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In humans, killer immunoglobulin-like receptors (KIRs), expressed on natural killer (NK) and
thymus-derived (T) cells, and their ligands, primarily the classical class I molecules of the
major histocompatibility complex (MHC) expressed on nearly all cells, are both
polymorphic. The variation of this receptor-ligand interaction, based on which alleles
have been inherited, is known to play crucial roles in resistance to infectious disease,
autoimmunity, and reproduction in humans. However, not all the variation in response is
inherited, since KIR binding can be affected by a portion of the peptide bound to the class I
molecules, with the particular peptide presented affecting the NK response. The extent to
which the large multigene family of chicken immunoglobulin-like receptors (ChIRs) is
involved in functions similar to KIRs is suspected but not proven. However, much is
understood about the two MHC-I molecules encoded in the chicken MHC. The BF2
molecule is expressed at a high level and is thought to be the predominant ligand of
cytotoxic T lymphocytes (CTLs), while the BF1 molecule is expressed at a much lower
level if at all and is thought to be primarily a ligand for NK cells. Recently, a hierarchy of BF2
alleles with a suite of correlated properties has been defined, from those expressed at a
high level on the cell surface but with a narrow range of bound peptides to those
expressed at a lower level on the cell surface but with a very wide repertoire of bound
peptides. Interestingly, there is a similar hierarchy for human class I alleles, although the
hierarchy is not as wide. It is a question whether KIRs and ChIRs recognize class I
molecules with bound peptide in a similar way, and whether fastidious to promiscuous
hierarchy of class I molecules affect both T and NK cell function. Such effects might be
different from those predicted by the similarities of peptide-binding based on peptide
motifs, as enshrined in the idea of supertypes. Since the size of peptide repertoire can be
very different for alleles with similar peptide motifs from the same supertype, the relative
importance of these two properties may be testable.
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INTRODUCTION

Molecules encoded by the major histocompatibility complex
(MHC) of jawed vertebrates play central roles in immune
responses as well as other important biological processes (1).
Among these molecules are the classical class I molecules, which
are defined by presentation of peptides on the cell surface, high
and wide expression and high polymorphism. There are also
non-classical class I molecules that lack one or more of these
properties; in this report, only the classical class I molecules will
be considered and will be abbreviated MHC-I.

MHC-I molecules bound to appropriate peptides on a cell
surface are ligands for thymus-derived (T) lymphocytes through
the T cell receptor (TCR) composed of a and b chains (along
with the co-receptor CD8), with the outcome generally
being death of the target cell through apoptosis (2). The
cytotoxic T lymphocytes (CTLs) are important agents for
response to infectious pathogens (particularly viruses) and
cancers. The repertoire of TCRs is formed by somatic
mutational mechanisms in individual cells and is vast and cross-
reactive, so that in principle any MHC molecule bound to any
peptide could be recognized (3). In fact, selection of T cells in the
thymus strongly affects the TCR repertoire, but, to a first
approximation, it is the polymorphism of the MHC molecules
along with self-peptides that determines thymic selection,
presentation of peptides, and thus immune responses (4).

However, many MHC-I molecules are also ligands for natural
killer (NK) cells through a variety of NK receptors (NKRs), with
the potential outcomes including cytokine release and target
cytotoxicity (2). Analogous to T cell education based on the
MHC molecules and self-peptides present in an individual, the
responses of NK cells depend on the particular MHC molecules
present during development, a phenomenon referred to as
education, licencing, or tuning (5). Both NKRs and MHC-I
ligands are polymorphic, with the interactions of particular
receptors with particular ligands varying markedly in strength.
Since the MHC and the regions encoding NKRs are located on
different chromosomes, the genetic result is epistasis, which in
humans and mice affects infectious disease, autoimmunity, and
reproduction. Indeed, there appears to be antagonistic selection
between immune responses and reproduction in humans (6).

MHC-I molecules (7) generally bind short peptides, 9–11
amino acids in length, along a groove between two a-helices
above a b-pleated sheet. The peptides are tightly bound at the N-
and C-termini by eight highly-conserved amino acids in pockets
A and F, so that longer peptides bulge in the middle. Specificity of
binding to different MHC-I alleles arises from peptide
interactions with the polymorphic amino acids that line the
groove, often with deeper pockets B and F being most important,
but with other pockets being important in some alleles. The
important pockets typically bind just one amino acid or a few
amino acids with side chains that have very similar chemical
properties, although some promiscuous pockets allow many
different amino acids. The particular amino acids generally
allowed to bind in the important pockets, the so-called anchor
residues, give rise to peptide motifs for MHC-I alleles. Many
alleles have been grouped into several supertypes (8) based on
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similarities in peptide motifs and in polymorphic amino acids
lining the pockets. Some motifs are quite stringent in their
requirements while others are more permissive, leading the
concepts of fastidious and promiscuous MHC-I alleles with
differently sized peptide repertoires (9).

TCRs recognize the side chains of peptide residues that point
up and away from the peptide-binding groove, mostly in the
middle of the peptide (10). It has long been known that the
particular peptides bound to MHC-I molecules could influence
interaction with inhibitory NKRs (11–14), which eventually was
refined to NKR interaction with side chains near the end of the
peptide (typically residues 7 and 8 of a 9mer) (15, 16). Moreover,
both viral and bacterial peptides have been reported to affect
recognition by activating NKRs (17, 18).

Among the questions that will be considered in this report are
the extent to which the size of the peptide repertoire may
influence the binding NKRs, and the extent to which MHC-I
alleles within a supertype have the same sized peptide repertoire.
In order to approach these questions, it is appropriate to review
what is known about peptide repertoires, beginning with chicken
class I molecules.
THE CHICKEN MHC: A SIMPLE SYSTEM
FOR DISCOVERY

The vast majority of what is known about the MHC and MHC
molecules was discovered in humans and biomedical models like
mice (1). In typical placental mammals (Figure 1), the MHC is
several megabase pairs (Mbp) of DNA with hundreds of genes,
separated into haplotype blocks by several centimorgans (cM) of
recombination. The few MHC-I genes located in the class I
region are separated from the few class II genes in the class II
region by the class III region which contains many unrelated
genes. Some genes involved in the class I antigen processing and
presentation pathway (APP) are also located in the MHC,
including two genes for inducible proteasome components
(LMPs or PSMBs), two genes for the transporter for antigen
presentation (TAP1 and TAP2) and the dedicated chaperone and
peptide editor tapasin (TAPBP). However, these class I APP
genes are located in the class II region and are more-or-less
functionally monomorphic (19–21), working well for nearly all
loci and alleles of MHC-I molecules. In humans, the three loci of
MHC-I molecules may not be interchangeable: HLA-A and -B
present peptides to CTLs with only some alleles acting as NKR
ligands, while HLA-C is less well-expressed and mostly functions
as an NKR ligand (22, 23). There is also evidence that HLA-A
and -B may do different jobs, since HLA-B is more strongly
associated with responses to rapidly evolving small (RNA)
viruses, while HLA-A may be more involved with large
double-stranded DNA viruses (24).

In contrast, the chicken MHC is small and simple (Figure 1),
and evolves mostly as stable haplotypes (9, 25). The BF-BL
region of the B locus is less than 100 kB and contains two
MHC-I genes (BF1 and BF2) flanking the TAP1 and TAP2 genes,
with the TAPBP gene sandwiched between two class II B genes
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nearby, and with the class III region on the outside. There is
evidence only for historic recombination within this region, with
no examples of recombinants from over 20,000 informative
progeny in deliberate mating, although there is clear
recombination just outside (in the so-called TRIM and BG
regions) (26–28). As a result, alleles of these strongly-linked
genes stay together for long periods of time, so that the APP
genes are all highly polymorphic and co-evolve with the
BF2 gene (9, 29). As an example, the peptide translocation
specificity of the TAP is appropriate for the peptide binding
specificity of the BF2 molecule encoded by that haplotype (30,
31). Apparently as a result, the BF2 molecule is far more expressed
and also more polymorphic than the BF1 molecule (32, 33). Thus
far, the evidence is that the BF2 molecule presents peptides to
CTLs, while BF1 functions as a ligand for NK cells (34).

This simplicity of the chicken MHC can make it easier to
discover phenomena that are difficult to discern in the more
complicated MHC of humans and other placental mammals. For
example, there are many examples of strong genetic associations
of the B locus (and in some cases, the BF-BL region) with
responses to economically-important diseases, including
Marek’s disease caused by an oncogenic herpesvirus, infectious
bronchitis caused by a coronavirus and avian influenza (9, 35). In
contrast, the strongest associations of the human MHC are with
autoimmune diseases, with the strongest associations with
infectious disease being with small viruses like HIV (1). One
hypothesis for this perceived difference is the fact that the human
MHC has a multigene family of class I molecules which confer
more-or-less resistance to most viral pathogens (reading out as
weak genetic associations), while the chicken MHC has a single
Frontiers in Immunology | www.frontiersin.org 3
dominantly-expressed class I molecule, which either finds a
protective peptide or not (reading out as strong genetic
associations) (9, 36).

Other examples of discovery from the apparent simplicity of
the chicken MHC will be described below, but it has become
clear that other aspects of the avian immunity may be very
complex, for instance the chicken NKR system.
PROMISCUOUS AND FASTIDIOUS CLASS
I ALLELES IN CHICKENS

One of the discoveries that was facilitated by the presence of a
single dominantly-expressed chicken class I molecule is an
apparent inverse correlation between peptide repertoire and
cell surface expression, along with strong correlations with
resistance to infectious diseases. Some so-called promiscuous
BF2 alleles bind a wide variety of peptides but have a relatively
low expression on the cell surface cell, while other so-called
fastidious BF2 alleles bind a much more limited variety of
peptides but have higher cell surface expression (9, 32, 37, 38).

It is not clear whether there is a hierarchy or two general
groups of alleles, or to what extent the cell surface expression
levels are exactly an inverse of the peptide repertoire. The
analysis of expression level by flow cytometry is quantitative,
but the exact levels vary for different cell types. The peptide
repertoires are far more difficult to quantify, with even
immunopeptidomics that fairly accurately counts numbers of
different peptides by mass spectrometry suffering from the
FIGURE 1 | The chicken MHC (BF-BL region) is smaller and simpler than the human MHC (HLA locus), with a single dominantly-expressed MHC-I molecule due to
co-evolution with peptide-loading genes. Colored vertical lines or boxes indicate genes, with names above; thin vertical lines indicate region boundaries, with names
above or below; location is roughly to scale, with the length of approximately 100 kB indicated. Thickness of arrows pointing up indicate level of expression, co-
evolution between the TAP genes and the BF2 class I gene indicated by a curved arrow beneath the genes. Genes from the class I system, red; the class II system,
blue; the class III or other regions, green; solid colors indicate classical genes while striped colors indicate genes involved in peptide loading. Figure from (9).
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drawback that the abundance of any given peptide is laborious to
establish definitively. However, for certain well-studied standard
B haplotypes, the peptide-motifs based on gas phase sequencing
and on immunopeptidomics, as well as the pockets defined by
crystal structures, give qualitative rationales for the peptide
repertoires (9, 32, 37–41). The peptide translocation
specificities of the TAP alleles from the few haplotypes
examined provide additional support (30, 31).

The high expressing fastidious alleles typically bind peptides
through three positions with only one or a few amino acids
allowed (32, 39–41). For instance, the BF2 allele from the B4
haplotype (BF2*004:01) binds almost entirely octamer peptides
with three acidic residues: Asp or Glu at positions P2 and P5, and
Glu (with very low levels of hydrophobic amino acids) at position
P8, which fits the basic amino acids forming the so-called pockets
B, C, and F in wire models and the crystal structure. BF2*012:01
binds octamer peptides with Val or Ile at position P5 and Val at
position P8, but with a variety of amino acids at position P2,
which is an anchor residue as seen by structure. BF2*015:01
binds peptides with Arg or Lys in position P1, Arg in position P2
and Tyr (with very low levels of Phe and Trp) at positions P8 or
P9. In fact, these BF2 alleles with fastidious motifs can bind a
wider variety of peptides in vitro than are actually found on the
cell surface (31, 39); the TAP translocation specificities are more
restrictive than the BF2 peptide binding specificities.

In contrast, it would appear that a variety of binding
mechanisms can lead to low expressing alleles with promiscuous
motifs. BF2*021:01 has certain positions with small amino acids
leading to a wide bowl in the centre of the binding groove, within
which Asp24 and Arg9 can move, remodelling the binding site to
accommodate a wide variety of 10mer and 11mer peptides with co-
variation of P2 and Pc-2 (two from the end), along with
hydrophobic amino acids at the final position. Interactions
between P2, Pc-2, Asp24, and Arg9 allow a wide range of amino
acid side chains in the peptide, with at least three major modes of
binding (37, 38). Analysis of peptide translocation in B21 cells
shows the specificity is less stringent than the BF2*021:01 molecule
(31). In another mechanism, BF2*002:01 binds peptides with two
hydrophobic pockets for P2 and Pc, but the pockets are wide and
shallow, allowing a variety of small to medium-sized amino acid
side chains (38). BF2*014:01 also has two pockets, accommodating
medium to large-sized amino acid side chains at P2 and positive
charge(s) at Pc (38). Binding many different hydrophobic amino
acids allows a promiscuous motif, since hydrophobic amino acids
are so common in proteins.

Another interesting feature of chicken class I molecules is C-
terminal overhang of peptides outside of the groove. In placental
mammals, one of the eight invariant residues that bind the peptide
N- andC-termini is Tyr84, which blocks the egress of the peptide at
the C-terminus. However, in chickens (and all other jawed
vertebrates outside of placental mammals), the equivalent residue
is an Arg (42, 43) and this change allows the peptide to hang out of
the groove, as has been found in crystal structures of BF2*012:01
and 014:01 (28, 30). At least one low expressing class I allele with an
otherwise fastidious motif shows lots of such overhangs (C.
Tregaskes, R. Martin and J. Kaufman, unpublished), suggesting
that the TAP translocation specificity (or perhaps the TAPBP
Frontiers in Immunology | www.frontiersin.org 4
peptide editing) controls the extent to which overhangs are
permitted. Interestingly, the equivalent position in class II
molecules is also Arg, allowing most peptides to hang out of the
groove, with some of these overhangs recognized by TCRs (40, 43,
44). Thus, the presence of such overhangs may be a third
mechanism for chicken class I promiscuity, and may affect both
TCR and NKR recognition, as do peptide sidechains within the
groove in humans (10, 16).

The reason for the inverse correlation of peptide repertoire
with cell surface expression is not clear. Among the possibilities
are biochemical mechanisms, which are highlighted by the fact
that all chicken BF2 alleles have nearly identical promoters, and
that the amount of protein inside the cell does not differmuch, but
that the amount thatmoves to the cell surface ismore for fastidious
than promiscuous alleles (31). Thus, the amount of time
associated with the TAPBP and TAP in the peptide-loading
complex (PLC) could be a mechanistic reason. Another
potential biochemical mechanism might be stability and
degradation; promiscuous alleles from cells are overall less stable
than fastidious alleles in solution, but pulse-chase experiments of
ex vivo lymphoctyes show no obvious difference in turn-over (31).
As a second reason, the correlation could arise from the need to
balance effective immune responses to pathogens and tumours
with the potential for immunopathology and autoimmunity. A
third possibility is the need to balance negative selection in the
thymus with the production of an effective naïve TCR repertoire:
more peptides presented would mean more T cells would be
deleted, but since TCR signal depends on the number of peptide-
MHC complexes, lower class I expression would mean fewer T
cells would be deleted (9, 45). If true, the expression level would be
the important property, since it would mirror the need for an
effective T cell repertoire.

What makes this inverse correlation so interesting is the
association with resistance and susceptibility to economically-
important pathogens. A correlation with low cell surface
expression was first noticed for resistance to the tumours arising
from the oncogenic herpesvirus that causes Marek’s disease, and
later understood to correlate with a wide peptide repertoire (9, 36–
38). Important caveats include the fact that the association of the B
locus with resistance to Marek’s disease, while still true for
experimental lines, have not been found for current commercial
chickens (46–48); an explanation may be the fact that poultry
breeders have strongly enriched for low expressing class I alleles in
their flocks so that the MHC no longer has a differential effect (C.
Tregaskes, R.Martin and J.Kaufman,unpublished).Another caveat
may be that there are various measures of the progress of Marek’s
disease, and the BF-BL region correlations may not be the same for
all of them. A third caveat is that the BF-BL region is composed of
strongly-linked genes, so that the gene (or genes) responsible for
resistance are not yet definitively identified; an example is the
evidence for the effect of the BG1 gene (49). An important
counter to these caveats is that there is evidence that MHC
haplotypes with low-expressing class I alleles confer resistance to
other infectious viral diseases, including Rous sarcoma, infectious
bronchitis and avian influenza (9, 50–52). Importantly, there is little
recognized evidence that the high expressing alleles provide
important immune benefit to chickens.
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PROMISCUOUS AND FASTIDIOUS MHC
MOLECULES IN HUMANS: GENERALISTS
AND SPECIALISTS

Having clear evidence of the inverse correlation of cell surface
expression level with peptide repertoire of chicken BF2 alleles
and infectious disease resistance, it was natural to ask whether
these relationships are fundamental properties of class I
molecules, as opposed to some special feature of chicken class I
molecules. Such evidence for human HLA-A and B alleles with
hints towards potential mechanisms was not hard to find.

Progression of human immunodeficiency virus (HIV)
infection to frank acquired immunodeficiency disease syndrome
(AIDS) is one of the best examples for an association of infectious
disease with the human MHC. Some HLA alleles lead to fast
progression and death, while others result in very slow
progression, for which the individuals can be called elite
controllers (53, 54). The number of peptides from the human
proteome predicted to bind four HLA-B alleles was compared to
odds ratio for AIDS, finding that the most fastidious alleles were
the most protective. Although the correlation with disease
resistance was the reverse of what was found for chickens (45),
flow cytometric analyses of these four alleles on ex vivo blood
lymphoid and myeloid cells showed that these human class I
molecules had the same inverse correlation between peptide
repertoire and cell surface expression as in chickens (38).

A mechanism of resistance by such elite controlling HLA-B
alleles has been reported: the presentation of particular HIV
peptides to CTLs which the virus can mutate to escape the
immune response, but only at the cost of much reduced viral
fitness. For such alleles, the virus is caught between a rock and a
hard place (55, 56). The protection to the human host afforded by
binding and presenting such special peptides led to a hypothesis (9,
38), in which the promiscuous class I alleles act as generalists,
providing protection against many common and slowly evolving
pathogens (as in chickens), while the fastidious alleles act as
specialists, with particular alleles providing protection against a
given new and quickly evolving pathogen (as in humans). There are
Frontiers in Immunology | www.frontiersin.org 5
some caveats to this story. One is that the predictions are only a
reflection of reality, based on benchmarking the predictions made
by such algorithms against experimental data from
immunopeptidomics (57). Another is that other explanations are
possible; a study calculating the number of peptides predicted for
class II alleles concluded that promiscuous alleles would appear
based on the number of pathogens in particular environments (58).

Another study determined the number of peptides from
dengue virus predicted to bind 27 common HLA-A and -B
alleles, concluding that there is a wide variation in peptide
repertoire that is inversely correlated with stability (59), similar
to what was found for chicken class I molecules. Three of the four
HLA-B alleles analyzed in the human proteome study were also
analyzed in this dengue study and followed the same hierarchy
(Figure 2). Interestingly, more HLA-B alleles were found at the
fastidious end of the spectrum and more HLA-A alleles were
found at the promiscuous end, particularly HLA-A2 variants. It
would appear that HLA-A and B alleles have a range of peptide
repertoires but perhaps not as wide as in chickens. The fastidious
chicken class I molecules typically have three fastidious anchor
residues compared to two for human class I molecules, while the
promiscuous HLA-A2 variants each allow two or three
hydrophobic amino acids compared to five or more for
BF2*002:01. Unlike chicken MHC-I molecules, peptide
overhangs from human MHC-I molecules are relatively rare
and require major re-adjustments of peptide-binding site, such
as movement of a-helices that line the groove (60, 61), so this is
not likely to be a general mechanism for promiscuity in humans.
MECHANISMS FOR ESTABLISHING
PEPTIDE REPERTOIRES IN HUMAN
CLASS I MOLECULES

The question arises whether the peptide motif determines the
peptide repertoire for human class I molecules, given that the
APP genes for human class I molecules are more-or-less
functionally monomorphic so that all class I alleles will get a
FIGURE 2 | The predictive peptide repertoires for 27 common HLA-A and -B alleles [from (59), Copyright 2013. The American Association of Immunologists, Inc.]
compared to the supertypes of these alleles [from (8)] show that the peptide motifs do not correlate well with peptide repertoire for some supertypes.
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wide and promiscuous set of peptides and peptide editing. As
mentioned above, supertypes of MHC-I molecules have been
defined based on shared peptide motifs and on amino acids
lining the pockets of peptide binding sites (8). A comparison of
the peptide repertoires presented in the Dengue study (59) with
such supertypes (Figure 2) shows that some peptide motifs
correlate well with peptide repertoire (for example A2, A3,
etc); for example, the alleles falling within the A2 supertype are
all found at the promiscuous end of the repertoire. However,
alleles from other supertypes (for example A1, A24, and B7), are
found across the spectrum of repertoires. Thus peptide motifs do
not equate with peptide repertoires, giving the possibility of
discriminating between the two designations in terms of
contribution towards disease.

A study on the dependence of cell surface expression of HLA-B
alleles on TAPBP (also known as tapasin) may give a clue as to the
discrepancy between peptide motif and peptide repertoire (62).
There are many reports of particular pairs of alleles varying in
TAPBP-dependence, and positions in thea2 anda3 domains have
been identified that affect this dependence. A hierarchy of
dependence was described for 27 HLA-B alleles (63), and a rough
correlation with the hierarchy of peptide repertoire was found:
fastidious alleles were by-and-large more dependent of TAPBP for
cell surface expression,while promiscuous alleleswere not (9). Such
dependence would fit with the stability of class I molecules
mentioned above: Peptide editing by TAPBP leads to the
fastidious class I molecules retaining only the peptides that have
the highest affinity, while promiscuous class Imoleculeswould bind
and move to the cell surface with any peptide with a minimal
affinity.Moreover, the authors concluded that tapasin-independent
alleles were linked tomore rapid progression fromHIV infection to
death from AIDS (63).

Interestingly, this dependence of TAPBP correlated with the
ease of refolding with peptides in vitro (in the absence of
TAPBP), with both human and chicken promiscuous alleles
refolding more easily (38, 62). Whether chicken class I alleles
have the same dependence in vivo is not yet clear, since TAPBP is
highly polymorphic, with the TAPBP and BF2 alleles in each
haplotype likely to have co-evolved (64).
HLA-C AND BF1: FLIES IN THE
OINTMENT?

The fact that there are relationships of cell surface expression,
peptide repertoire and resistance to infectiondiseaseboth forBF2 in
chickens and forHLA-A and -B in humans suggested that these are
fundamental properties of MHC-I molecules. However, the
evidence for HLA-C in humans and BF1 in chickens, which have
some intriguing similarities,maynotfit this emergingparadigm(9).

HLA-C is the result of an ancient gene duplication of HLA-B,
but the two differ in several important ways (22, 23). Both HLA-
B and -C molecules are polymorphic, are up-regulated upon
inflammation, and bind and present peptides to ab T cells.
However, HLA-B molecules are expressed at the RNA, protein
and cell surface levels as well as HLA-A molecules. HLA-B
Frontiers in Immunology | www.frontiersin.org 6
molecules are major CTL ligands on virally-infected cells, but
some alleles carrying the Bw4 epitope on the a1 helix of the
peptide-binding domain are also recognized by NKRs,
specifically the killer immunoglobulin receptors with three
extracellular domains (3D KIRs).

In contrast, HLA-Cmolecules are expressed at a low RNA level
andare foundat about10%of the level ofHLA-Aor-Bmoleculeson
the surfaces of cellswhere all three loci are expressed.However, they
are also expressedonextravillous trophoblasts (EVT) in the absence
ofHLA-Aand -Bmolecules.HLA-Calleles are known as important
NKR ligands, by carrying eitherC1orC2epitopes on thea1helix of
the peptide-binding domain, which are recognized by
different KIRs with two extracellular domains (2D KIRs).
Moreover, different HLA-C alleles have different RNA and
cell surface protein levels, for which those with higher expression
are correlated with slow progression from HIV infection to AIDs,
and with some evidence to suggest that this correlation is due to
recognition by CTLs (65, 66). There have been no experiments
reported to explicitly test the relationship of peptide repertoire and
cell surface expression of HLA-C alleles, but the determination of
cell surface expression has been reported to be very complex,
including effects of promoters, miRNA, assembly, stability and
peptide-binding specificity (67).

Much less is known about the chicken BF1 gene, but it has some
similarities to the HLA-C. BF1 molecules are expressed at a much
lower level than BF2 molecules, at the level of RNA, protein and
antigenic peptide (32, 33). There are far fewer alleles of BF1 than
BF2,with ten-fold less BF1RNA found inmost haplotypes andwith
some haplotypes missing a BF1 gene altogether peptide (32, 33).
BF1 is also thought to be primarily an NKR ligand (34), and most
BF1 alleles carry a C1 motif on the a1 helix of the peptide-binding
domain (68, 69). Examination of sequences suggests that most BF1
alleles have similar peptide-binding grooves, with the few examples
ofother sequences likely tohavebeendue to sequence contributions
from the BF2 locus (C. Tregaskes, R. Martin and J. Kaufman,
unpublished). An unsolved question is how BF1 alleles interact
effectively with the highly polymorphic TAP andTAPBP alleles, for
instance accommodating the very different peptides from
translocated by TAPs in different haplotypes. Perhaps the typical
BF1 molecule is highly promiscuous, but there are few data for
either peptide repertoire or cell surface expression among
BF1 alleles.
THE OTHER SIDE OF THE COIN:
RECEPTORS ON NATURAL KILLER CELLS

An enormous body of scientific literature describes the very
complex evolution, structure and function of NKRs and NK cells
in primates and mice (2, 70, 71). Two kinds of NKRs are found in
humans, lectin-like receptors found in the natural killer complex
(NKC) and the KIRs in the leukocyte receptor complex (LRC). The
KIRs are a highly polymorphicmultigene family with copy number
variation, and share the human LRC with other immunoglobulin-
like receptors, including leukocyte immunoglobulin-like receptors
(LILRs) and a single receptor for antibodies (Fcm/aR or CD351).
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Someof these transmembrane receptors have cytoplasmic tails with
immune-tyrosine inhibitory motifs (ITIMs), others have basic
residues in the transmembrane region which allow association
with signaling chains bearing immune-tyrosine activating motifs
(ITAMs), and a few have both. The polymorphic NKRs interact
with polymorphicMHC-Imolecules, 2DKIRswithHLA-Cand3D
KIRs with certain HLA-A andHLA-B alleles. As mentioned above,
the interactions of the particular alleles present in LRC and MHC,
which are on different chromosomes, lead to differing outcomes,
which read out as genetic epistasis with effects on immunity,
autoimmunity and reproduction.

In chickens, almost all of the known immunoglobulin-like
receptors related to KIRs are found on a single microchromosome,
different from the one on which is found the MHC (72, 73). These
chicken immunoglobulin-like receptors (ChIRs) include those
with activating, inhibitory and both motifs (ChIR-A, -B, and
-AB), and 1D, 2D, and 4D extracellular regions. Sequencing
studies suggest there can be haplotypes with few ChIR genes in
common, suggesting both copy number variation and
polymorphism (74–76). However, a gene typing method for 1D
domains suggested relatively stable haplotypes, with only some
examples of recombination during matings (77). The only
molecules that have clear functions are many ChIR-AB
molecules that bind IgY, the antibody isotype that acts
somewhat like IgG in mammals (78–80). It seems very likely
that there are both activating and inhibitory NKRs among these
ChIRs, but thus far no data for NKR function. Whether such
putative NKRs recognize BF1, BF2, or both is as yet unknown, and
whether there is epistasis between the ChIR and MHC
microchromosomes is untested.

Among the lectin-like NKR genes located in the NKC in humans
and mice are one or more NKR-P1 genes (also known as NK1.1,
KRLB1, or CD161) paired with the lectin-like ligands (LLT1 in
humans and Clr in mice). In chickens, there are only two lectin-
like genes located in the region syntenic to the NKC, and neither of
those appears to encode NKRs; one is expressed mainly in
thrombocytes (81, 82). However, there is a pair of NKR-P1/ligand
genes in the chicken MHC (25, 83), known as BNK (sometimes
identified as Blec1) and Blec (sometimes identified as Blec2). The
receptor encoded by the highly polymorphic BNKgenewas assumed
to interactwith thenearlymonomorphicBlec gene, but a reporter cell
line with one BNK allele was found not to respond to BF1, BF2 or
Blec, but to spleen cells bearing a trypsin sensitive ligand (84, 85). A
trypsin-sensitive ligand on a particular chicken cell line was found to
reproduce the result with the reporter cells, but the nature of that
ligandremainsunknown(E.K.Meziane,B.Viertlboeck,T.Göbel and
J.Kaufman, unpublished). Possibilities include other lectin-like genes
in the BG region or the Y region of the MHC microchromosome
(28, 86).

The effect of peptide repertoire of class I molecules on NK
recognition has not carefully examined in either humans or
chickens, but some speculations may be worth considering. A
wider peptide repertoire may increase the number (although
unlikely the proportion) of peptides with appropriate amino acids
to affect binding to KIRs and ChIRs, both at the level of response
and potentially at the level of education (licensing or tuning),
Frontiers in Immunology | www.frontiersin.org 7
including the recently described phenomenon of cis-tuning (87).
However, the increase in breadth of peptide repertoire may be
balanced by the decrease of cell surface expression of the class I
molecules, which may mean that peptide repertoire may not exert
an enormous effect on inhibitory NK responses. In contrast, any
increase in peptide repertoire may allow additional pathogen
peptides to be recognized by activating NKRs. A special
consideration are C-terminal overhangs, which may be
particularly frequent in at least some alleles of chicken class I
molecules. Such C-terminal overhangs in human class II molecules
can directly affect T cell recognition (44), so it is possible that NKR
interactions could also be affected.
CONCLUSIONS

The simplicity of the chicken MHC has allowed discoveries of
phenomena that were harder to discern from analysis of the
more complicated MHC of humans and mice (such as the
existence of promiscuous and fastidious MHC-I alleles), but
comparison between the immune systems of chickens and
mammals has been fruitful (as in the development of the
generalist-specialist hypothesis). For human MHC-I molecules,
peptide motifs (as identified by supertypes) can be separated
from peptide repertoire (as defined thus far by peptide
prediction), but their impact on NKR recognition has not been
tested. Moreover, careful analysis of Pc-1 and Pc-2 residues in
promiscuous versus fastidious alleles with respect to peptide
repertoire has not yet been carried for either humans or chickens.
Given that the most basic understanding of NKR recognition in
chickens has yet to gained, the importance of C-terminal peptide
overhang from chicken MHC-I alleles for NKR recognition or
NK function has not yet been assessed. Thus, it is clear that there
is much work to do to understand NK cell function in chickens,
and how that function relates to what is known in typical
mammals including humans and mice.
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