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One of the most critical issues to be solved in regard to cancer chemotherapy is the establishment
of ways to predict the efficacy of anti-cancer drugs for individual patients. To develop a prediction
system based on expression of specific genes, we analyzed expression profiles of mononuclear cells
from 18 chronic myeloid leukemia (CML) patients who were treated with the tyrosine kinase inhib-
itor STI571. cDNA microarrays representing 23 040 genes identified 79 genes that were expressed
differentially between responders and non-responders to STI571. On the basis of the expression
patterns of 15 or 30 of these genes among the patients, we developed a “Prediction Score” system
that could clearly separate the responder group from the non-responder group. Verification of this
system using four additional (“test”) cases succeeded in predicting the response of each of those
four patients to the drug. These results provide the first evidence that gene-expression profiles can
predict sensitivity of CML cells to STI571, and may eventually lead to the achievement of “person-
alized therapy” for this disease.
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Chronic myeloid leukemia (CML) is a clonal disorder
arising from neoplastic transformation of hematopoietic
stem cells, most of which are characterized by the pres-
ence of a Philadelphia chromosome (Ph) and by constitu-
tive activation of BCR-ABL tyrosine kinase.1) CML pro-
gresses through three phases; chronic phase, accelerated
phase and invariably fetal blast crisis. Conventional ther-
apeutic options include interferon-α and allogenic stem-
cell transplantation (SCT). Interferon-α prolongs overall
survival, but has considerable adverse effects. SCT is the
only curative treatment, but is associated with substantial
morbidity and is limited to patients with suitable donors.
Thus, the prognosis of CML is still poor.

Development of the ABL-selective tyrosine kinase
inhibitor STI571 (imanitib; Glivec; Novartis Pharmaceuti-
cals, Basel, Switzerland) was an important advance in the
management of CML.2, 3) With this drug, around 90% of
CML patients are induced into hematological complete
remission, and in more than 60% of patients Ph chromo-
some-positive leukemia cells are completely or partially
reduced without severe adverse effects.4) Thus, STI571 has
become the first choice drug for the treatment of CML,
and its promising effects make it difficult to decide the
timing for SCT.5) Moreover, time and medical cost are
wasted if the drug is ineffective, and non-responsive
patients risk losing a chance for alternative chemotherapy.
Therefore, accurate prediction regarding effectiveness of a
specific therapy is of critical importance for CML patients.
Recent studies have demonstrated that information gener-
ated by cDNA microarray analysis of gene expression in
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human tumors can provide more accurate data as to the
nature of cancer cells than traditional histopathological
methods are able to supply.6–8) The promise of such infor-
mation lies in its potential for improving clinical strategies
for treating neoplastic diseases.

With this in mind we applied a microarray of human
cDNAs consisting of 23 040 transcribed elements to ana-
lyze gene-expression profiles in CML cells, with a view to
developing a novel system for predicting responsiveness
of an individual CML patient to treatment with STI571.
We identified a group of genes as differentially expressed
among 12 patients belonging to the “good responder” cate-
gory and six who showed no response to the drug, and
established a “Prediction Score” system that correctly pre-
dicted the responsiveness or non-responsiveness among
four additional test cases. Our results suggest that the expres-
sion levels of a set of genes selected in this way can deter-
mine the fate of CML exposed to STI571, and that such
information may lead to “personalized therapy” and thereby
improve the quality of life and prognosis of CML patients.

We obtained peripheral blood samples with informed
consent from 22 Japanese adult CML patients prior to
treatment with STI571. Each patient was then enrolled
into a phase II study of STI571. mRNA from eighteen
samples in which more than 65% of cells had been posi-

tive for the Ph chromosome prior to treatment, by means
of a FISH analysis detecting a bcr /abl fusion gene,9) were
analyzed on our cDNA-microarray system. Fabrication of
our cDNA-microarray system containing 23 040 cDNAs

Table I. Clinicopathological Features of Patients Examined

Patient’s ID Age Sex Response Prediction Phase

CML003 66 M Responder Learning Chronic
CML004 55 F Responder Learning Chronic
CML008 61 F Responder Learning Chronic
CML009 68 M Responder Test Chronic
CML010 56 M Responder Learning Chronic
CML013 59 F Non-responder Learning Chronic
CML014 47 M Responder Learning Chronic
CML015 63 F Responder Test Chronic
CML018 57 M Non-responder Learning Chronic
CML019 23 M Non-responder Learning Chronic
CML021 57 M Responder Learning Chronic
CML025 44 M Non-responder Learning Chronic
CML027 35 M Non-responder Learning Chronic
CML030 61 M Responder Learning Chronic
CML033 56 M Responder Learning Chronic
CML036 48 M Responder Learning Chronic
CML047 32 F Responder Learning Chronic
CML050 38 M Non-responder Learning Blast crisis
CML054 32 M Responder Learning Chronic
CML056 46 F Responder Learning Blast crisis
CML080 59 F Non-responder Test Accelerated
CML197 30 F Non-responder Test Accelerated

Response, response to STI571 treatment; Learning, samples used to develop the prediction system;
Test, samples used for test cases.

Fig. 1. Cytogenetic responses to STI571 treatment among 22
CML patients. Each line represents the response of an individual
patient; blue lines indicate non-responders and red lines indicate
responders. Black lines indicate test cases.



Prediction of Chemosensitivity to STI571

851

Fig. 2. Expression patterns of the 79 discriminating
genes among 18 CML patients. The mean (µ) and stan-
dard deviation (σ) were calculated from the log-trans-
formed relative expression ratios of each gene in
responder (r) and non-responder (n) patients. A discrimi-
nation score (DS) for each gene was defined as follows:
DS=(µr−µn)/(σr+σn). We carried out permutation tests to
estimate the ability of individual genes to distinguish
between responders and non-responders; samples were
randomly permutated between the two classes 10 000
times. Since the DS dataset of each gene showed a normal
distribution, we calculated a P value for the user-defined
grouping.7) Horizontal rows represent individual genes;
vertical columns represent individual samples. Each cell in
the matrix represents the expression level of a single tran-
script in single sample, with red and green indicating tran-
script levels respectively above and below the median for
that gene across all samples. Black represents unchanged
expression; gray indicates no or slight expression (intensi-
ties of both Cy3 and Cy5 under the cut-off value). Color
saturation is proportional to the magnitude of the differ-
ence from the median.
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Table II. A List of 79 Candidate Genes for Development of the Prediction System

Rank
Permutation

GenBank ID Symbol Gene name
P-value

1 0.0003 AI086871 HN1 Humanin
2 0.0003 D17793 AKR1C3 aldo-keto reductase family 1, member C3 
3 0.0013 X76013 QARS glutaminyl-tRNA synthetase
4 0.0015 AA136180 KIAA1105 KIAA1105 protein
5 0.0019 AA506972 KIAA0668 KIAA0668 protein
6 0.0020 AF053470 BLCAP bladder cancer associated protein
7 0.0021 X97324 ADFP adipose differentiation-related protein
8 0.0029 AA894857 FLJ10422 hypothetical protein FLJ10422
9 0.0038 L07033 HMGCL 3-hydroxymethyl-3-methylglutaryl-coenzyme A lyase 

10 0.0040 AI051454 EST EST
11 0.0063 AI290876 KLF4 Kruppel-like factor 4 
12 0.0083 M11354 H3F3A H3 histone, family 3A
13 0.0094 V00478 ACTB actin, beta
14 0.0094 AA401318 DKFZP566D193 DKFZP566D193 protein
15 0.0101 U79268 APEX APEX nuclease
16 0.0107 U88047 DRIL1 dead ringer (Drosophila)-like 1
17 0.0113 AF001383 BIN1 bridging integrator 1
18 0.0114 AA495984 EST EST
19 0.0123 N41902 CLTH Clathrin assembly lymphoid-myeloid leukemia gene
20 0.0127 AA179832 M6PR mannose-6-phosphate receptor
21 0.0133 D14662 KIAA0106 anti-oxidant protein 2 
22 0.0139 J03528 IGF2R insulin-like growth factor 2 receptor
23 0.0151 AA330014 IDH1 isocitrate dehydrogenase 1 (NADP+), soluble
24 0.0154 AI333449 EST EST
25 0.0156 AA365986 SDHB succinate dehydrogenase complex, subunit B
26 0.0165 AI743134 TNRC3 trinucleotide repeat containing 3
27 0.0171 AA156488 MGP KIAA1008 protein
28 0.0178 U26710 CBLB Cas-Br-M ectropic retroviral transforming sequence b
29 0.0187 AA055355 EST EST
30 0.0191 T70782 FLJ10803 hypothetical protein FLJ10803
31 0.0193 J05272 IMPDH1 IMP (inosine monophosphate) dehydrogenase 1
32 0.0197 AI091459 FLJ20489 hypothetical protein FLJ20489
33 0.0200 U77948 GTF2I major histocompatibility complex, class I, B
42 0.0271 U31906 GOLGA4 golgi autoantigen, golgin subfamily a, 4
43 0.0272 AA743462 EST EST
44 0.0279 U46767 SCYA13 small inducible cytokine subfamily A, member 13
45 0.0281 D29805 B4GALT1 beta 1,4-galactosyltransferase, polypeptide 1
46 0.0290 AA143048 DKFZP564O0463 DKFZP564O0463 protein
47 0.0299 V00478 ACTB actin, beta
48 0.0314 X63368 HSJ1 heat shock protein, neuronal DNAJ-like 1
49 0.0315 X06323 MRPL3 mitochondrial ribosomal protein L3
50 0.0320 D80005 C9orf10 C9orf10 protein
51 0.0327 X70649 DDX1 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 1
52 0.0350 AA421326 EST Homo sapiens cDNA: FLJ21918 fis, clone HEP04006
53 0.0353 AF055066 HLA-A major histocompatibility complex, class I, A
54 0.0359 AA101834 STIM1 stromal interaction molecule 1
55 0.0360 M91029 AMPD2 adenosine monophosphate deaminase 2
56 0.0361 U26648 STX5A syntaxin 5A
57 0.0366 M25460 IFNB1 interferon, beta 1, fibroblast
58 0.0370 AI291745 MAEA macrophage erythroblast attacher
59 0.0372 L25941 LBR lamin B receptor
60 0.0373 D45906 LIMK2 LIM domain kinase 2
61 0.0387 AI365683 EST Homo sapiens PAC clone RP4-751H13 from 7q35-qter
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was described previously.10) We prepared mononuclear
cells using Ficoll (Amersham Biosciences, Buckingham-
shire, UK) and extracted total RNA using TRIzol (Life
Technologies, Inc., Grand Island, NY) according to the
manufacturer’s instructions. After treatment with DNase I
(Nippon Gene, Tokyo), T7-based RNA amplification was
carried out as described previously.11) Two rounds of
amplification using 2 µg of total RNA as starting material
yielded 40–100 µg of amplified RNA (aRNA). For con-
trol samples we also performed two rounds of T7-based
RNA amplification to obtain sufficient amounts of aRNA.
RNA amplified by this method accurately reflects the pro-
portions in the original RNA source, as we had confirmed
earlier by semi-quantitative RT-PCR experiments, in
which data from microarrays were consistent with results
from RT-PCR whether total RNA or aRNA was used as
the template.11) Labeling, hybridization, washing, scan-
ning, and quantification of signals were performed as
described previously11) except that all processes were car-
ried out with an Automated Slide Processor.10) Sixteen
patients with CML in the chronic phase were treated with
400 mg/day of STI571 and two patients in blast crisis
were treated with 600 mg/day. We determined the clinical
response to STI571 by cytogenetic criteria; that is, by the
percentage of peripheral blood cells positive for Ph chro-
mosome by the FISH analysis.4) The 12 patients who
showed major cytogenetic responses (less than 35% of
cells remaining positive for the Ph chromosome) were
classified as responders (red lines in Fig. 1), whereas the

six patients with more than 65% of cells still positive for
the Ph chromosome after 5 months of STI571 treatment
were considered non-responders (blue lines in Fig. 1). The
remaining four were reserved to test the predictive scoring
system later (black lines in Fig. 1). Of the 22, two “learn-
ing” cases were in blast crisis phase and two “test” cases
were in accelerated phase (Table I), and their cytogenetic
responses were analyzed within 12 weeks after the start of
treatment, because STI571 was clinically ineffective and
was discontinued within 12 weeks (Table I, Fig. 1). As
controls we used a mixture of mononuclear cells from
peripheral blood of 11 healthy volunteers.

We first selected genes using two criteria; (i) signal
intensities higher than the cut-off level in at least 80% of
the cases; (ii) |Medr−Medn|≥0.5, where Med indicates
the median derived from log-transformed relative expres-
sion ratios in responders or non-responders. Then we car-
ried out a permutation test to select genes that were useful
for separation of the responder group from the non-
responder group (see the legend of Fig. 2). As a result,
79 genes were listed as candidates that showed a permuta-
tion P-value of less than 0.05. Expression levels were
increased for 33 of those genes and decreased for the other
46 in the non-responder group, as compared to the
responder group (Fig. 2).

Using this information we attempted to establish a scor-
ing system to predict the efficacy of STI571 treatment. We
calculated the prediction score according to procedures
described previously.7, 12) Each gene (gi) votes for either

Table II. (Continued)

Rank
Permutation

GenBank ID Symbol Gene name
P-value

62 0.0391 AA778161 RPL26 ribosomal protein L26
63 0.0395 AL137271 FLJ10209 hypothetical protein FLJ10209
64 0.0407 AA132519 FAAH EST
65 0.0415 Y07572 C21ORF33 ES1 (zebrafish) protein, human homolog of
66 0.0427 Z44513 EST EST
67 0.0432 X07767 PRKACA protein kinase, cAMP-dependent, catalytic, alpha
68 0.0433 L19713 EPB49 erythrocyte membrane protein band 4.9 (dematin)
69 0.0439 M91029 AMPD2 adenosine monophosphate deaminase 2 
70 0.0439 U51712 EST EST
71 0.0442 AI334396 CRSP9 cofactor required for Sp1 transcriptional activation
72 0.0442 AA600323 EST EST
73 0.0442 L77564 STK22B serine/threonine kinase 22B
74 0.0444 X01410 TRB@ T cell receptor beta locus
75 0.0446 Z21507 EEF1D eukaryotic translation elongation factor 1 delta 
76 0.0446 U57629 RPGR retinitis pigmentosa GTPase regulator
77 0.0454 AA918725 ARRB1 arrestin, beta 1
78 0.0458 AA602490 NOP5/NOP58 nucleolar protein NOP5/NOP58
79 0.0461 M87790 IGL@ immunoglobulin lambda locus

Information was retrieved from Unigene database in National Center for Biotechnology Information (NCBI) (build#131).
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responder or non-responder depending on whether the
expression level (xi) in the sample is closer to the mean
expression level of responders or non-responders in refer-
ence samples. The magnitude of the vote (vi) reflects the
deviation of the expression level in the sample from the
average of the two classes: Vi=|xi −(µr+µn) /2|. We
summed the votes to obtain total votes for the responder
(Vr) and non-responder (Vn), and calculated PS values as
follows: PS=((Vr−Vn)/(Vr+Vn))×100, reflecting the margin
of victory in the direction of either responder or non-
responder. PS values range from −100 to 100; a higher
absolute value of PS reflects a stronger prediction. Next
we rank-ordered the 79 candidate genes on the basis of the
magnitude of their permutation P-values (Table II) and
calculated the prediction score by the leave-one-out test
for cross-validation using the top 5, 10, 15, 20, 25, 30, 35,

40, 45, 50, 55, 60, 65, 70, 75, and 79 genes on the rank-
ordered list. For the leave-one-out test, one sample is with-
held, the permutation P-value and mean expression levels
are calculated using the remaining samples, and the class
of the withheld sample is subsequently evaluated by calcu-
lating its prediction score. We repeated this procedure for
each of the 18 samples. Then, to determine the number of
discriminating genes that provided the best separation of
the two groups, we calculated a classification score (CS)
for each gene set (see the legend of Fig. 3A).

The number of genes used for calculation influenced the
power for separation of the two groups. We obtained the
best separation when we used the top 15 or 30 genes in
our candidate list for calculation of the scores (Fig. 3A).
The “Prediction Score” system using these two sets of
genes clearly separated the two patient groups (Fig. 3B).
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Fig. 3. (A) Optimization of the number of discriminating genes. The classification score (CS) was calculated by using the prediction
score of responders (PSr) and non-responders (PSn) in each gene set, as follows: CS=(µPSr−µPSn)/(σPSr+σPSn). A larger value of CS
indicates better separation of the two groups by the predictive-scoring system. (B) Different prediction scores appear when the number of
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were classified according to their sensitivity to STI571. (D) Prediction scores for individual patients. Filled circles and filled triangles
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Hierarchical clustering using the same gene sets was also
able to classify the groups with regard to STI571 sensitiv-
ity (Fig. 3C). This analysis was performed using web-
available software (“cluster” and “treeview”) written by
M. Eisen (http://genome-www5/stanford.edu/MicroArray/
SMD/restech.html). Before the clustering algorithm was
applied, the fluorescence ratio for each spot was first log-
transformed and then the data for each sample were
median-centered to remove experimental biases.

To validate this prediction system, we investigated four
additional (“test”) cases that were completely independent
of the 18 “learning” cases used for establishing the sys-
tem. We examined gene-expression profiles in each of
these four blood samples and then calculated a prediction
score for each of them using the panels of 15 or 30 dis-
criminating genes. As shown in Fig. 3D, responsiveness
of each of these four patients to STI571 was predicted
accurately.

Treatment of CML patients with STI571 provides a
considerable advantage over treatment with interferon-α,
because the degree of cytogenetic response obtained by
STI571 is clearly higher, with less severe adverse
effects.13) However, as around 40% of CML patients fail to
achieve major cytogenetic response,4) it is important to
establish a way to predict the efficacy of STI571 before
therapy is undertaken for an individual patient.

In this study we profiled the gene expression patterns of
mononuclear cells from CML patients using a comprehen-
sive cDNA-microarray system containing 23 040 genes,
with a view to establishing a “Prediction Score” system.
We identified 79 genes that were differentially expressed
among patients who showed good response as opposed to
poor response to STI571, and ranked them by the permu-
tation test (P-values of <0.05). Then we attempted to opti-
mize the power to separate the two groups by selecting a
subset of the discriminating genes on the basis of CS. We
obtained the best CS using subsets of 15 or 30 discriminat-
ing genes; the scoring system based on these two subsets
separated the two groups very clearly. Our scoring system
was also able to predict accurately the response to STI571
of four additional cases. Although four patients who were
in accelerated and blast crisis phases of CML were
included, our scoring system classified all cases, as to their
chemosensitivity to STI571. We believe that the use of CS
is a reasonable approach to selecting appropriate indicators
for predictive scores.

The 79 genes that showed different expression levels in
responders versus non-responders might provide interest-
ing insight into the biological mechanism underlying the

response to STI571 in CML. Among these genes, Apex
nuclease (APEX) was over-expressed in the non-responder
group. APEX is the major apurinic/apyrimidinic endonu-
clease (Ap endo), with a key function in the DNA-repair
system that confers resistance to ionizing radiation and
alkylating agents in human cell lines.14) APEX, which
stimulates the binding of MYB (v-myb myeloblastosis viral
oncogene homolog) to DNA, is a known accelerator of pro-
liferation and was up-regulated in all CML cells in our
experiments.15)

On the other hand, Kruppel-like factor 4 (KLF4) was
suppressed in the non-responder group. This gene is a zinc
finger-containing transcription factor, enriched in epithe-
lial cells, that is known to suppress cell proliferation.16)

Thus, down-regulated expression of KLF4 in the non-
responders might abrogate regulation of the cell cycle. We
suggest that the 79 genes that may affect sensitivity of
CML cells to STI571 could serve as molecular targets for
overcoming chemoresistance and also for development of
novel drugs.

Although adverse drug reactions caused by STI571 are
much less severe than with other anti-cancer drugs, its
long-term use may ruin the chance of a non-responder to
benefit from alternative therapies. Hence, we believe that
our prediction system should provide an opportunity for
potential non-responders to achieve a better prognosis and
a better quality of life, although certainly a larger-scale
study is warranted. Our data suggest, however, that the
goal of “personalized medicine,” giving the right drug to
each patient, may be achievable by selecting a set of genes
for its predictive value according to the approach shown
here. However, to establish optimal prediction we should
consider including genotypic information such as single
nucleotide polymorphisms (SNPs) that might influence the
metabolism of the drug in question.
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