is also a good substrate for

evolutionary modification. For example, a mutation that adds

another enzyme regulator to a bistable switch is, by this argument,

quite likely to retain the original bistability, along with the new

regulatory properties. Overall, our survey of chemical topologies hints

at an interconnected and rather well-populated terrain of bistability in

a biologically biased region of chemical space.

Methods

Modeling Chemical Reaction Space
We selected a set of 12 primary chemical reaction steps

(Figure 1A) as the ‘‘alphabet’’ from which we performed our

exhaustive search of chemical reaction space. In principle a small

set of reactions may suffice to build up to arbitrary reaction

schemes. For instance, using two reactions of type E

AzB<C

we can realize the higher order enzymatic reaction

A{B?C

which is reaction J in our system, by modeling it as a composite of

AzB<A:B, A:B<BzC

Our choice of primary chemical steps was biologically-inspired.

In other words, we found a different proportion of bistables than

we would see if we used, say, only the most elementary reactions

such as type A and type E (Figure S2). Instead we reduced the

parameter space by using biologically-inspired composite reac-

tions, and hence sampled more completely in biological chemistry

space. From this set of 12 primary chemical reaction steps, we

constructed all possible reaction configurations involving 2 or 3

molecules, 4 molecules up to 5 reactions, and 5 molecules up to 4

reactions. This was a total of ,2,800,000 configurations. These

reaction configurations were topological: they defined the

molecules and chemical steps, but did not specify concentrations

or kinetic parameters.

We constructed reaction architectures involving m molecules as

follows. We first selected one reaction out of the set of 12 reactions.

We then assigned molecules to the slots of the reaction. For

example, the reaction J has three slots, so we could assign

molecules a, b, and c to this reaction. Having set up the first

reaction, we then repeated the process n – 1 times to obtain a

configuration of m molecules and n reactions (Figure 1). We

eliminated all stoichiometrically invalid configurations by row-

reducing the augmented stoichiometric matrix and checking for

conserved moieties [29]. We repeated this entire process for all

possible permutations of the m molecules. Similar approaches have

been employed at a more elementary level of chemical reactive

species to computationally analyze reaction systems [30,31].

Signature Typing
We signed each reaction with a terse unique 4-character string

that completely specified all reactants and products, so that the

first character of a reaction signature denotes one of the 12

reaction types (A–L), and the remaining two or three characters

denote the molecular species participating in various roles in the

reaction. The signature for a reaction architecture was obtained by

concatenating the signatures for the constitutent reactions. We

checked for isomorphic signatures (see Text S1) and only one

signature per unique system was retained. The number of such

unique, stoichiometrically valid reaction architectures was combi-

natorially large (Figure 1D). As further reactions were added, the

number of possible configurations peaked and then declined

because of stoichiometric constraints and symmetry (Figure 1D).

Our set of configurations did not deal with two cases that have

previously been analyzed for bistability: continuous flux and

buffered systems [21]. Instead our reactions required that there

was mass conservation among the named molecules, but did

permit the presence of ‘hidden’ molecules that were folded into the

rate terms. Thus we represented a kinase reaction as an

elementary enzymatic step, by ‘‘hiding’’ the ATP and ADP

exchange: Substrate–Kinase R Product.

In this manner our reaction systems also accommodated steady

state cases where continuous metabolic input was necessary to sustain

stability. We stipulated that these ‘hidden’ molecules were stoichio-

metrically balanced within individual reactions, such as the enzymatic

step above. We were able to approximate many cases of buffering

simply by having a high concentration of the ‘buffered’ species.

Parameterization
In order to assess bistability we needed to work with specific

models, with all parameters specified. We generated at least 100

models for each configuration we tested. Each model was

generated from one of the configurations using Monte Carlo

sampling to assign rate constants and concentrations. We chose

concentrations using logarithmic sampling in the range 10 nM to

10 mM. This spans the concentration range of most biochemical

reagents. We chose rate constants using logarithmic sampling in

the range 0.01 mM2N s21 to 10 mM2N s21, where N was the order

of the reaction from 0 to 4. Again, these rates were chosen to span

the common range of biochemical reaction parameters.

Due to computational limitations we sampled only the smaller

reaction sets completely for bistability. We completely sampled all

configurations with 2 molecules, 3 molecules up to 6 reactions, and

4 molecules up to 3 reactions (Figure 1A–C and Text S1). This

amounted to a total of 100,000 configurations and ,20e6 models,

sampling at least 100 models per configuration. We sampled the

remaining reaction sets more sparsely, mostly 1 in 100, but we used

1 in 1,000 sampling for the very large 465 and 564 reaction sets.
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Identifying Steady States
We found steady states for each model using two distinct

methods: homotopy continuation [32] and time course analysis

(Text S1). Briefly, homotopy continuation finds steady states by

tracking solution paths of systems of simultaneous equations.

Time-course analysis simulates models from a number of distinct

initial conditions toward steady states. Neither of these methods

determined the global bifurcation behavior of the reaction system:

they only identified fixed points of the fully parameterized model.

We classified solutions as stable, saddle, or other using eigenvalue

calculation and simulation around steady states (Text S1).

Supporting Information

Text S1. Supplementary Information about Methods and

Algorithms To Accompany the Main Text of the Paper.

Found at: doi:10.1371/journal.pcbi.1000122.s001 (0.11 MB

DOC)

Figure S1. Minimum Spanning Tree (A) and Banyan Tree

Graph (B). (A) Minimum spanning tree derived from high

propensity configurations (rooted at 363M445). Inner nodes with

smaller reaction sizes are drawn as larger circles. Four levels of the

giant component are shown that shrinks but remains connected as

the propensity threshold is raised. Dark blue is the range

0,propensity,0.1, white is propensity $0.3. (B) ‘‘Banyan tree’’

graph of nonautocatalytic models, with a few orphan systems.

Color scale indicates propensity of configurations.

Found at: doi:10.1371/journal.pcbi.1000122.s002 (1.29 MB EPS)

Figure S2. Isomorphic Mappings. (A) Table of Isomorphic

Mappings from the Original 12-Reaction Set to a Minimal Set

Consisting of Reactions A and E. Note that many mappings

require the formation of intermediate molecular species and that

enzyme reactions become bidirectional during the expansion. (B)

An example of an isomorphic mapping where bistability is

preserved, despite the change from unidirectional enzyme to two

bidirectional conversion reactions. (C,D) Examples of isomorphic

mappings that lose bistability. In both cases, the bistability is lost

because the expanded form of an enzyme contains two

bidirectional reactions, which can also be mapped to an enzyme

with the reverse direction.

Found at: doi:10.1371/journal.pcbi.1000122.s003 (0.24 MB EPS)
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