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The application of deep learning in the medical field has continuously made huge

breakthroughs in recent years. Based on convolutional neural network (CNN), the

U-Net framework has become the benchmark of the medical image segmentation task.

However, this framework cannot fully learn global information and remote semantic

information. The transformer structure has been demonstrated to capture global

information relatively better than the U-Net, but the ability to learn local information is

not as good as CNN. Therefore, we propose a novel network referred to as the O-Net,

which combines the advantages of CNN and transformer to fully use both the global

and the local information for improving medical image segmentation and classification.

In the encoder part of our proposed O-Net framework, we combine the CNN and the

Swin Transformer to acquire both global and local contextual features. In the decoder

part, the results of the Swin Transformer and the CNN blocks are fused to get the

final results. We have evaluated the proposed network on the synapse multi-organ CT

dataset and the ISIC 2017 challenge dataset for the segmentation task. The classification

network is simultaneously trained by using the encoder weights of the segmentation

network. The experimental results show that our proposed O-Net achieves superior

segmentation performance than state-of-the-art approaches, and the segmentation

results are beneficial for improving the accuracy of the classification task. The codes

and models of this study are available at https://github.com/ortonwang/O-Net.

Keywords: CNN, transformer, medical image segmentation, deep learning, classification

1. INTRODUCTION

Image enhancement has been extensively performed on medical images based on morphology,
such as clustering (Vasuda and Satheesh, 1713), edge detection (Patil and Deore, 2013), and
threshold segmentation (Wang et al., 2015) to assist doctors in diagnosis in the early days. With
the development of artificial intelligence, deep learning technology has been widely used in medical
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image processing and analysis in recent years, and the accuracy
of segmentation and classification on medical images is of
great significance to the diagnosis of diseases today. In clinical
practice, accurate image segmentation can provide clinicians
with quantitative information, which can help clinicians make
diagnostic decisions more precisely and efficiently (Liang et al.,
2020). In addition, the additional information provided by
computing methods is subjective and can avoid the objective bias
by humans.

Nowadays, Convolutional Neural Network (CNN), especially
Full Convolutional Network (FCN) is an effective segmentation
method (Wang et al., 2021b) and it has been widely used
in dense classification tasks such as semantic segmentation
(Ji et al., 2020). Among different CNN networks, U-Net
(Ronneberger et al., 2015) is a deep learning network with
encoder and decoder structures, which has been widely used
in medical image segmentation. In recent years, it has been
widely used in medical image segmentation tasks due to its
strong generalization. U-Net and its variants UNet++ (Zhou
et al., 2018), UNet 3+ (Huang et al., 2020), CE-Net (Gu
et al., 2019) have shown excellent performance in tasks, such
as lesion segmentation, heart segmentation, and other organ
segmentation. Based on the strong ability of learning and
discriminating features, Res-UNet (Xiao et al., 2018) improves
the performance of the network by introducing a residual
network into the encoder part of U-Net. EfficientNet (Tan and
Le, 2019) proposed a new scaling method that uniformly all
dimensions of the depth, width, and resolution of the network
through simple but efficient composite coefficients, which not
only reduces a certain amount of calculation, but also improves
the segmentation performance. Many experimental results have
shown that the use of EfficientNet as an encoder can often further
improve the performance of the network without increasing the
amount of calculation.

However, these networks are faced with the common problem
of CNN: it is difficult for CNN-based methods to learn the
global and remote semantic information interaction (Chen et al.,
2021) clearly. This is due to the fact that CNN extracts features
with a convolutional process. Some studies tried to use image
feature pyramid (Lin et al., 2017), atrous convolution layers
(Chen et al., 2017, 2018; Gu et al., 2019), and self-attention
mechanisms (Wang et al., 2018; Schlemper et al., 2019) to
solve this problem. However, the global and remote semantic
information is not fully learnt using these strategies. Inspired by
the great success of transformer (Vaswani et al., 2017) in the field
of natural language processing (NLP), researchers have tried to
introduce transformer to make up for the shortcomings of CNN
in global and remote information interaction. A transformer is
an attention-based model and self-attention mechanism (SA) is
a key component of transformer. It can model the correlation
of all input tags which makes room for the transformer to deal
with long-range dependencies. In Dosovitskiy et al. (2020), vision
transformer (ViT) was applied to perform image recognition
tasks and achieved relatively good results. After that, a novel
framework called Swin Transformer (Liu et al., 2021) was
proposed and significantly improved the performance of ViT
in different tasks, such as image classification (Liu et al., 2021),

object detection (Xu et al., 2021), and semantic segmentation (Xie
et al., 2021). Based on the Swin Transformer, Cao et al. (2021)
proposed Swin-Unet, which combined the U-Net structure
and Swin Transformer for medical image segmentation, the
encoding part and the decoding part in Swin-Unet were both
performed using Swin Transformer. With the proposal of these
methods, the accuracy of segmentation tasks is further improved.
However, the input in transformer is formed as one-dimensional
sequence. The transformer networks focus on learning the
global contextual information, but may lose some local details.
Therefore, it is beneficial to combine the global information
learnt by transformer and the local information by CNN to enrich
the learnt features.

Based on the advantages of CNN and transformer, we
propose an O-Net framework to combine the CNN and
the transformer to learn both global and local contextual
features. We combine the CNN and Swin Transformer as
encoder first and send them into a CNN-based decoder and
a Swin Transformer-based decoder, respectively. The results of
two decoders are fused to get the final result. This network
combines the advantages of CNN and transformer and may
improve the performance of medical image segmentation.
Our experimental results have shown that the performance
of the network can be significantly improved by combining
CNN and transformer. In addition, a classification task is
simultaneously performed based on the O-Net. Experiments
show that the segmentation results are beneficial for improving
the accuracy of the classification task. Experiments on the
synapse multi-organ segmentation dataset and the ISIC2017 skin
lesion challenge dataset have demonstrated the superiority of
our method compared to other state-of-the-art segmentation
methods. In addition, based on the segmentation network,
the performance of the classification network has also been
greatly improved.

2. RELATED WORKS

CNN-based methods: CNN is a kind of feedforward neural
network that includes convolution calculations and has a deep
structure. It is one of the representative algorithms of deep
learning. Lenet[18] first defined the CNN network structure in
1998, and it was not until the publication of AlexNet (Krizhevsky
et al., 2012) in 2012 that CNN has gradually become mainstream.
Since then, lots of efficient and deep convolutional neural
networks have been proposed. For example, VGG (Simonyan and
Zisserman, 2014), ResNet (He et al., 2016), DenseNet (Huang
et al., 2017), GoogleNet (Szegedy et al., 2015), HRNet (Sun
et al., 2019), Inception v3 (Szegedy et al., 2016), and EfficientNet
(Tan and Le, 2019). These networks perform well in various
applications. In addition to these network innovations, new
convolutional layers such as deformable convolution (Dai et al.,
2017; Zhu et al., 2019) and depth-wise convolution (Xie et al.,
2017) were proposed for different tasks. With the development
of CNN, U-Net was proposed and widely used in segmentation
tasks because of its simple structure, good effects, and strong
generalization. After that, various U-shape network based U-Net
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have been proposed such as U-SegNet (Kumar et al., 2018), Res-
UNet (Xiao et al., 2018), Dense-UNet (Li et al., 2018), U-Net++
(Zhou et al., 2018), U-2-Net (Qin et al., 2020), and UNet3+
(Huang et al., 2020) CE-Net (Gu et al., 2019). Gehlot et al. (2020)
proposed an Encoder-Decoder based CNN with Nested-Feature
Concatenation (EDNFC-Net) for automatic segmentation. Some
networks introduce novel structures in the encoder part while
others in the decoder part. Because of the strong generalization
of the network, the U-shaped architecture network has also been
extended to 3D medical image segmentation, such as 3D-UNet
(Çiçek et al., 2016) and V-Net (Milletari et al., 2016). Moreover,
Gehlot et al. proposed AION (Gehlot and Gupta, 2021), an
architecture with two coupled networks and classification heads
which is applicable for stain normalization, classification, and
segmentation tasks.

Transformers: Transformer was first proposed for machine
translation and achieved the best performance in many NLP
tasks. To combine computer vision (CV) and natural language
processing (NLP) domain knowledge, researchers developed
Vision Transformer (ViT) (Dosovitskiy et al., 2020) by directly
applying transformers with global self-focus to full-size images.
The ViT model achieved both high efficiency and accuracy
in image recognition tasks. Based on ViT, Chen et al.
(2021) proposed the first transformer-based medical image
segmentation framework TransUNet which further improved the
accuracy of image segmentation tasks. However, ViT needs to be
pre-trained on its large datasets to achieve good performance.
To solve this problem, some training schemes were designed in
Deit (Touvron et al., 2021) so that the algorithm can perform
well on smaller data sets. To further improve the accuracy, a new
vision transformer called Swin Transformer (Liu et al., 2021) was
proposed, it is a hierarchical transformer whose representation is
computed with Shifted windows. This hierarchical architecture
has the flexibility of modeling at various scales and has linear
computational complexity relative to the image size. These
features make it compatible with many vision tasks, including
image classification and semantic segmentation. Based on Swin
Transformer, Cao et al. (2021) proposed a pure transformer U-
shaped encoder-decoder network named Swin-Unet for medical
image segmentation, which has relatively good performance in
some datasets.

Self-attention/transformer combined with CNN: In recent
years, researchers have tried to improve the performance of the
network through the self-attention mechanism (Wang et al.,
2018) to overcome the shortcomings of CNN learning global
semantic information. In Schlemper et al. (2019), the skip-
connections with additive attention gate were integrated with
U-shaped architecture to improve medical image segmentation.
But this is still the method based on CNN after all and it
has not completely solved the limitation of learning global
information. Several studies have been carried out to combine
CNN and transformer. TransUNet (Chen et al., 2021) was
proposed by combining the advantages of transformer and CNN.
The transformer encodes image patches from a CNN feature
map as the input sequence for extracting global contexts. A
mixed transformer module (MTM) (Wang et al., 2021a) was
proposed for simultaneous inter- and intra- affinities learning.

TransFuse (Zhang et al., 2021) combines transformers and CNNs
in a parallel style to capture both global dependency and low-level
spatial details efficiently in a much shallower manner for medical
image segmentations. Liang et al. (2022) proposed transconver
with a parallel module named transformer-convolution inception
which extracts local and global information via convolution
blocks and transformer blocks, respectively. TransMed (Dai et al.,
2021) was proposed for multi-modal medical image classification
which combines the advantages of CNN and transformer to
extract low-level features of images efficiently and establish
long-range dependencies between modalities. These algorithms
improve the global attention of the model based on their
complementarity by directly combining CNN and transformer.

3. THE PROPOSED METHOD

3.1. Overall Architecture Design
A schematic view of the proposed O-Net is presented in Figure 1.
O-Net is composed of two parts: an encoder module and a
decoder module. The basic units of O-Net include the Swin
Transformer block, EfficientNet block, and CNN Decoder block.
During the segmentation task, the encoder module extracts the
features of the input image to obtain the high-dimensional and
low-dimensional features, which are then decoded back to the
full spatial resolution by the decoder module. After extracting
the features in the encoder part, the segmentation network
provided an interface to integrate a classification network for
simultaneously performing the classification task. Each module
is described in detail below.

3.2. Swin Transformer Block
Different from the transformer, Swin Transformer is built based
on shifted windows rather than the standard multi-head self
attention (MSA) module. Two consecutive Swin Transformer
blocks are presented in Figure 2. Each Swin Transformer block
consists of residual connection and 2-layer MLP with Gaussian
Error Linear Units (GELU) non-linearity, LayerNorm (LN) layer,
and multi-head self attention module. The shifted window-
based multi-head self attention (SW-MSA) module and the
window-based multi-head self attention (W-MSA) module are
applied in the two successive transformer blocks, respectively.
Based on such a window partitioning approach, successive Swin
Transformer blocks can be formulated as follows:

ẑl = W −MSA(LN(zl−1))+ zl−1, (1)

zl = MLP(LN(ẑl))+ ẑl, (2)

zl+1 = SW −MSA(LN(zl))+ zl, (3)

zl+1 = MLP(LN(zl+1))+ zl+1, (4)

Where zl and ẑl represent the output features of the (S)W-MSA
module and theMLPmodule of the lth block, respectively. Similar
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FIGURE 1 | The architecture of our proposed O-Net.

FIGURE 2 | Two successive Swin Transformer block.

to the previous works (Hu et al., 2018, 2019), self-attention is
computed as follows:

Attention(Q,K,V) = SoftMax(
QKT

√
d

+ B)V , (5)

where Q,K,V ∈ R
M2×d denote the query, key, and value

matrices. M2 represents the number of patches in a window, and
d is the query dimension. Since the relative position along each
axis is within the range[−M+1, M−1], the values in B are taken
from the bias matrix B̂ ∈ R

(2M−1)×2M+1.

3.3. EfficientNet Block
EfficientNet block (Tan and Le, 2019) was proposed based on a
neural structure search. This block uses composite coefficients to

uniformly scale the depth, width, and resolution of the network.
A schematic view of the EfficientNet block is presented in
Figure 3. Each EfficientNet block is composed of MBConvBlocks
(Sandler et al., 2018) which consists of convolution, batch
normalization, and Swish activation layers. The network achieves
better performance with the same parameters by uniformly
scaling the network width, depth, or resolution in a fixed
proportion.We employ the EfficientNet block as the encoder part
of CNN to extract features efficiently and effectively.

3.4. Encoder Module
In the encoder part, we combine EfficientNet and Swin
Transformer. For the Swin Transformer Encoder, it is composed
of Swin Transformer Block and patch merging layer. Images
are separated into non-overlapping patches with a patch size of
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FIGURE 3 | The architecture of EfficientNet Block.

FIGURE 4 | The architecture of decoder module.

4×4 to transform the inputs into sequence embeddings, then
concatenated together by the patch merging layer. The feature
resolution will be down-sampled by 2× after such processing,
and the feature dimension of each patch becomes to 4×4×3 =
48. Furthermore, a linear embedding layer is applied to project
feature dimension into an arbitrary dimension (represented as
C). The transformed patch tokens pass through several Swin
Transformer blocks and patch merging layers to generate the
hierarchical feature representations.

For the EfficientNet encoder, the input image is convoluted
and down-sampled first. Feature extraction is carried out
through the EfficientNet block which uniformly scales the
depth, width, and resolution of the network through composite
coefficients. We can achieve relatively efficient feature extraction
with only a small amount of computation using this module.
Since the feature dimensions of two encoders are different, it
is required to normalize the dimension before fusing them.
The features extracted by the Swin Transformer are set to
C×H×W using a linear projection. After that, the features
are fused with the features extracted by the EfficientNet
block via skip-connections. Similarly, when using the Swin
Transformer decoder, we project the features extracted by

the EfficientNet block through the linear embedding layer
and fuse them with the features extracted by the Swin
Transformer encoder.

3.5. Decoder Module
The decoder module is adopted to restore the high-level semantic
features extracted from the encoder module. The decoder part
consists of the Swin Transformer decoder block and the CNN
decoder block. A schematic view of the decoder modules is
presented in Figure 4. The Swin decoder block is composed of
a patch expanding layer and a Swin Transformer block. The
features extracted by the encoder are multi-scale fused through
skip-connections. The patch expanding layer reshapes feature
maps of adjacent dimensions into large feature maps with 2×
up-sampling of resolution. In the end, the last patch expanding
layer is used to perform 4× up-sampling to restore the resolution
of the feature maps to the input resolution (W×H), and a linear
projection layer is applied on these up-sampled features to output
the pixel-level segmentation predictions.

The CNN decoder block is composed of a 2× upsampling
operator, two 3×3 convolution layers, and a batch normalization
layer with a Rectified Linear Units(ReLU) layer. Simple
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upsampling and convolution are two common operations of the
decoder in the CNN decoder blocks. After the 2× upsampling
operator, the features were fused with those from encoders
through skip-connection. After the two convolution processes,
the features are input for the next decoder. At the end of the
decoder, a convolution layer is applied to output the pixel-
level segmentation predictions. Finally, the outputs of the two
decoders are fused to obtain the final segmentation result.

3.6. Classification Method
The encoder part of the segmentation network and the
classification network share the same structure. When encoders
perform the classification task, the role of encoders is to
extract contextual features and locate the target region like
the segmentation task. The primary task of classification aims
to accurately locate the target area, and the purpose of the
segmentation network is to realize it. Therefore, after the
training of the segmentation network, we use the learned weights
of the encoder in the network as the initial parameters of
the classification network. After that, we utilize the features
of the lowest dimension in the encoder through the average
pooling layer and a fully connected layer (FC) to perform the
classification task.

4. EXPERIMENTS

4.1. Datasets
Synapse multi-organ segmentation dataset (synapse): The
dataset includes 30 abdominal CT scans from MICCAI 2015
Multi-Atlas Abdomen Labeling Challenge. Each CT volume
consists of 85−198 slices of 512×512 pixels and there are 3,779
axial abdominal clinical CT images in total. Following Chen et al.
(2021) and Liu et al. (2021), 18 samples were used as the training
set and 12 samples as the testing set. The annotation of each
image includes 8 abdominal organs (aorta, gallbladder, spleen,
left kidney, right kidney, liver, pancreas, spleen, and stomach).
The dice metric and the average Hausdorff Distance (HD) are
used to evaluate our method on this dataset. The dice metric
evaluates the degree of pixel overlap between the ground truth
and prediction results and it is calculated as follows:

Dice = 2× TP

2× TP + FN + FP
(6)

where TP, FP, and FN refer to the number of true positives,
false positives, and false negatives, respectively, besides, TN
means true negatives. The HD calculates the maximum distance
between the contours of the ground truth and predicted results,
which can be formulated as follows:

H(A,B) = max(h(A,B), h(B,A) (7)

h(A,B) = max
a∈A

{

min
b∈B

{

‖a− b‖
}

}

(8)

h(B,A) = max
b∈B

{

min
a∈A

{

‖b− a‖
}

}

(9)

where A and B denote the contours of the ground truth
and predicted results, respectively, and h(A,B) denotes the
unidirectional HD from A to B.
ISIC2017 skin lesion challenge dataset (ISIC2017): The 2017
International Skin Imaging Collaboration (ISIC) skin lesion
segmentation challenge dataset (Codella et al., 2018) includes
2,000 training images, 150 validation images, and 600 test
dermoscopic images. Each image is paired with an expert manual
tracing of skin lesion boundaries for the segmentation task and
the lesion gold standard diagnosis (i.e., nevus, melanoma, and
seborrheic keratosis) for the classification task. The size of the
images in the dataset varies from 453×679 to 4499×6748 pixels.
We used Dice, Mean Intersection over Union (IoU), Precision
(Pre), Recall, F1-score, and Pixel Accuracy (PA) as the metrics
to evaluate the accuracy of the segmentation work. In addition,
we used Accuracy (AC), F1-score, precision (Pre), and specificity
(SP) as themetrics to evaluate the classification task. Thesemetric
are calculated as follows:

IoU = TP

TP + FN + FP
(10)

Pre = TP

TP + FP
(11)

PA = TP + TN

TP + TN + FP + FN
(12)

AC = TP + TF

TP + TN + FP + FN
(13)

F1− score = 2× TP

2× TP + FP + FN
(14)

4.2. Implementation Details
Our method was implemented based on the Pytorch Deep
Learning framework using python. For all training cases, flips
and rotations were used as data augmentation to improve the
generalization ability of the model. We trained our model on an
Nvidia RTX 3090 GPU with 24GBmemory. The input image size
was set to 224×224 on the synapse dataset and 512×512 on the
ISIC2017 dataset. The patch on the size was set to 4 in both tasks.
All encoders and Swin Transformer blocks in the model were
pretrained on ImageNet (Deng et al., 2009). During the training
process of the synapse dataset, the batch size was set to 24 and the
popular SGD optimizer with momentum of 0.9 and weight decay
of 1e-4 and a learning rate of 1e-4 is used for the backpropagation
of the model. During the process of ISIC2017 dataset, the models
were optimized by AdamW with a learning rate of 1e-4 and a
batch size of 8.

4.3. Experiment Results on the Synapse
Dataset
The comparison of the proposed O-Net with previous state-
of-the-art methods on the synapse multi-organ CT dataset is
presented in Table 1. Experimental results demonstrate that our
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TABLE 1 | Experimental results of different methods on the synapse multi-organ CT dataset.

Method Dice↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

V-Net Milletari et al. (2016) 68.81 – 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

DARR Fu et al. (2020) 69.77 – 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

R50 ViT Chen et al. (2021) 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

U-SegNet Kumar et al. (2018) 72.61 43.94 85.69 64.33 75.12 66.41 91.72 50.59 84.07 62.96

R50 U-Net Chen et al. (2021) 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16

AION Gehlot and Gupta (2021) 75.54 32.27 87.59 58.74 82.47 73.45 93.47 49.44 87.52 71.61

R50 Att-UNet Chen et al. (2021) 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

U-Net Ronneberger et al. (2015) 76.85 39.7 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

EDNFC-Net Gehlot et al. (2020) 77.21 35.07 86.08 62.47 84.31 78.27 92.61 57.31 85.36 71.24

TransUNet Chen et al. (2021) 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

Att-UNet Oktay et al. (2018) 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

TransFuse Zhang et al. (2021) 78.95 26.59 87.09 61.64 82.20 76.91 94.19 59.01 89.86 80.73

Swin-Unet Cao et al. (2021) 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

O-Net 80.61 21.04 88.36 67.45 84.44 77.13 95.24 61.52 90.03 80.74

The symbol ↑ means the higher value, the better.

The symbol ↓ means the lower value, the better.

Bold font to highlight the optimal values.

FIGURE 5 | Conparision of different methods on the Synapse multi-organ dataset by visualization. From left to right: (A) Ground Truth, (B) O-Net, (C) SwinUNet, (D)

TransUNet, and (E) R50 AttUNet.

algorithm achieves the best performance with a segmentation
accuracy of 80.61% (Dice↑) and 21.04 (HD↓) performance. We
can see from the results that the CNN-based method performs

worse on edge predictions than the transformer method from
the metric of HD. This also indicates that our algorithm not
only performs better in terms of segmentation, but also has
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TABLE 2 | Segmentation results of different methods on the ISIC2017 dataset.

Method Dice mIoU Pre recall F1-score PA

U-Net Ronneberger et al. (2015) 85.22 78.40 91.17 73.98 77.80 91.19

R50-U-Net Xiao et al. (2018) 87.48 80.86 92.99 78.19 81.70 92.19

U-SegNet Kumar et al. (2018) 87.87 81.22 90.50 81.13 82.49 92.33

ENDFC-Net Gehlot et al. (2020) 88.00 81.43 90.26 82.10 82.80 92.29

M-Net Fu et al. (2018) 88.33 82.25 94.46 79.04 83.38 92.67

AION Gehlot and Gupta (2021) 88.84 82.56 92.26 81.95 84.02 92.88

CE-Net Gu et al. (2019) 89.64 83.56 95.40 80.47 84.99 93.67

Swin-Unet Cao et al. (2021) 88.77 82.69 94.64 79.16 83.51 94.04

TransFuse Zhang et al. (2021) 89.63 83.78 95.56 80.35 84.75 93.73

TransUNet Chen et al. (2021) 89.99 84.21 95.59 81.21 85.42 93.97

O-Net 90.30 84.52 95.65 81.72 85.89 94.09

Bold font to highlight the optimal values.

TABLE 3 | Classification accuracy of different methods on the ISIC2017 dataset.

Average Nevus classification

Method AC AC F1-score Pre SP

Swin Transformer Liu et al. (2021) 80.22 89.50 81.18 62.16 91.76

AION Gehlot and Gupta (2021) 81.55 85.33 76.01 50.74 86.86

TransMed Dai et al. (2021) 84.11 89.19 80.10 61.90 92.16

MobileNetV3 Howard et al. (2019) 84.89 89.33 81.53 60.83 90.78

EfficientNet-B3 Tan and Le (2019) 85.22 90.67 82.64 66.67 93.33

Inception v4 Szegedy et al. (2016) 85.33 89.16 81.45 60.16 90.39

ResNet50 He et al. (2016) 85.44 91.00 82.97 68.37 93.92

DenseNet201 Huang et al. (2017) 86.56 92.00 85.36 69.81 93.73

O-Net 87.22 91.67 83.51 72.73 95.29

Average Melanoma classification Keratosis classification

Method AC AC F1-score Pre SP AC F1-score Pre SP

Swin Transformer Liu et al. (2021) 80.22 73.00 71.63 84.07 73.91 78.17 68.45 45.33 83.02

AION Gehlot and Gupta (2021) 81.55 77.33 75.69 85.40 74.40 82.00 69.73 54.46 90.48

TransMed Dai et al. (2021) 84.11 79.17 77.13 84.72 71.50 84.00 79.83 59.63 55.56

MobileNetV3 Howard et al. (2019) 84.89 80.50 78.78 86.51 75.36 84.83 74.59 62.75 92.13

EfficientNet-B3 Tan and Le (2019) 85.22 80.50 78.82 86.70 75.85 84.50 75.71 59.84 89.86

Inception v4 Szegedy et al. (2016) 85.33 80.83 79.05 86.39 74.88 86.00 75.94 67.37 93.58

ResNet50 He et al. (2016) 85.44 81.50 79.99 87.90 78.26 83.83 75.28 57.69 88.61

DenseNet201 Huang et al. (2017) 86.56 83.50 81.55 86.57 73.91 84.17 72.48 61.96 92.75

O-Net 87.22 84.17 81.58 84.49 67.63 85.83 74.19 70.00 95.03

Bold font to highlight the optimal values.

a good performance in edge prediction. For organs with high
segmentation difficulty such as Pancreas and Gallbladder, our
method obtains the best and the third results, respectively,
which also reflects the strong generalization of our algorithm.
The specific segmentation results of different algorithms on this
dataset are presented in Figure 5. In this work, we demonstrate
that the in-depth combination of CNN and Swin Transformer
can learn both the global and the local contextual features,
thereby obtaining better segmentation results.

4.4. Experiment Results on the ISIC2017
Dataset
We further evaluated the proposed method for medical image
segmentation and classification using the ISIC2017 dataset.
The results of segmentation and classification are presented in
Tables 2, 3. From Table 2, we can see that in the segmentation
task, the combination of the CNN and the Swin Transformer can
achieve better performance than that of single CNN or that of
only the Swin Transformer. This indicates the effectiveness of the
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FIGURE 6 | Receiver Operating Characteristic curves of the different methods for classification task on the ISIC2017 dataset.

combination of these two structures. The O-Net has achieved the
best performance in the six metrics which reflects the superiority
of our method. The Receiver Operating Characteristic (ROC)
curves of the classification methods are shown in Figure 6. The
Area Under Curve (AUC) value for O-Net is 0.9264 which is
the best performance among compared methods. Based on the
data from Table 3 and the ROC curves of the classification task,
we can see that O-Net has also achieved excellent performance
in the classification task. The specific segmentation results of
different algorithms on this dataset are presented in Figure 7. The
experimental results of classification tasks on this dataset indicate
that combining CNN and Swin Transformer for classification
tasks can improve the accuracy of the classification tasks.
The performance can be further improved by initializing the
classification network with the parameters from the encoder part
of the segmentation network.

4.5. Ablation Study
The results of the ablation studies are shown in Tables 4, 5. We
will compare and analyze the effects of different factors on the
segmentation performance in the following sections.

Effect of encoder: The experimental results in Table 4 show
that the best results are achieved by using the EfficientNet block

as the encoder, while the number of parameters is not large. The
parameter quantity of the MobileNet is smaller than that of the
EfficientNet, but its accuracy is far too poor than the others. The
accuracy of Inception v3 is similar to ours, but the amount of
calculation is much larger than that of EfficientNet. Therefore,
we use EfficientNet as a CNN-based encoder.

Effect of combination: The segmentation network consists
of encoder and decoder. How to combine the CNN based
method and the Swin Transformer basedmethod is a point worth
exploring. Table 5 shows the effects of adopting different models
for encoder and decoder. It can be seen from the results that
the best performance is achieved by combining them in both the
encoder and decoder parts. As can be seen from the results, better
segmentation performance is achieved when CNN is used in the
encoder part and Swin Transformer is used in the decoder part.

Effect of learning rate and batch size: To explore the
best learning rate and batch size in the training process of
the algorithm, we carried out a series of experiments. The
experimental results are shown in Table 6. It can be seen from
the top half of the chart that the best Dice was obtained when
the learning rate was set to 1e-2. Although the best HD was
obtained when the learning rate was set to 1e-1, its Dice was
lower, therefore, we chose the learning rate of 5e-2. We can
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FIGURE 7 | Comparison of different methods on the ISIC2017 dataset by visualization. (A) Image, (B) Ground Truth, (C) O-Net, (D) TransUNet, (E) Swin-UNet, (F)

CE-Net, (G) R50 AttUNet, and (H) UNet.

TABLE 4 | Ablation study on the encoder of CNN method.

Encoder Params Dice↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

MobileNetV3 Howard et al. (2019) 5.48 76.66 26.27 86.12 62.25 82.07 90.65 94.06 55.72 88.62 73.77

DenseNet201 Huang et al. (2017) 20.01 78.91 20.45 87.52 65.52 82.61 78.20 95.05 57.42 86.40 78.65

Resnet50 He et al. (2016) 25.55 79.16 23.01 87.71 66.86 81.73 75.22 94.18 58.86 90.42 78.31

Inception v3 Szegedy et al. (2016) 23.83 80.36 22.78 88.09 63.76 82.19 79.25 95.16 65.17 87.12 82.13

EfficientNet-b3 Tan and Le (2019) 12.23 80.61 21.04 88.36 67.45 84.44 77.13 95.24 61.52 90.03 80.74

The symbol ↑ means the higher value, the better.

The symbol ↓ means the lower value, the better.

Bold font to highlight the optimal values.

also draw from the bottom half of the chart that the best dice
was obtained when the batch size was set to 24. Although the
HD is lower when batch size was set to 8 and 6, the Dice of
the Gallbladder is far too low, which is not conducive to the
overall segmentation, therefore, the batch size of 24 would be
more appropriate.

5. CONCLUSION

We introduce a novel method based on the combination of
CNN and Swin Transformer for medical image segmentation

and classification. To make full use of the global and the
local information to improve medical image segmentation and
classification, we propose O-Net, which combines the advantages
of these two structures for improving both the segmentation
and the classification performance. We combine CNN and
transformer in both encoder and decoder parts of the network.
In addition, we have shown that the proposed segmentation
network is beneficial for the classification task. Experimental
results have demonstrated that the proposed O-Net achieves
competitive performance and good generalization ability in both
the segmentation and the classification tasks.
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TABLE 5 | Ablation study on the combination of CNN method and Swin Transformer method.

Encoder Decoder

Efficient Swin CNN Swin transformer Dice↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

net-block transformer decoder decoder

X X 78.86 28.86 87.72 62.19 83.11 76.67 94.49 56.61 89.48 80.58

X X 79.93 26.88 87.90 68.09 83.89 76.05 94.42 62.95 87.32 78.86

X X X 80.34 22.53 88.67 67.38 83.95 77.01 95.12 60.06 88.76 81.77

X X 77.55 31.03 86.14 63.49 81.59 75.82 93.68 54.61 90.19 74.87

X X 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

X X X 79.38 22.34 87.60 62.53 84.86 80.54 94.42 58.75 90.64 75.66

X X X 79.47 29.19 87.71 66.21 81.64 74.69 94.65 61.61 89.19 80.02

X X X 80.41 27.33 86.74 71.19 84.32 77.29 94.30 60.63 89.2 79.64

X X X X 80.61 21.04 88.36 67.45 84.44 77.13 95.24 61.52 90.03 80.74

The symbol ↑ means the higher value, the better.

The symbol ↓ means the lower value, the better.

Bold font to highlight the optimal values.

TABLE 6 | Ablation study on learning rate and batch size.

Learn rate Dice↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

1e-1 79.21 20.06 86.56 63.48 84.61 77.14 94.32 56.99 91.90 78.69

5e-2 80.61 21.04 88.36 67.45 84.44 77.13 95.24 61.52 90.03 80.74

1e-2 79.07 20.14 87.64 67.74 81.95 74.69 94.71 58.33 89.44 78.03

5e-3 79.76 23.07 88.18 68.51 83.60 76.92 94.42 58.84 88.59 79.03

1e-3 76.57 30.37 85.28 62.96 81.61 74.51 92.96 54.13 86.37 84.70

Batch size Dice↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

8 78.81 15.67 88.12 44.45 84.59 80.24 94.73 67.40 89.97 81.00

16 78.36 18.25 88.69 38.12 84.57 79.46 95.16 66.20 91.44 83.27

24 80.61 21.04 88.36 67.45 84.44 77.13 95.24 61.52 90.03 80.74

32 80.35 27.93 88.32 66.70 81.94 76.19 95.31 64.06 88.94 81.27

The symbol ↑ means the higher value, the better.

The symbol ↓ means the lower value, the better.

Bold font to highlight the optimal values.
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