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Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic)

known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with

prevalence of the disease also growing at many longer-affected sites globally. However, we

do not yet understand the precise environmental, mutational and viral events driving fibro-

papillomatosis tumor formation and progression.

Here we perform transcriptomic and immunohistochemical profiling of five fibropapilloma-

tosis tumor types: external new, established and postsurgical regrowth tumors, and internal

lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the

more common external tumors. However, they have a small number of conserved potentially

therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt,

TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitu-

late remarkably well the core pan-cancer drivers responsible for human cancers. Fibropa-

pillomatosis has been considered benign, but metastatic-related transcriptional signatures

are strongly activated in kidney and established external tumors. Tumors in turtles with poor

outcomes (died/euthanized) have genes associated with apoptosis and immune function

suppressed, with these genes providing putative predictive biomarkers.

Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis

and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for

this wildlife epizootic.
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Sea turtle fibropapillomatosis (FP) is potentially a canary in
the coalmine, indicating that continued human-induced
environmental damage may be an alternative route by

which oncogenicity is conferred on normally well-tolerated
viruses. This is particularly worrying as long-lived reptiles
usually have robust anti-cancer defenses1,2, and as there is already
a range of human viruses known to be capable of inducing tumor
formation when the host immune system is compromised3,4. The
application of precision oncology to FPcan reveal the precise
mechanisms through which environmental triggers, viral
dynamics, and host cell transformation can rapidly induce novel
cancer incidence on an epidemic scale, thereby simultaneously
informing human and wildlife cancer research2,5. Precision
oncology incorporates recent advances in -omic technologies
(genomics, transcriptomics, proteomics, metabolomics, high-
throughput histology/imaging etc.) and computational advance-
ments and applies them to the molecular profiling of tumors to
provide mechanistic clarity, to identify targetable alterations and
predictive biomarkers, and to direct the correct treatments to
responsive patient cohorts6–8. Precision oncology is rapidly
developing and has entered the mainstream of human clinical
practice6–8.

FP (Fig. 1a) is a tumor disease of epizootic (animal epidemic)
proportions, affecting wild populations of endangered sea turtles
circumglobally9–11. Sea turtle FP continues to spread geo-
graphically throughout equatorial and subequatorial regions, and
has now been reported in every major ocean basin in which
green turtles (Chelonia mydas) are found, particularly in near-
shore habitats (www.cabi.org/isc/datasheet/82638)10,12–17. In
addition to spreading globally, FP rates continue to increase in
many affected sites, posing serious conservation challenges.
Reportedly, of all green sea turtles stranding, over 40% in Florida,
30% in Hawaii, 35% in Texas, 35% in northeastern Brazil, 34% at
Príncipe Island in the Gulf of Guinea, and 50% in Puerto Rico
are FP-afflicted12,18–22. Many of these sites have seen a rapid
increase in disease prevalence over recent years; for instance,
from 13.3 to 42% (2005–2016) in Florida, 13.2 to 35.3%
(2012–2015) in northeastern Brazil, and 0 to 35.2% (2009–2018)
in Texas, with the occurrence of FP in Texas beginning in 2010 at
a rate of 0.6%12,18–21. In contrast, the incidence of FP in Hawaii
has been declining, as of 2014 (the most recent year on record)
44% of stranded turtles had FP12,23. The declining prevalence in
Hawaii has been postulated to be due to a culling strategy or to
biologically distinct viral strains with altered shedding
dynamics18,23,24.

A chelonian-specific herpesvirus (chelonid alphaherpesvirus 5
(ChHV5)), has been implicated in driving the FP disease epi-
zootic, although Koch’s postulates to confirm its causative role
have yet to be definitively confirmed10,25–28. Even so, ChHV5
infection alone is not sufficient to induce FP tumor growth29–33.
An anthropogenic-linked environmental co-trigger(s) may be the
required key to both the development of FP tumors and the
geographic spread of the disease10,28,32,34. Much uncertainty
remains about the postulated environmental trigger(s) and how
they interact with ChHV5 and the host immune system to give
rise to FP tumorigenesis10. There is a paucity of knowledge
concerning the molecular signaling events underpinning FP
tumor initiation, development and growth, with even less known
about the viral and host transcriptional landscape driving
tumorigenesis. In addition, the precise relationship between
visceral internal tumors and the more common external tumors
remains to be elucidated. Analysis of the viral aspects of the
current study’s transcriptomic and genomic data are explored in a
companion paper on ChHV535.

While advances in our understanding of the FP tumor disease
epizootic in sea turtles continue to be made10,28,33,36–43, many
questions remain unanswered in relation to this enigmatic dis-
ease. There is virtually no molecular information about the
relationship (e.g., primary/metastatic) between the numerous
tumors, which can range from tens to hundreds, arising on a
single individual turtle. Similarly, the molecular drivers of early-
stage, internal, and postsurgical regrowth tumors remain to be
elucidated. Determining the contribution of each facet of this
multifactorial disease will be key to combatting this epizootic
disease both at the level of individual clinical treatment and for
population-level management/mitigation strategies2,33. The rela-
tive contributions of ChHV5, environmental trigger(s), immune
suppression, host genome mutation and altered gene expression
to FP oncogenesis have never been determined. Here, we applied
a combination of extensive transcriptomics, precision
oncology7,33,44, and immunohistochemistry to determine the host
molecular events underpinning FP tumorigenesis, growth, and
postsurgical recurrence. In particular we focused on the profiling
and contrasting of the host transcriptional events responsible for
driving five types of FP tumor: new external, established external,
postsurgical regrowth external, internal visceral lung, and internal
kidney tumors.

Results
Divergent transcriptomes of internal and external fibropa-
pillomatosis tumors. To determine the molecular events gov-
erning FP tumor growth, and whether different oncogenic
signaling networks drive tumor types in different tissues, we
conducted transcriptomics of FP tumors and patient-matched
nontumor tissue (90 RNA-seq samples, Supplementary Data 1).
Differentially expressed (DE) genes were then analyzed at the
gene, pathway, network, and systems levels. When the mRNA
transcripts DE between external new growth, external established,
and external postsurgical regrowth (recurring) FP tumors were
compared, there was a high degree of overlap (Fig. 1b). The
overlap suggests that the molecular events driving external FP
tumor formation, growth, and regrowth are broadly similar.

Next we compared the DE transcripts between established
external tumors and those of internal visceral tumors, lung FP
and kidney FP (Fig. 1c, Supplementary Data 2). In contrast to the
three types of external tumors (new growth, established,
regrowth, Fig. 1b), the internal visceral tumor DE transcripts
were extremely divergent to the external tumor DE transcripts
(Fig. 1c). Furthermore, lung and kidney tumor transcriptomes
had minimal overlap with each other (Fig. 1c) suggesting that
different oncogenic signals are driving internal FP compared with
external FP tumors, as well as kidney FP tumors compared with
lung FP tumors. The diverging transcriptional profiles of internal
and external tumors is also apparent at the whole transcriptome
level (Fig. 1d, e).

A large number of genes were DE between all tumor samples
and all nontumor samples (Fig. 2a). Highly upregulated genes
included those associated with oncogenic signaling, such as
Cthrc1 (Wnt and adenocarcinoma signaling) and Crabp2
(retinoic acid (RA) signaling and embryonal carcinoma-
associated gene), while highly downregulated genes included
those associated with skeletal muscle (Aacta1, Myl6b, and Klhl41,
Fig. 2a). CRABP2 (Fig. 2a) is a predictive biomarker for a number
of human tumors, such as ovarian cancer and non-small cell lung
cancer45,46. Therefore, we examined Crabp2 expression across our
turtle patient cohort. Patients with positive case outcomes
(release) tended to have tumors with lower Crabp2 expression
when compared with patients that died in care or were
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Fig. 1 Fibropapillomatosis tumors and differential transcript expression. a (Top, left) Fibropapillomatosis-afflicted green sea turtles (Chelonia mydas) in
one of the hospital’s seawater tanks, awaiting tumor removal surgery. Established tumors are visible as large pinkish outgrowths. Top, middle: Numerous
new growth tumors occurring around the ventral tail and rear flipper area of patient 25-2018-Cm ‘Lilac’. Top, right: Postsurgical regrowth tumor imaged
after surgical resection. Regrowing tumor is the pinkish tissue, and is surrounded by paler non-tumored skin. Bottom: A computed tomography (CT) scan
of fibropapillomatosis-afflicted C. mydas. CT is one of the approaches used for diagnosing internal tumors. A large kidney tumor is circled. In all other
images, arrows indicate selected examples of external tumors. b, c Overlap of transcripts significantly differentially expressed (DE) (as called by DESeq2)
in fibropapillomatosis from the RNA-seq data. Transcripts were considered significant if passing the following cutoffs: adjusted P value of <0.05 and log2
fold change of >2 or ≤2. b Overlap of DEs from the following comparisons: established external FP, new growth external FP, and regrowth external FP,
when all are compared to healthy skin for differential expression analysis. c Overlap of DEs from the following comparisons: established external FP, kidney
FP, and lung FP, each compared to their non-tumored tissue sources for differential expression analysis (healthy skin, healthy kidney, and healthy lung,
respectively). d Principle component analysis (PCA) of all internal tumor samples compared to external tumor samples, RNA-seq. e PCA of all samples,
includes all tumor and nontumor samples, RNA-seq. In the figure key external is abbreviated as ‘Ext.’.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01656-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:152 | https://doi.org/10.1038/s42003-021-01656-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


c

-4

-3

-2

-1

0

1

2

Lung FP Kidney FP New growth
external FP

Established
external FP

Regrowth
external FP

Skin lesion
Malignant solid tumor
Solid tumor
Extracranial solid tumor
Non-melanoma solid tumor
Carcinoma
Cancer
Melanoma

Six GO terms common to top 20 of all, plus ‘Cancer’ and ‘Melanoma’ 
(RNA-seq)

A
ct

iv
at

io
n 

z-
sc

or
e Ac

tiv
at

ed
In

hi
bi

te
d

p-value range: 1.11E-34 to 1.25E-19

- lo
g1

0F
D

R

Log FC

Genes differentially expressed between all FP tumor and all non-
tumor tissue samples (RNA-seq)

a

Cthrc1
Crabp2

Acta1Myl6b

Klhl41
Nrsn2

Non-tumor
(released and 

deceased)

FP tumor
(released 
animals)

FP tumor
(died/euthanized 

animals)

TP
M

Crabp2 expression (RNA-seq) by outcome

p = 4.98E-09 p = 0.0518 

b

Fig. 2 Gene level and gene ontology (GO) term analyses of differentially expressed transcripts in each tumor type. a Volcano plot of genes differentially
expressed between fibropapillomatosis tumors (all types) and nontumor tissue (all types) as determined by DESeq2 analysis of the RNA-seq samples.
Transcripts were considered significant if passing the following cutoffs: adjusted P value of <0.05 and log2 fold change of >2 and ≤2. b Expression levels of
CRABP2, as detected by RNA-seq, in nontumor tissue and tumors of patients with varying rehabilitation outcomes. N= 89 samples. Per outcome: released
= seven turtles; died/euthanized= five turtles. Box plot with Tukey whiskers. P values of inter-group comparisons are shown below the x-axis
(Mann–Whitney U tests). n= 89: 20 nontumor, 23 poor-outcome tumor and 46 good outcome tumor samples. c Activation/inhibition z scores of the six
GO terms common to the top 20 GO terms of all sample comparisons, plus the ‘Cancer’ and ‘Melanoma’ GO terms, as detected by IPA, ranked by P value
(calculated by right-tailed Fisher’s exact test, with Benjamini–Hochberg correction).
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euthanized due to advanced disease (Fig. 2b), though for this
cohort this difference fell just short of statistical significance
(Mann–Whitney U test, P= 0.0518).

Strong association between sea turtle tumor transcriptomes
and cancer gene ontology terms. To better understand the main
biological processes involved in each tumor type we examined the
top 20 Gene Ontology (GO) terms (called by Ingenuity Pathway
Analysis (IPA), ranked by P value) for each set of DE transcripts
(Supplementary Fig. 1a–e). Eighteen of the top 20 GO terms
associated with established external FP tumors were cancer or
neoplasia-associated terms, with ‘activation of skin tumors’ and
‘melanoma’ associated terms featuring prominently (Supple-
mentary Fig. 1a). The remaining two noncancer GO terms were
related to muscle, and were inhibited. This finding helps to
validate the analysis pipeline (GO term results were called with-
out the input of any a priori FP knowledge) as FP tumors are
known to contain less muscle tissue than non-tumored skin
punch biopsies which also contain subcutaneous tissue47–49. For
analysis of the top 20 GO terms for the other tumor types, new
growth external, regrowth external, kidney FP and lung FP, see
Supplementary Figs. 1b–e and 2a–c. Overall, of the top 20 GO
terms from each tumor compared with their matched nontumor
tissue type, six were common to every FP type sequenced,
although their activation/inhibition status differed between
internal and external tumors (Fig. 2c). These shared top GO
terms were all cancer-associated (Fig. 2c).

Hosts attempt to mount an immune response to fibropapillo-
matosis. To further determine what signaling events are promi-
nent in driving early external tumor formation (new growth and
postsurgical regrowth), we examined the top 200 (ranked by P
value) GO terms in early external tumors compared with estab-
lished external tumors (Fig. 3a). Similar to the gene level analysis
there was a very high degree of overlap between the three external
tumor types. However, of the 200 GO terms, 22 were uniquely
common to early new and regrowth tumors (Fig. 3a). Of these 22
GO terms, eight of them were associated with leukocyte/lym-
phatic processes (Fig. 3b), suggesting a crucial role of immune
response during initiation of FP tumor growth. All eight leuko-
cyte/lymphatic process GO terms were strongly activated across
the three external FP types (Fig. 3b), although for established
external tumors these terms fell outside of the top 200 GO terms.
Interestingly, only two of these eight terms (‘cell movement of
leukocytes’ and ‘leukocyte migration’) were called as statistically
significant in internal tumors (although outside of the top 200,
Fig. 3b). In kidney FP tumors, both terms were strongly activated,
mirroring the external tumors. Conversely however, both of these
GO terms were inhibited in lung FP tumors (Fig. 3b), again
highlighting differences between the molecular signaling events
driving internal and external FP tumors. Interferon gamma, a
cytokine critical to both innate and adaptive immunity, was also
called as an inferred transcriptional regulator (ITR) in all five
tumor types, being activated in every tumor type barring lung
tumors, where it was inhibited (Supplementary Fig. 2d)

Given the strong leukocyte/lymphocyte infiltration results from
the transcriptomic profiling of early FP tumor types, we next
assessed the host adaptive immune response by identifying CD3
positive T lymphocytes50 within FP tumor tissue sections. The
lymphocyte analysis confirmed the transcriptomics findings,
revealing that in early-stage FP tumors there is a high level of
T-lymphocyte infiltration (Fig. 3c). CD3 is an immunophenotypic
cell marker, which is found only in T lymphocytes and is central

to the formation of antigen-receptor interactions through the T-
cell receptor/CD3 complex50,51. CD3 positive staining was
strongest in epidermal regions, where inclusion bodies (pre-
sumably due to lytic ChHV5) most commonly occur within FP
tumors25,52. CD3 staining was strongest in new growth tumors
(Fig. 3c), but weakened in more advanced tumors (Supplemen-
tary Fig. 3a). Together the transcriptomics and CD3 staining
demonstrate that an early immune response is mounted by the
host (C. mydas), either to the tumor cells themselves, and/or
ChHV5 infection.

Conserved internal and external tumor oncogenic signaling
networks and therapeutic vulnerabilities. The disparate signal-
ing events detected by the transcriptomics between external, lung
and kidney tumors potentially make it less likely that a single
systemic anti-cancer therapeutic would prove effective against
both external and internal tumors. However, to investigate whe-
ther any common therapeutically targetable oncogenic pathways
exist between these tumor types, we next compared their top 100
ITRs. IPA analysis infers the upstream transcriptional regulators
responsible for the observed transcriptomic signatures by com-
paring the differential gene expression profiles to known regulator
induced changes in its knowledgebase. Mirroring the gene-level
analysis, ITR analysis also showed very little overlap between the
top 100 ITRs of established external, lung and kidney FP tumors
(Fig. 4a). However, if a common therapeutically targetable vul-
nerability exists it should be located in the overlapping ITRs of
these three FP tumor types. Therefore, we further investigated the
16 ITRs common to all three FP types (Fig. 4a–c). These 16 ITRs
represented nine genes and seven pharmaceutical compounds
(drugs). Of the nine gene ITRs, almost all were activated across all
five FP tumor types sequenced, with new growth external tumors
tending to be the exception (Fig. 4c). These nine genes form a
highly interconnected regulatory network (Fig. 4b), with 32 edges
between the nodes and a protein–protein interaction enrichment
P value of 3.82E-07 (STRING). Interestingly, RA signaling was
activated strongly in established external, external regrowth, and
kidney FP tumors (Fig. 4c). Retinoid therapy, to activate RA
signaling, is widely used as an anti-cancer therapeutic and
maintenance therapy for a number of human cancers (such as the
pediatric cancer neuroblastoma53), although conversely, RA sig-
naling is known to be activated in other cancer types. RA is a
widely available and inexpensive anti-cancer therapeutic, which
would make it ideally suited for use in sea turtle rehabilitation
facilities. Unfortunately, the findings here suggest RA would be
ineffective against FP, instead suggesting the converse, that RA
signaling inhibition would be a possible target in FP. The tran-
scriptomic findings explain the failure of early attempts to treat
FP tumors and prevent regrowth using ectopic RA application
(Supplementary Fig. 3b).

The 16 ITRs (Fig. 4c) tended to fall into three main categories:
canonical Wnt signaling (Wnt3a and β-catenin), MAPK signaling
(p38 MAPK, U0126, and SB203508), and immune-related
signaling (CD44, IL6, APP, TNF, TGFβ, and dexamethasone).
These pathways form part of an interlinked signaling network
(Fig. 4b). We next examined β-catenin protein cellular localiza-
tion within the tumors as a readout of pathway activity. As
predicted by the transcriptomics, β-catenin was located at the
cellular membrane in new growth external FP tumors, indicating
inactivation of Wnt/β-catenin signaling (Fig. 4d). Again in line
with the ITR analysis, nuclear localization of β-catenin was
present within other tumor types (Fig. 4d and Supplementary
Fig. 4a), which is indicative of Wnt/β-catenin pathway activation.
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Fig. 3 Transcriptomic- and histological-based immune profiling of fibropapillomatosis tumors. a Overlap of the top 200 disease-associated GO terms
associated with transcripts differentially expressed in different growth stages of external FP tumors (new growth, regrowth, established), as detected by
IPA, ranked by P value (calculated by right-tailed Fisher’s exact test, with Benjamini–Hochberg correction). Both activated and inhibited GO terms for each
tumor type when it was compared to its healthy tissue source were included. b Activation/inhibition z scores for eight (the leukocyte/lymphatic-associated
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outside of the top 200 ranked GO terms called for these three tumor types. c CD3 antibody-based staining (red/purple) of T-lymphocyte infiltration in new
growth tumor tissue, nuclei are counterstained with hematoxylin (blue staining). Selected positive CD3 stained areas are indicated by black arrows.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01656-7

6 COMMUNICATIONS BIOLOGY |           (2021) 4:152 | https://doi.org/10.1038/s42003-021-01656-7 | www.nature.com/commsbio

www.nature.com/commsbio


( )

Kidney FP

External 
established FP

Lung FP

16

6

139

62

69
65

Top 100 ITRs overlap (from differentially 
expressed transcripts)
(Tumor Vs Non-tumor)

β-catenin (CTNNB1) staining in FP tumors

Core 
network

Expanded 
network

Interaction networks of the 16 top ITRs (9 
genes) common between lung, kidney and 

established external tumors

ba

c

d

Nuclei: 
Hoechst 33342

Anti β-catenin MergeCytoskeleton: 
Anti β-actin

New growth 
external FP

Established 
external FP

-6

-4

-2

0

2

4

6

8

Activation scores of the 16 ITRs (out of the top 100) common between lung, 
kidney and established external tumors

A
ct

iv
at

io
n 

z-
sc

or
e

Ac
tiv

at
ed

In
hi

bi
te

d

p-value range: 2.64E-28 to 2.12E-03

New growth external FP
Regrowth external FP
Established external FP
Kidney FP
Lung FP

Genes Drugs

Immune-related

Fig. 4 Transcriptional regulator analysis revealing the cellular signaling driving fibropapillomatosis and potential therapeutic targets. a Overlap of the
top 100 inferred transcriptional regulators (ITR) of the transcripts differentially expressed in different types of FP tumors (kidney FP, lung FP, external
established FP) when compared to their respective non-tumored tissue sources, as detected by IPA, ranked by P value (calculated by right-tailed Fisher’s
exact test, with Benjamini–Hochberg correction). The 16 ITRs that were common to lung, kidney, and established external FP were selected for further
analysis. b Interaction networks of the top 16 ITRs (nine genes shown, seven drugs excluded) common between lung, kidney and established external
tumors. Core network generated by STRING94 (https://string-db.org/), expanded network generated by HumanBase (https://hb.flatironinstitute.org/). c
Activation/inhibition z scores for the 16 ITRs common between lung, kidney, and established external tumors, shown for all tumor types. ITRs are
segregated according to functional class, i.e., genes and drugs. d New growth and established external tumor tissue sections, stained with anti β-catenin
(an ITR called as activated for three of the five tumor types, see c) and counterstained with Hoechst 33342 to visualize nuclei and Anti β-actin to visualize
cellular cytoskeletons. Selected cells with nuclear (activated) β-catenin staining are indicated by white arrows.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01656-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:152 | https://doi.org/10.1038/s42003-021-01656-7 | www.nature.com/commsbio 7

https://string-db.org/
https://hb.flatironinstitute.org/
www.nature.com/commsbio
www.nature.com/commsbio


While nuclear β-catenin did occur in external established,
regrowth, and internal tumors, it was far from ubiquitous,
suggesting intra-tumor heterogeneity in terms of Wnt signaling
activation. In external tumors, β-catenin was also strongly
localized to the cell membrane in epidermal tumor cells
(Supplementary Fig. 4b). Nuclear β-catenin was also detected in
dividing nuclei of new growth tumors (Supplementary Fig. 4b).
Generally the transcriptomics revealed that each of the three main
shared signaling pathways (Wnt signaling, MAPK signaling and
immune-related signaling) were activated; inversely, but logically,
transcriptomic patterns of drug inhibitors of these pathways were
inhibited (U0126, SB203580, and dexamethasone, Fig. 4c). This
suggests that FP tumors (both external and internal) may be
susceptible to treatment with inhibitors of these pathways.

Transcriptionally-inferred molecular origins of fibropapillo-
matosis. To gain further insights into FP’s origins, we employed
larger-scale network clustering analysis of the ITRs of the DE
transcripts. Established tumors demonstrated clusters of ‘viral
and inflammatory responses’, ‘inhibition of anoikis’ (pro-
grammed cell death of anchorage-dependent cells that detach
from the extracellular matrix), ‘cellular senescence’, and ‘miRNA
regulation’ (Fig. 5a). Interestingly, given FP’s as-yet unidentified
environmental trigger(s), the highly interconnected ITR network
of established external tumors (protein–protein interaction
enrichment P value <1.0E−16) also had signatures related to
‘cellular responses to organic substances and chemical stimulus’
(Supplementary Fig. 5a, b). Furthermore, pathways and DE genes
related to ‘Kaposi sarcoma-associated herpesvirus infection’
(KEGG pathway analysis FDR= 1.20E−32) were also detected in
established external FP (Supplementary Fig. 5a). Kaposi sarcoma
is a human herpesvirus-associated cancer which occurs in
immunocompromised patients, for example HIV/AIDS
patients54. Immune-related processes featured in all five FP
tumor types (Fig. 5a, b and Supplementary Fig. 6a–c). Although
transcriptionally divergent to established external FP tumors,
lung FP also showed an interconnected network (protein–protein
interaction enrichment P value < 1.0E−16) with cellular immune
response and organic substance and chemical response nodes
(Supplementary Fig. 5b). Furthermore, clusters related to
response to inorganic substances, metal ions, viruses, and radia-
tion were also detected (Fig. 5b). Indeed, ‘Quantity of Metal’ was
called as a GO term and was activated for all tumor types, with
the exception of kidney tumors in which it was not called (Sup-
plementary Fig. 6d).

Pathway analysis (Fig. 5c) and GO term analysis (Fig. 5d)
revealed a graded activation of metastatic-related signaling across
the FP tumor types. FP tumors have been described as primary,
despite the numerous tumors which regularly develop on each
afflicted individual. However, to date, no in-depth molecular
analysis has been conducted to determine if all tumors on an
individual are indeed primary, or if all or some of them
(particularly internal visceral tumors) occur due to metastatic
spread of a primary tumor. Our transcriptomics suggests that at a
minimum, FP tumors have a propensity to mutate towards the
activation of metastatic pathways, with kidney tumors showing
stronger activation than external tumors (Fig. 5c, d). Early
external FP tumors do not display metastatic signaling, rather
such pathways are mildly inhibited (Fig. 5c, d). Established
external FP show mild metastatic signaling activation, while
internal tumors, particularly kidney tumors, show elevated
activation of these pathways (Fig. 5c, d). This suggests that
external tumors may acquire metastatic propensity over time. It
should be determined whether the observed activation is due to
metastasis having occurred, or whether the propensity to

metastatic activation falls short of complete metastasis. Kidney
tumors may have arisen as primary tumors in the kidney (Fig. 1e),
but be more prone to evolve towards metastatic tumors than their
external counterparts (Fig. 5c, d). Systematic phylogenetic/
phylogenomic analysis of numerous tumors upon the same
individual should be conducted.

Tumor transcriptional biomarkers of FP patient outcome.
Finally, to identify putative prognostic biomarkers for patient
rehabilitation outcome, tumor transcriptomes from cases with
poor outcomes (deceased and euthanized patients, 23 tumor
samples) were compared (DESeq2) with those of patients with
good outcomes (released, 46 tumor samples). In poor-outcome
tumors, 1177 genes were upregulated and 138 genes were
downregulated (cutoffs; >±2 log2 fold change and P < 0.05). DE
genes were enriched for genes associated with immune and
apoptotic functioning, with these genes tending to be down-
regulated in poor-outcome tumors. To identify strong candidate
biomarkers, the top 20 upregulated and downregulated genes
were assessed for those showing consistency of expression across
both internal and external poor-outcome tumors. This resulted in
eleven shortlisted putative biomarkers (Table 1, Fig. 6a). To assess
the potential of these shortlisted genes as putative biomarkers, we
next examined their expression in an independent study of C.
mydas FP patients rehabilitated at Sea Turtle Inc, South Padre
Island, Texas55. Any correlation between patient outcome and
expression of the 11 putative biomarkers should represent robust
clinically conserved molecular features across different popula-
tions of C. mydas. Since all animals in the Texas cohort were
eventually released, poor-outcome was considered as having over
two rounds of surgery, tumor regrowth, and >200 days in reha-
bilitation, while good outcome was two rounds of surgery or less
and <200 days in rehabilitation (Supplementary Data 3). The
differential expression of all 11 genes in the Texas cohort reca-
pitulated remarkably well with what was seen in the Florida
cohort (Table 1, Fig. 6a), both in terms of directionality (up or
downregulation) and magnitude of change (Log2 fold change). Of
these 11 genes, interferon alpha-inducible protein 6 (Ifi6) and
interferon alpha-inducible protein 27 protein 2B, had by far the
highest expression level in good outcome tumors, suggesting they
would be readily detectible biomarkers (Fig. 6a and Supplemen-
tary Fig. 7a).

Discussion
Wildlife pathogens have been shown to exacerbate the effects of
environmental degradation, habitat loss, and the climate emer-
gency on population levels, potentially leading to local and global
extinctions2,56–59. As the risk of extinction increases for a given
species, the detrimental effects of disease on the population
worsen60. Anthropogenic activities are stressing habitats61, and
the rapid environmental changes induced by these activities are
likely increasing cancer rates in wildlife populations62. Human-
induced perturbations of inshore marine environments have also
been implicated as a co-trigger of the FP tumor epizootic in green
sea turtles10,34,63. Environmental changes are thought to be key to
conferring oncogenicity upon ChHV5-infected turtles, potentially
through compromising or modulating the turtles’ ability to
respond to the viral infection.

We have demonstrated activation of immune-related signaling
in FP tumors and shown localized CD3+ T-cell infiltration
within new growth tumors. It is interesting that the host still
mounts an immune response to ChHV5 within tumors, given the
previous links between FP-afflicted turtles and
immunosuppression10,13,63,64. However, there have been contra-
dictory findings on immunosuppression in FP and non-FP-
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afflicted individuals, and it is currently not clear whether
immunosuppression is a cause or consequence of FP10,12,13,65,66.
Our transcriptomics and immunohistochemistry show that lym-
phocytes do infiltrate and mount an immune response within FP

tumors, likely against ChHV5, although the immune response
appears to be strongest in early-stage new growth tumors. It is
important to elucidate why such a response is not sufficient to
prevent initial tumorigenesis or prevent continued tumor growth,
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Fig. 5 Network analysis of inferred transcriptional regulator analysis of fibropapillomatosis tumors. Network-based functional module discovery of the
top 200 ranked ITRs (called by IPA) of a established external and b lung tumors. c Activation/inhibition z scores of the ‘Colorectal Cancer Metastasis
Signaling’ gene ontology (GO) term associated with transcripts differentially expressed in different types of fibropapillomatosis tumors (kidney FP, lung FP,
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Table 1 Shortlisted putative predictive biomarkers for rehabilitation outcome, as detected by RNA-seq of tumor tissue.

Transcript GFF symbol GFF description Florida cohort Texas cohort

Log2 fold change padj Log2 fold change padj

Gene18158 Pycard Apoptosis-associated speck protein
containing a CARD

3.03 1.34E−46 2.00 3.47E−06

Gene17537 LOC102936464 Cyclic GMP-AMP synthase 5.15 2.47E−35 3.73 7.68E−09
Gene15121 LOC102947706 Proteasome subunit alpha type-6 2.97 2.93E−25 2.86 1.85E−14
Gene11831 Ifi6 Interferon alpha-inducible protein 6 4.92 1.23E−22 5.68 1.08E−43
Gene3090 LOC102943254 Uncharacterized protein LOC102943254 3.051 8.86E−21 5.53 1.65E−26
Gene17471 LOC102940704 Interferon alpha-inducible protein 27 protein 2B 4.65 1.21E−20 5.22 1.01E−20
Gene2107 LOC102940281 Uncharacterized protein LOC102940281,

partial
3.86 1.00E−19 5.59 5.25E−31

Gene17278 Batf2 Basic leucine zipper transcriptional factor ATF 2 2.94 4.81E−19 3.75 2.11E−21
Gene7946 LOC102934626 Interferon alpha-inducible protein 27 protein 2 3.08 1.07E−18 5.00 7.84E−23
Gene12380 Myh6 Myosin-6 3.75 1.74E−18 3.86 7.28E−07
Gene11311 LOC102934712 GTPase IMAP family member 3, partial 6.33 4.81E−18 5.82 2.16E−12

Florida cohort: good outcome is release, whereas poor outcome is died/euthanized in care. Texas cohort (all turtles released): good outcome is two rounds of surgery or less, along with 200 days in
rehabilitation.
GFF general feature format, padj-adjusted P value, CARD C-terminal caspase-recruitment domain, ATF activating transcription factor family, IMAP immunity-associated proteins.
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Fig. 6 Predictive outcome biomarkers. a Expression levels of four transcripts differentially expressed between tumors of good outcome and poor-outcome
patients, as detected by RNA-seq. Florida cohort: N= 69 samples. Per outcome: released (good outcome)= seven turtles; died/euthanized (poor
outcome)= five turtles. Texas cohort: N= 25 samples. Per outcome: prolonged rehabilitation (poor outcome)= two turtles; short rehabilitation (good
outcome)= one turtle.
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why the response lessens over time, and whether the spontaneous
tumor regression that occasionally occurs in non-heavily afflicted
FP individuals is a consequence of elevated T-lymphocyte infil-
tration and reactivation10,12,25,67.

Immune-related and apoptotic-related genes were down-
regulated in tumors from poor-outcome patients compared with
those of good outcome patients, suggesting that inhibition of these
genes may be an important factor in impairing immune and
apoptotic anti-cancer responses. Genes, such as Ifi6 represent
potential predictive biomarkers, capable of discriminating between
poor and good prognoses in FP-afflicted cases. Ifi6 is induced by
interferon and plays a critical role in the regulation of apoptosis.
The biomarkers investigated here likely hold clinical utility for
outcome prediction, given that they showed consistency across FP
patients originating from different juvenile populations (Texas
and Florida), rehabilitated at different facilities, and with RNA
extraction and sequencing conducted by independent teams.

The tumor transcriptional profiling reported here found sig-
natures associated with metal, inorganic substances, viruses, and
radiation. One of the viral signatures identified was ‘Kaposi
sarcoma-associated herpesvirus infection’. Kaposi sarcoma is a
human cancer which arises in immunocompromised patients,
with lesions developing on skin, lymph nodes, or other organs,
and is associated with human herpesvirus 8 (HHV8)3. Like
HHV8, ChHV5 is similarly postulated to drive FP tumor for-
mation in sea turtles also affected by an external environmental or
immunomodulatory trigger, a hypothesis which is strengthened
by the viral35 and immune response signaling dynamics revealed
by the transcriptomics. Taken together, the transcriptional sig-
natures detected in FP tumors suggest that exposure to UV
radiation, metal and/or other inorganic and organic substances
may contribute to immunosuppression and subsequent viral-
induced oncogenesis.

We show that the host molecular drivers of external and
internal FP tumors are largely transcriptionally distinct. Our
whole transcriptome profiling indicated that internal tumors are
more closely related to the tissue type in which they are found
(presumptive tissue of origin), suggesting that they arise from the
de novo transformation of these tissues and not as disseminated
metastases from external tumors. However, skin cancer-related
pathways/GO terms were called for internal tumors from their
DE genes (RNA-seq). In addition, there was a trend towards
increasing activation of metastasis-associated signaling, particu-
larly for kidney tumors. Mutational analyses comparing multiple
tumors within the same individual would elucidate whether cer-
tain internal FP tumors are the result of metastatic spread, or
whether they merely have tendencies towards the activation of
metastasis-associated genes without having arisen from metastatic
processes.

No treatments exist for internal tumors, with current practice
(including Florida Fish and Wildlife Conservation Commission
guidelines) indicating euthanasia for such turtles, regardless of
their health status otherwise68. Furthermore, surgical excision of
external FP tumors often results in high rates of tumor regrowth/
recurrence13,28,36,69. Therefore, it is imperative that chemother-
apeutic approaches are developed to augment surgical removal of
external tumors and to provide first-line therapy for applicable
internal tumors. Transcriptomic profiling of FP tumors revealed
that MAPK, Wnt and TGFβ pathway inhibitors are putative
therapies for both external and internal FP, which could be tar-
geted simultaneously to reduce tumor burdens (e.g., systemic
targeting via oral dosing). Although kinase inhibitors have been
used extensively in human cancers, their application in veterinary
medicine is mostly restricted to dogs and cats and only inci-
dentally in other animals70. While Wnt signaling is heavily
implicated in a wide range of human cancers, no clinically

approved therapeutic yet exists, although clinical trials are
ongoing71,72. Similarly, TGFβ targeting therapeutics are under-
going human clinical trials73. In human head and neck squamous
cell carcinoma, infection with human papilloma virus (HPV)
increases DNA damage. HPV infection is associated with a loss of
TGFβ signaling which increases patient responsiveness to treat-
ment with either radiation or cisplatin74. The MAPK/ERK
pathway is involved in cell proliferation and survival and is
implicated in carcinogenesis75. As such, a number of MAPK
pathway drugs have been developed, such as MEK and BRAF
inhibitors which are most commonly used to treat human mel-
anoma. MAPK/ERK inhibitors have greatly improved the life
expectancy of patients with malignant melanoma, but acquired
resistance almost inevitably occurs. In addition, longer-term
adverse effects of BRAF/MEK inhibitors can occur76, like skin
toxicities that also include secondary malignancies, such as ker-
atoacanthoma and cutaneous squamous cell carcinoma77. RAF
inhibitors may also cooperate with HPV to promote the initiation
of cutaneous tumors78,79. Given the complexities of patient
responses to MAPK targeting therapeutics, other common
pathways between internal and external tumors could be prior-
itized, or therapeutics selected to separately target external and
internal FP tumors.

The key signaling drivers of sea turtle FP revealed here show
remarkable similarity to the most prominent pan-cancer drivers
of human tumors, as detected by WGS of 2550 tumors from 38
human cancer types80,81. This cross-species conserved oncogenic
signaling suggests that FP research may help inform human
cancer research, but more crucially that sea turtle FP can benefit
greatly from advances in therapeutic treatments arising from
human oncology.

Our results provide genome-level evidence for the complex
relationship between external, new growth, established, post-
surgical regrowth, and internal visceral tumors (Table 2). They
reveal the host immune responses mounted within FP tumors,
and host immunity impairment in tumors from patients with
poor outcomes. The application of precision oncology and
genomic approaches can assist in determining the molecular
events underpinning FP tumor development, and enable the
rational design of novel therapeutic interventions (such as
pharmacological disruption of MAPK and TGFβ oncogenic sig-
naling) and clinical management strategies. Importantly, the
adoption of such approaches can elucidate the specific triggers of
FP and the precise mechanisms through which these viral and
environmental triggers drive the ongoing FP disease epizootic in
sea turtles.

Methods
Tissue sampling
Florida cohort. Sampling was carried out under permit number MTP-20–236 from
the Florida Fish and Wildlife Conservation Commission and with the ethical
approval from the University of Florida’s Institutional Animal Care and Use
Committee (IACUC). All samples were obtained from juvenile green turtles (C.
mydas), see Supplementary Data 1 for the sex identification of animals whose sex
could be determined. External FP tumors were surgically removed and punch
biopsies taken of non-tumored areas28. New growth tumors were defined as those
that arose while the animal was in captivity, were weeks old and small in size
(approximately <1 cm max length), while established tumors were present at
admission, and large in size (>5 cm max length). Internal tissue samples (tumor
and nontumor tissue) were obtained from animals during necropsies conducted
immediately after euthanasia. All internal tumors in the study were classified as
fibromas. Note that no animal was euthanized for the purposes of this study, but
current protocols in Florida for rehabilitating sea turtles determined to harbor
internal tumors include euthanasia, as no treatment yet exists for internal tumors,
and additional complications arising from surgery and other health concerns
sometimes necessitate the humane euthanasia of sea turtles in rehabilitation.
Internal tissue samples were treated the same as the external samples. All samples
were obtained from juvenile C. mydas, as this life stage is the most commonly
afflicted by the disease. Sex is not readily determinable in juveniles, but was pro-
vided for individuals that were euthanized due to internal tumors or other
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complications and in which necropsies were performed, or for individuals that
were endoscoped (KARL STORZ, multi-purpose rigid endoscope for small ani-
mals) as part of their rehabilitative care (see Supplementary Data 1). Samples were
stored until extraction in RNA-later (Qiagen) at −80 °C, according to manu-
facturer’s instructions.

Texas cohort. Sampling was carried out under permit number TE181762-4 from
the US Fish and Wildlife Service and with the ethical approval of the University of
Texas Rio Grande Valley’s IACUC. During rehabilitation of stranded sea turtles,
external FP tumors were surgically removed using CO2 laser resection. Samples
were collected into RNA-later (Qiagen) and stored at −80 °C until processing. The
samples reported in the current study correspond to 25 FP tumor samples, from
three juvenile green turtles (C. mydas) of unknown sex that were sampled as part of
an ongoing study of FP in South Texas55.

RNA extraction, library preparation, and sequencing from tissue samples
Florida cohort. For RNA-seq samples, total RNA was extracted using either an
RNeasy Fibrous Tissue kit (Qiagen, Cat No. 74704) or RNeasy Plus kit (Qiagen, Cat
No. 74134) with column-based genomic DNA removal, according to manu-
facturer’s instructions. Ninety RNA samples, comprising 70 FP tumor samples and
20 nontumor samples from 12 juvenile green turtles that stranded in Northern
Florida, were used for sequencing. Samples were further categorized by tissue type,
as well as growth profile for the external tumors only (see Supplementary Data 1).
Sequencing libraries were generated from 500 ng of total RNA using the NEBNext
Ultra RNA Library Prep Kit for Illumina (New England Biolabs, Cat No. E7530),
including polyA selection, according to manufacturer’s protocol. Size and purity of
the libraries were analyzed on a Bioanalyzer High Sensitivity DNA chip (Agilent).
The RNA samples used for library construction had a RIN value range of 7.2–9.8,
with the median RIN value of all samples being 9.1. Libraries were sequenced as
paired-end reads with a read length of 100 bp on a HiSeq 3000 (Illumina). ERCC
Spike-In Mix (ThermoFisher) was used as an internal control: 2 μL of 1:400 diluted
ERCC Spike-In Mix with 500 ng of total RNA input.

Texas cohort. Tissue samples were homogenized using a rotor-stator homogenizer
and total RNA was extracted using the Qiagen AllPrep DNA/RNA Mini kit,
according to the manufacturer’s instructions. RNA quality was assessed on a 2200
TapeStation System (Agilent Technologies) with sample RIN values ranging from
6.4 to 9.6 (µ= 8.4). mRNA sequencing libraries were generated from up to 250 ng
of total RNA and were prepared using a KAPA RNA HyperPrep kit (Roche
Diagnostics) with polyA selection and indexed using a KAPA Dual-Indexed
adapter kit (Roche Diagnostics), according to manufacturer’s instructions. Pre-
pared libraries were evaluated via the 2200 TapeStation System and were pooled for
paired-end 100 bp sequencing on a HiSeq 2500 system (Illumina).

Quality control and read trimming
Florida cohort. The software FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to assess data quality. Reads were then trimmed with
trim_galore (The Babraham Institute, version 0.5.0) to remove ends with a Phred
quality score less than 30, to remove adaptor sequences, and to remove sequences
fewer than 25 bp after trimming. For any samples that contained overrepresented
sequences according to FastQC, the trimmomatic tool82 (version 0.36) was then

used to remove these sequences from reads and any sequences less than 25 bp after
trimming. The number of raw reads per sample and reads remaining after trim-
ming can be found in Supplementary Data 1.

Texas cohort. Sequence data were demultiplexed using bcl2fastq. Raw sequencing
reads were processed with Trim Galore (version 0.6.5, https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/), using Cutadapt83 to remove adapter
sequences and indexes from reads and to exclude low-quality sequences using a
Phred score of 30 and discarding reads with lengths shorter than 25 bp, unpaired
reads were not retained. FastQC (version 0.11.9, (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/)) was used to assess the data quality of the
processed reads.

Read alignment and read counts
Florida cohort. Reads for all RNA-seq samples were then aligned to the draft
genome for C. mydas [GenBank assembly accession number: GCA_000344595.1]84

using HISAT285 (version 2.0.4). The overall alignment rate to the green turtle
genome for RNA-seq samples was 82 ± 7% (mean ± SD) (Supplementary Data 1).
One sample, an external established growth FP tumor, had an extremely low
alignment rate of 26% to the green turtle genome, and was therefore removed from
further analysis.

Transcript abundance for C. mydas specific transcripts was generated using
htseq-count86 (version 0.6.1p1) with the following parameters: not strand-specific,
feature type ‘gene’, and union mode for C. mydas specific transcripts. Count tables
for these transcripts were merged for all RNA-seq samples and counts were
normalized for gene length and sequencing depth by transcripts per million
(Supplementary Data 2).

Texas cohort. The CheMyd_1.0 reference assembly for C. mydas was obtained from
NCBI [GenBank assembly accession number: GCA_000344595.1]84. Reads were
aligned to the reference assembly using HISAT285 (version 2.2.0) with an overall
alignment per sample ranging from 75.26 to 88.29% (µ= 84.00%). Transcript
abundance was quantified in each sample using htseq-count86 (version 0.11.2) at
the gene level according to the defined genomic features of the CheMyd_1.0
assembly.

Differential expression analysis
Florida cohort. Prior to differential expression analysis, the raw counts were pro-
cessed with the RUVseq Bioconductor package87 (version 0.99.1) using the RUVs
method to remove low abundance genes, normalize the RNA-seq data, and remove
unwanted variation among replicates. PCA plots (see Fig. 1d) were generated using
the PtR script in the Trinity toolkit88 both before and after RUVseq normalization.
The RUVseq-processed matrix was then used to identify DE transcripts using the
run_DE_analysis.pl script for the DESeq2 Bioconductor package89 and available
through the Trinity toolkit88. The run_DE_analysis.pl script was adjusted to also
filter out low abundance genes by removing genes with a mean count ≤10 across all
samples prior to differential expression analysis. The resulting lists of DE genes
were sorted and filtered to include only those transcripts with an adjusted P value
of <0.05 and a log2 fold change of >2 or ≤2. A list of upregulated and down-
regulated transcripts that overlapped from different sample types was generated
and used to create area-proportional Venn diagrams of overlap using BioVenn90.

Table 2 Summary of key study findings and their potential future translational applicability.

Key points Future translational applicability

Transcriptomics approaches can provide rapid insights into oncogenic
drivers of FP.

As for human cancer research, determining the signaling events driving
tumor growth is key to the targeted development of improved therapeutic
approaches7,28,33.

The oncological signaling events driving FP tumors show remarkable
similarity to the recently revealed human pan-cancer drivers.

FP tumor growth is driven by the same host oncogenic pathways as human
cancers. Increased likelihood that therapeutics developed to treat human
cancers will be effective in treating FP tumors.

Internal FP tumors are molecularly distinct from the more common
external tumors. However, there are a small number of conserved
potentially therapeutically targetable molecular vulnerabilities in common
between internal and external tumors.

Implications for understanding FP pathogenesis and for future treatment
strategies of external and internal FP.

Turtles attempt to mount an immune response to either the tumor and/or
the virus, but in some animals this appears to be insufficient to prevent
tumor development and growth.

Foundations for future studies examining the link between these specific
immune-related genes and FP biology (e.g., individual susceptibility to FP
tumor growth, and likelihood of spontaneous regression or aggressive
regrowth).

Determined that putative biomarkers (including immune-related genes)
are predictive of patient outcomes.

Lead to the development of clinical patient stratification assays (e.g., RT-
qPCR- or ELISA-based), to guide rehabilitation decisions.

Putative biomarker expression patterns are consistent between distant FP-
afflicted populations (Texas and Florida)

Suggests that clinical therapies and biomarkers trialed in one population
will be equally effective in other populations.
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Boxplots were generated using BoxPlotR91. Volcano plots were generated using
Degust: interactive RNA-seq analysis (http://degust.erc.monash.edu/)92. For out-
come analysis based on Crabp2 expression (Fig. 2b), the data were not normally
distributed (even after log transformation), therefore nonparametric tests
(Mann–Whitney U test) were performed (n= 89: 20 nontumor, 23 poor-outcome
tumor and 46 good outcome tumor samples). Significance was considered to be
p values ≤ 0.05.

Texas cohort. Differential expression analysis was conducted with DESeq289. Count
data generated by htseq-count was imported into a DESeq2DataSet object. Genes
with low counts were filtered from the analysis, retaining 17,542 genes with more
than five counts in two or more samples. To calculate factors of unwanted variation
in this sample, a first differential expression analysis was conducted comparing
tumor samples from the two turtles with poor outcomes to the tumor samples from
the turtle with good outcomes. There were 4365 genes that were not significantly
DE between the two groups with a test statistic P value > 0.5 and these were used to
generate a set of empirical control genes for analysis with RUVSeq87 to estimate
two factors of unwanted variation in the data. These factors were then incorporated
into the DESeq2 analysis design and an analysis was conducted to identify DE
genes with a log2 fold change threshold of 1 and a false discovery rate threshold of
0.05. Previously identified candidate outcome genes (Florida cohort) were then
specifically examined in this sample set.

Pathway analysis and annotation. Gene lists were analyzed for overrepresented
pathways, biological functions, and upstream regulators using IPA (Ingenuity
Systems, Qiagen). The P values reported for IPA results were generated by IPA
using a right-sided Fisher exact test for over-representation analysis,
Benjamini–Hochberg correction for multiple hypothesis testing, and a z score
algorithm for upstream analysis; P values < 0.05 were considered significant. For
the systems-level analysis, only C. mydas DE transcripts that could be annotated to
their closest characterized human homolog were included as input.

To better annotate DE transcripts that had turtle-specific gene identifiers [GenBank
assembly accession number: GCA_000344595.1], which cannot be used with IPA, the
sequence file containing all amino acid sequences for the green turtle genome was re-
annotated using PANNZER2 with the –PANZ_FILTER_PERMISSIVE option93. When
protein and product descriptions for the annotated DE transcripts agreed between
PANNZER2 and the original green turtle genome annotation, the PANNZER2
annotation was used if it provided the name of the closest characterized human
homolog instead of a turtle-specific identifier. However, it was often the case that the
protein and product descriptions for the annotated DE transcripts were not in
agreement, so a random subset of the protein sequences of 11 genes was blasted (blastp,
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE= Proteins) against the NCBI
nonredundant protein database (nr) to determine which annotation method was most
accurate. Since 10 out of the 11 protein sequences tested had the original green turtle
genome annotation as the top hit, the genome annotation was used for instances in
which the two annotations disagreed. If there was no human homolog available in this
case, the genome protein description was checked against the STRING database for
human homologs94. Human annotation was used to enable the most comprehensive
systems-level analysis, as human genes have been the most extensively annotated and
characterized. Out of all of the unique transcripts identified as DE in all pairwise
comparisons, 63% were annotated using the available green turtle genome, 18% were
annotated using the PANNZER2 re-annotation of the green turtle genome amino acid
sequences, 13% were annotated using the protein description and the STRING
database, and 6% of the transcripts either remained unannotated or the annotation was
too ambiguous to use in downstream analyses. Interaction networks were generated
using STRING94 (https://string-db.org/), and functional module discovery networks
were generated using HumanBase (https://hb.flatironinstitute.org/).

Histology methodology, embedding, sectioning, and staining. Turtle tissue
samples were surgically removed using a CO2 laser and stored in 4% paraf-
ormaldehyde at 4 °C overnight. Samples were washed twice in 1x PBS for 10 min;
once in Milli-Q H2O for 10 min; twice in 50% ethanol for 15 min; twice in 90%
ethanol for 15 min; twice in 100% ethanol for 15 min. Samples were stored in 100%
ethanol at 4 °C for three nights. Samples were washed one in 100% aniline for 1 h;
once in 50:50 aniline:methyl salicylate for 1 h; and twice in 100% methyl salicylate
for 1.5 h. Samples were stored in 50:50 methyl salicylate:paraffin at 60 °C overnight.
Samples were washed twice in 100% paraffin at 60 °C for 3 h. Samples were stored
in 100% paraffin overnight and then embedded in 100% paraffin and stored at 4 °C.

Paraffin blocks were sectioned into 6 μm ribbons of six on charged Fisherbrand
Superfrost Plus microscope slides using an AO Spencer “820” microtome and
stored at room temperature.

Tissue sections were rehydrated by a series of washes: xylene A for 10 min;
xylene B for 5 min; 50:50 xylene:alcohol for 5 min; 100% alcohol A for 5 min; 100%
alcohol B for 5 min; 95% alcohol A for 5 min; 95% alcohol B for 5 min; 80% alcohol
for 5 min; 70% alcohol for 5 min; 50% alcohol for 5 min; and distilled H2O for 5
min. Sections were then stored in 1x PBS. Tissue sections were incubated at room
temperature for 1.5 h in 200 μl PBS preincubation medium (1% normal goat serum
+ 0.1% albumin solution from bovine serum+ 0.1% Tritonx100+ 0.02% sodium
azide+ PBS). Tissue sections were incubated at room temperature overnight in
primary antibody medium or control medium (1:100 primary anti β-catenin

antibody from rabbit Sigma C2206+ 1:100 primary anti β-actin antibody
(cytoskeleton marker) from mouse Sigma A5441+ PBS preincubation medium, or
PBS preincubation medium only, respectively). Tissue sections were washed twice
in 1x PBS for 20 min. Tissue sections were incubated at 37 °C for 2 h in 1:250 FITC
GAR (goat anti-rabbit)+ TRITC GAM (goat anti-mouse)+ PBS preincubation
medium. Secondary antibodies were from Jackson ImmunoResearch Labaoratires
Inc. (West Grove, PA) and were affinity purified and selected for very low cross-
reactivity with other animal sources of Ig. Tissue sections were washed with 300 ml
1x PBS and 2 μl Hoechst 33342, trihydrochloride, trihydrate (Life Technologies
Corp., Eugene OR) for 10 min. Tissue sections were washed twice in 1x PBS for 10
min. Three drops of 60% glycerol in PBS containing PPD (p-phenylenediamine,
0.3 mg/ml) as a fluorescence quench inhibitor were applied to the sections and a
cover slip then added to each slide (6 tissue sections per slide). A Leica SP5
confocal microscope was used to visualize and capture images of the fluorescent
staining in each tissue section.

For CD3 staining, tissue sections were sent to the University of Florida
Veterinary Diagnostic Laboratories core facility, and were stained with rabbit anti-
human CD3 ɛ chain antibody clone LN10 (RM-9107-S1 Thermosfisher, Labvision)
and an alkaline-phosphatase based red chromogen detection kit and co-stained
with hematoxylin. This CD3 antibody has previously been validated as also
specifically recognizing green sea turtle CD350.

Retinoic acid therapeutic methodology. Photos with a scale bar were taken of
patients undergoing ectopic RA treatment using an Olympus Tough TG-5, bi-weekly,
for the duration of their treatment. This allowed the surface area of each tumor to be
analyzed using ImageJ. Direct measurements were also taken bi-weekly using iGaging
digital calipers to record the length and width of each tumor. A topical RA therapeutic
(Spear Tretinoin Cream 0.1%) was applied for a 6–8-week course depending on the
veterinary determination of patient status. Each treated tumor was coupled with a
control tumor in the same anatomical location on the opposite side of the body.
Tumor length, width, and surface area were analyzed to determine the overall
effectiveness of topical RA treatments for inhibiting FP tumor growth.

Statistics and reproducibility. Details regarding, sample size, statistical tests
employed, and replicates are presented in each relevant section above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-Seq data including raw reads are deposited in NCBI (https://www.ncbi.nlm.
nih.gov/) under BioProject ID: PRJNA449022 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA449022).
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