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There is mounting evidence that the human microbiome is highly associated

with a wide variety of central nervous system diseases. However, the link

between the human microbiome and glioma is rarely noticed. The exact

mechanism of microbiota to affect glioma remains unclear. Recent studies

have demonstrated that the microbiome may affect the development,

progress, and therapy of gliomas, including the direct impacts of the

intratumoral microbiome and its metabolites, and the indirect effects of the

gut microbiome and its metabolites. Glioma-related microbiome (gut

microbiome and intratumoral microbiome) is associated with both tumor

microenvironment and tumor immune microenvironment, which ultimately

influence tumorigenesis, progression, and responses to treatment. In this

review, we briefly summarize current knowledge regarding the role of the

glioma-related microbiome, focusing on its gut microbiome fraction and a

brief description of the intratumoral microbiome, and put forward the

prospects in which microbiome can be applied in the future and some

challenges still need to be solved.
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1 Introduction

Brain tumor is one of the deadliest cancers, in which glioma is globally recognized

as the most common primary brain tumor in the central nervous system (CNS)

(1). Gliomas are defined as brain tumors of glial origin (2), which have been divided

into 6 different families: (1) Adult-type diffuse gliomas (the majority of primary brain

tumors in neuro-oncology practice of adults, e.g., glioblastoma multiforme (GBM), IDH-
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wildtype); (2) Pediatric-type diffuse low-grade gliomas (expected

to have good prognoses); (3) Pediatric-type diffuse high-grade

gliomas (expected to behave aggressively); (4) Circumscribed

astrocytic gliomas (“circumscribed” referring to their more solid

growth pattern, as opposed to the inherently “diffuse” tumors in

groups 1, 2, and 3); (5) Glioneuronal and neuronal tumors (a

diverse group of tumors, featuring neuronal differentiation); and

(6) Ependymomas (now classified by site as well as histological

and molecular features) (1). According to the classification of

World Health Organization (WHO), glioma can be divided into

1, 2, 3, and 4 grade, and GBM, the most aggressive type of

glioma, is classified by the WHO as a grade 4 brain tumor

associated with high mortality (1). Currently, the primary

treatments for glioma mainly include surgery resection,

radiotherapy, pharmacotherapy, etc. (3). Unfortunately, the

histological hallmark of GBM include microvascular

proliferation, cellular heterogeneity, bilateral invasion, and

extensive pseudopalisading necrosis, which are responsible for

its invasion, resistance, and recurrence after various therapies

(4, 5).In addition, the underlying mechanisms of glioma

pathogenesis remain largely unclear.

There are emerging lines of evidence that the human

microbiome is highly associated with a wide variety of CNS

diseases, including Parkinson’s disease (PD), Alzheimer’s disease

(AD), multiple sclerosis (MS), autism spectrum disorder (ASD),

stroke, et al. (6–10). However, little attention has been paid to

the role of the human microbiome in glioma. The human

microbiome may impact tumor biology across multiple tumor

types, yet previous studies have not proved the exact

mechanisms between the human microbiome and gliomas.

Continuous research regarding the microbiome and gliomas is

reshaping our understanding of the pathogenesis and treatment

of CNS tumors (11, 12).

Increasing evidence has shown that tumor-related

microbiome, including the gut microbiome and intratumoral

microbiome, may play an indispensable role in pathogenesis and

the pathophysiology of gliomas (11–13). The bidirectional

interactions between the gut and the brain have been extended

to include the gut microbiome, namely “the microbiome-brain-

gut axis” (14, 15), where the gut and the resident microbiome

have been found to affect the cranial nerve signaling, immune

induction and the regulation of the microenvironment of the

CNS (16, 17). The crosstalk between the gut microbiome and

brain has emerged to show a potential impact on gliomas,

whereas more preclinical and clinical research are needed to

illustrate involving mechanisms (18, 19).

On the other hand, while the brain was considered to be aseptic,

recent studies have found that microbes are also integral

components of the brain tissue itself in non-inflammatory and

non-traumatic conditions (Table 1). Nejman et al. (11) had detected

the presence of bacteria in GBM. Besides, studies have shown that

tumor-associated microbiome may directly or indirectly regulate

the process of disease and responses to treatment of tumors (11, 26).
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These microbes not only affect metabolic and immune functions of

the hosts but also can perceive changes in the microenvironment

and respond accordingly (27, 28).

However, at present, relatively few reports have

systematically discussed the role of the gut microbiome and

intratumoral microbiome in the initiation, progression, and

therapeutic response of gliomas. In this review, we will explain

not only the potential relationship between gliomas and the

microbiome but also the possible mechanism of the tumor-

associated microbiome in the tumorigenesis and development of

glioma (Figure 1). It is expected to illustrate the potential

mechanism of microbial influence on glioma and provide a

new direction for the diagnosis and treatment of gliomas.
2 The gut microbiome and glioma

The gut microbiome may be involved in the development,

progress, and therapy of glioma through metabolic regulation on

the epigenetic environments and the immune microenvironment

(13, 29, 30). On the one hand, glioma tumorigenesis will change

the metabolism of the human body. Glioma cells reprogram

metabolism by dysregulating intracellular metabolites, thus

glioma cells can proliferate rapidly (31). What’s more, the gut

microbiome can regulate the development of glioma by changing

the epigenetic landscape of tumor cells (32). On the other hand,

the immune homeostasis of the brain requires the gut microbiome

to play a role in the function of microglia, T cells, dendritic cells

(DCs), and other immune cells (28). In addition, the central

nervous system plays a critical role in the microbial composition

and function, intestinal barrier, intestinal physiology, and whole-

body immune system (33).
2.1 Effects of the gut microbiome on
glioma by metabolism

Metabolites circulating through blood vessels and lymphatic

vessels are one of the important signal molecules produced by

the gut microbiome (32), which play an important role in the

initiation and development of gliomas (Table 2).

2.1.1 Tryptophan
Tryptophan (Trp) has been proved that play a critical role in

cell proliferation (50). The metabolism of tryptophan is

regulated directly or indirectly by the gut microbiome (51).

The metabol i tes of tryptophan have immune and

neuroregulatory functions (52, 53), which may bring new

opportunities for the application and transformation of gut

microbiome-related research in drug therapy.

The level of free tryptophan in vivo is mainly determined by

food intake and the activity of three tryptophan metabolic
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pathways. A very small part of free tryptophan is used in protein

synthesis and the production of neurotransmitters (e.g.,

serotonin) and neuro-regulators (e.g., tryptamine). More than

95% of free tryptophan is metabolized through the tryptophan-

canine pathway (53).

The aryl hydrocarbon receptor (AHR) is a ligand-activated

transcription factor involved in regulating cell metabolism,

proliferation, differentiation, cell death, and cell adhesion (34),

which is widely and highly expressed in gliomas, especially in

GBM (54). The gut microbiome is critically involved in dietary

tryptophan metabolism and catalyzes tryptophan to produce

AHR agonists. The latter binds to the AHR of astrocytes and

gliomas to trigger related effects, including inducing T cell

activation, regulating DC function, and recruiting tumor-

associated macrophages (TAMs) through hypoxia-inducible

factor 1 (HIF-1) (55). Currently, a study demonstrated a

function of the neomorphic enzymatic product of mutant

IDH, R-2-hydroxyglutarate (R-2-HG), in regulating amino

acid metabolism in immune cells (56). Paracrine R-2-

hydroxyglutarate not only further impaired monocyteto-DC
Frontiers in Oncology 03
differentiation in IDH-mutant glioma but also delays DC

maturation and specifically suppresses MHC class I/II-

mediated antigen (cross-)presentation and co-stimulation by

IL-6, which translates to reduced T cell activating capacities

(57). What’s more, R-2-HG is taken up by myeloid cells to

enzymatically induce TDO2-dependent activation of the

kynurenine pathway and the AHR (56), which excessively

degraded tryptophan resulting in an amino acid starvation-like

response that triggers the expression of LAT1–CD98, a key

transporter for tryptophan in proliferating cells (58), which

was previously linked to T cell activation and differentiation

(59). At the same time, AHR in DC and TAM can also act on

CD8+T cells to regulate the growth of glioma (60). What’s more,

by consuming endogenous tryptophan, glioma cells activate

AHR and to inhibit T cell function, induce T cell apoptosis,

promote CD39 expression, and induce the differentiation of T

cells mediated by interleukin 10 (IL-10) (61). AHR signaling

pathway may modify metabolic pathways associated with amino

acid, which inhibits the function of immune cells such as glioma-

associated macrophages, T cells, antigen-presenting cells,
TABLE 1 Summary of recent findings on brain tissue microbiome.

Sample
type

Source Methods Findings References

Brain tissue four different CNS regions of one AD patient
and entorhinal/cortex hippocampus samples
from an additional eight AD patients

DNA sequencing Botrytis cinerea and Cryptococcus curvatus are common to all four
CNS regions. Five genera are common to all nine patients:
Alternaria, Botrytis, Candida, Cladosporium, and Malassezia.

(20)

gray and white matter were studied from 24
AD patients and 18 age-matched controls

DNA sequencing E coli K99 and LPS levels are greater in AD compared to control
brains.
Gram-negative bacterial molecules are associated with AD
neuropathology.

(21)

14 AD patients and 12 matched controls 16S rRNA AD brains tend to have strikingly large bacterial loads compared
to controls

(22)

Postmortem hippocampal formation specimens
from 10 neurological controls,10 AD patients,
22 AD patients and 19 neurological controls
from the hippocampus, 12 control and 20 AD
cerebellum samples

16S rRNA Independent of study in both AD and control subjects the most
abundant phyla were Proteobacteria, Firmicutes, Actinobacteria,
and Bacteroidetes. Variations in beta diversity between
hippocampal and cerebellum samples were observed indicating an
impact of brain region on the presence of microbial DNA.

(23)

10 AD patients and 7 matched controls 16S rRNA PCR analysis revealed the presence of several bacteria in frozen
brain tissue from AD patients. Results show that polymicrobial
infections consisting of fungi and bacteria can be revealed in brain
tissue from AD patients.

(24)

711 AD and non-AD control brains RNA-seq and
whole-genome
sequencing

HHV-6 demonstrated little specificity to AD brains over controls
by either method, while other viruses such as Epstein-Barr virus
(EBV) and cytomegalovirus (CMV) were detected at comparable
levels. These direct methods of viral detection do not suggest an
association between HHV-6 and AD.

(25)

Breast, Lung,
Ovary,
Pancreas,
Melanoma,
Bone, and
Brain

1526 tumors and their adjacent normal tissues
samples across seven cancer types.
643 negative controls

16S rRNA and
histological staining
methods

Each tumor type has a distinct microbiome composition. The
intratumor bacteria are mostly intracellular and are present in
both cancer and immune cells.

(11)

Glioma 3 human glioma samples Tissue clearing,
immunofluorescent
labeling, optical
sectioning
microscopy,

the presence of microbiota in human gliomas (12)
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astrocytes, and microglia, resulting in inhibitory changes in the

immune microenvironment during the occurrence and

development of gliomas, and promoting glioma invasion and

migration (60, 62). The key factors for activation of the AHR

pathway include IL4 inducible factor 1 (IL4I1), indoleamine-2,

3-dioxygenase 1/2 (IDO1/2) and Tryptophan 2, 3-dioxygenase

(TDO). IL4I1 was positively correlated with AHR activity and

negatively correlated with patient survival in both high-grade

and low-grade gliomas (63). IDO1/TDO activated the

Kynurenine-AHR signaling pathway, which was positively

correlated with the pathological grade and Ki67 index of

glioma as well as negatively correlated with overall survival

(64). In conclusion, AHR is an important factor of the gut

microbiome affecting the progression of glioma.

2.1.2 Arginine
Arginine, a semi-essential amino acid in humans, is critical

for cell division, healing of wounds, removing ammonia from

the body, immune function, and the release of hormones (65,

66). Arginine-derived metabolites, including polyamines and

nitric oxide, may affect tumor growth. However, the gut
Frontiers in Oncology 04
microbiota can absorb dietary arginine to produce polyamines

and nitric oxide (67, 68), which are released into the blood

circulation system and then transferred to the brain through the

blood-brain barrier (BBB). The polyamine may induce tumor

cell proliferation and metastasis by up-regulating the expression

of ornithine decarboxylase, spermidine, and spermine

acetyltransferase, and Akt1 (39). At present, there is still a lot

of controversy about the effect of nitric oxide on glioma cells, but

its effect may largely depend on the concentration of nitric oxide,

exposure time, cell type, and microenvironment (69). In

addition, the gut microbiota can produce nitric oxide after

reacting with superoxide radicals (70). Nitric oxide can

interfere with T cell function by inducing T cell apoptosis (35,

36). Nitric oxide is more likely to cause damage to DNA and

mitochondria in tumor cells to enhance the sensitivity of drug-

resistant tumor cells to apoptosis during chemotherapy and

immunotherapy (71).

In general, arginine starvation may have both beneficial and

adverse effects on glioma. On the one hand, the gut microbiome

depletes arginine in the tumor microenvironment, which inhibit

T cell cycle regulators, thus inhibiting T cell proliferation (72).
FIGURE 1

Hypothesis of the relationship among gut microbiome, intratumoral microbiome and glioma. Chemotherapy, radiotherapy and immunotherapy
can change the glioma microenvironment and gut microenvironment, thus changing the composition of microbiome, thus shaping the immune
microenvironment of glioma and further affecting the therapeutic efficacy.
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On the other hand, the consumption of nutritional arginine by

the gut microbiome may be beneficial for the eradication of

arginine-deficient tumors, which lack the argininosuccinate

synthetase converting citrulline to arginine, and therefore can’t

meet the high-energy demand in rapid proliferation (37, 38, 73).

Arginine depletion in GBM can induce excessive autophagy,

which will be toxic to tumor cells and may induce apoptosis (37,

38, 40).

2.1.3 Glutamate
Glutamate(Glu) is the most abundant excitatory

neurotransmitter in the brain and plays a crucial role in brain

structure and function including learning, memory, emotion,

and cognition (74). Alpha-ketoglutarate (aKG), a product of Glu
metabolism, is required in DNA demethylation. The gut

microbiome can regulate the dynamic balance between aKG
and Glu (41), and thus affect DNA methylation. At present,

isocitrate dehydrogenase (IDH) gene mutation has been

identified as an important biomarker of glioma. IDH1/IDH2

are NADP+-dependent enzymes that catalyze the oxidative

decarboxylation of isocitrate to 2-oxoglutarate in cytosol and

mitochondria (75). The mutation of the IDH1 and IDH2 protein

leads to enzymes with neomorphic enzyme activity that results

in the conversion of aKG to the metabolite D‐2‐

hydroxyglutarate (D2HG) inhibiting aKG-dependent

dioxygenase (76–78). Thus, the mutation of the IDH1 and

IDH2 causes abnormal DNA and histone methylation,
Frontiers in Oncology 05
ultimately leading to widespread hypermethylation of cytosine-

phosphate-guanine (CpG) islands (79, 80). The IDH mutations

highlight the interaction between metabolism and epigenetics.

Thus, the dynamic interaction between the gut microbiome and

epigenetic modifications can contribute to regulating glioma

growth and development (81).

2.1.4 Glutamine
Glutamine (Gln) is a crucial energy source for glioma cells In

addition, Glu and Gln are both involved in energy metabolism and

neurotransmission in CNS (82). Starvation therapy has also been

shown to reduce the proliferation activity of GBM cells (42–45).

However, more than half of the Glnwas synthesized in situ in CNS

(83), as such the influence of Gln in the peripheral blood on the

energy metabolism of glioma seems to be very limited. At present,

most of the studies concerning energymetabolism of Gln in gliomas

are confined to the CNS. Studies have shown that the Gln level in

the peripheral blood circulation of glioma patients is lower than that

of normal people (84). Gln may be used to compensate for the

excessive energy consumption of glioma cells. The majority of Gln

in the gut comes from the diet, and the rest is produced by various

types of bacteria in the gut (85). In condition of intestinal lesions

such as inflammatory bowel disease or irritable bowel syndrome

where the permeability of the intestinal barrier and BBB was

increased (86), the glutaminergic receptor in CNS is affected by

the microbiome-gut-brain axis and in turn alters the energy

metabolism of CNS. Moreover, changes in the gut microbiome
TABLE 2 Effects of gut microbiota-metabolites on glioma.

Gut
microbiota-
metabolites

Mainly
involved

immune cells
or substances

Findings References

Tryptophan
metabolites

T cells/DCs/TAMs
antigenpresenting
cells (APCs)/
astrocytes/microglia

Activating the AHR pathway triggering tumor cell proliferation in astrocytoma, medulloblastoma, and
glioblastoma (GBM).

(34)

Arginine
metabolites

polyamines and
nitric oxide

Polyamine may induce tumor cell proliferation and metastasis by up-regulating the expression of ornithine
decarboxylase, spermidine, and spermine acetyltransferase, and Akt1.
Nitric oxide can interfere with T cell function by inducing T cell apoptosis.
Arginine depletion in GBM can induce excessive autophagy, which will be toxic to tumor cells and may induce
apoptosis.

(35–40)

Glutamate
metabolites

aKG Gut microbiome can influence aKG levels through Glu, and changes in aKG affect DNA methylation. (41)

Glutamine glutamine Glioma growth and metabolism are highly dependent on Glutamine and Glutamine starvation therapy has also
been shown to reduce the proliferation activity of GBM cells.
Changes in the gut microbiome also directly or indirectly alter the content of glutamine in the brain through a
variety of pathways, thereby affecting the energy supply of gliomas.

(41–45)

Short-chain
fatty acids

acetate, propionate,
and butyrate

The imbalance of the gut microbiome, the decrease of the proportion of probiotics, and the lack of abundance of
the gut microbiome will lead to the decrease of the concentration of SCFAs in circulation, resulting in the
disturbance of morphology and function of microglial cells, resulting in chronic stress status, which affects the
development and prognosis of tumors through stress-related pathways.
Butyrate affects the immune system by inducing Treg differentiation and regulating inflammation.
Acetate and glucose participate in the TCA cycle together, affecting the production of acetyl-CoA in GBM and
Acetylation of Rictor by acetyl-CoA actives mTORC2 drives the proliferation and survival of GBM.

(46–49)
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can directly or indirectly alter the level of glutamine in the brain

(41), ultimately affecting the energy supply of gliomas. Restricting

calories and the ketogenic diet, which limit energy metabolism of

glioma cells and induce metabolic oxidative stress and apoptosis,

may be potential metabolic therapies for glioma (87, 88).

2.1.5 Short-chain fatty acids
Short-chain fatty acids (SCFAs), formed by the fermentation

of undigested carbohydrates by gut probiotics such as

Lactobacillus and Bifidobacterium, can influence the glucose

and energy metabolism (89, 90). The most common SCFAs

included acetate, propionate, and butyrate (91). Studies have

demonstrated that SCFAs can enter the circulation through the

intestinal mucosa and regulate the maturation process and

function of microglia (92). Microglia, known as brain

macrophages, are essential for brain development and

physiological functions (92). The deficiency of the gut

microbiome can lead to defects in the morphology and

function of microglia, which can be partly restored by

replanting the complex gut microbiome (92). The disturbance

of the abundance and composition of the gut microbiome that

decreases circulatory SCFAs not only influences microglial

maturation and function but also leads to a state of chronic

stress, which has a profound effect on the development and

prognosis of tumors through stress-related pathways (48).

SCFAs exert both local and systemic effects through

comprehensive signal networks, and the main mechanisms

involving binding to G-protein coupled receptors and inhibition

of histone deacetylase activity (93, 94). These intracellular

mechanisms have been found in the gut, gut-related immune

tissues, as well as in the nervous system (94, 95). Butyrate affects

the immune system by inducing Treg differentiation and regulating

inflammation (49). What’s more, SCFAs can traverse the BBB and

enter the brain, subsequently modulate the microglia through

epigenetic modifications (96). Acetyl-CoA, an optional products

of lipids, functions in regulating protein acetylation (97). Acetate is

one of the most abundant nutrients in the brain, which can be

absorbed by tumor cells, and affect the production of acetyl-CoA in

GBM (46). Acetylation of Rictor by acetyl-CoA actives mTORC2,

which drives the proliferation and survival of GBM (47).

In general, the role of gut microbiota-derived metabolites in

the glioma microenvironment can be demonstrated in Figure 2.

However, it remains to be seen that whether these metabolites

produced by the gut microbiome also disrupt the BBB and

induce immunosuppression in the brain.
2.2 Effects of the gut microbiome on the
immune microenvironment of glioma

Although glioma seldom metastasize to other parts of the

body, they can be seen as a systemic disease affected by and
Frontiers in Oncology 06
altering the homeostasis of the body’s immune system (28).

The formation of a healthy brain and balanced brain

immunity requires the gut microbiome, which plays a role

in the function of microglia, T cells, DCs and other immune

cells (33).
2.2.1 The transformation of the GBM immune
microenvironment

Previously, due to the existence of the BBB and the lack of a

classical lymphatic drainage system, the brain has been considered

an immune-privileged organ (98). The resultant disruption of

BBB during the process of tumorigenesis may permit the entry of

peripheral immune cells into the brain microenvironment, such as

T cells, macrophages, and B cells (99). Specifically, a major

character of the GBM immune microenvironment is the TAMs

(100). In the process of gliomagenesis, due to the destruction of

the BBB, the resulting bidirectional communication between

immune cells and glioma cells creates an immunosuppressive

microenvironment that promotes the survival and growth of

tumor (101). Then, Glioma-associated microglia and

macrophages are recruited to glioma tissues and can be

polarized into M2-like cells, which become tumor-supportive

and immunosuppressive (102, 103). The increase of M2-like

cells in the brain was associated with GBM and negatively

correlated with the survival time of glioma patients (104).

Besides, previous studies have demonstrated that functional

lymphatic vessels link CNS with lymphatic drainage, and that

its dysfunction may related with brain cancer (105), further,

showing the uniqueness of the brain as an immune-privileged

organ (106). The lymphatic outflow of cerebrospinal fluid is

reduced in GBM, thus more pro-inflammatory and chemokines

can be captured in the glioma microenvironment (107).
2.2.2 Effects of the gut microbiome on glioma
tumorigenesis and development by the
immune system

Present studies have demonstrated that gut commensal

bacteria of newborns can affect the development and function

of the immune system (108). Moreover, the gut microbiome

plays an indispensable role in the induction, training, regulation,

and function of the host immune system (109, 110). In the

presence of some gut commensal bacteria, human DCs can

induce the differentiation of T helper (Th) cells into Th1 and

Th17, promoting the secretion of pro-inflammatory factors

(111). Studies suggested that B. fragilis can induce the

differentiation of IL10-secreting Tregs, which can impair the

anticancer immunity of Th1 and are related to the progression

and invasiveness of gliomas (112). Moreover, interestingly, the

certain gut microbiome may lead to immunosuppression, which

may result in severe local immunosuppression in patients with

GBM (113, 114).
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Recent studies have shown that the gut microbiome can

affect the morphology and function of microglia. For example, in

the absence of particular gut microbiome, the microglia of germ-

free (GF) mice altered in their morphological characteristics and

gene expression profiles, and their maturation process were

inhibited (85, 115). The increase in the number of immature

microglia is considered to functionally impair the immune

activation and stress response in GF mice, which is involved in

the down-regulation of inflammatory factors and the inhibition

of the innate immune signal pathway (49, 115). In addition, the

entry of the gut microbiome and their metabolites into the

systemic circulation can also affect the morphology and function

of CNS microglia (116). As aforementioned, SCFAs, fermented

by bacteria, can control the maturation process of microglia,
Frontiers in Oncology 07
whose lack may lead to the disruption of the structure and

immune function of CNS microglia (115, 117).

Whereas the exact mechanism of the gut microbiome

affecting human brain microglia remains unclear,. the

structure and function of microglia are closely associated

with the diversity and specificity of the gut microbiome. The

smallest colonies of three kinds of bacteria (i.e., Bacteroides

distasonis, Lactobacillus salivarius, and Clostridium cluster

XIV) can maintain the activation and growth of microglia

(115). Recently, a study, for the first time, found that two

antibiotics that change the distribution of the gut microbiome

can promote the growth of gliomas by inducing early damage

of NK cells and phenotypic changes of microglia. In

conclusion, the regulation of the gut microbiome can induce
FIGURE 2

Gut metabolites affect the functions of immune cells and glioma immune microenvironment, which shapes the immune state into the
suppressive type. Metabolites also change the epigenetic landscape of glioma cells, then altering the behavior of tumor.
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a l t e ra t ions of microg l ia and change the immune

microenvironment of glioma.

2.2.3 Effects of the gut microbiome on the
therapeutic efficacy of glioma by the
immune system

It is reported that the gut microbiome plays a therapeutic

role in several types of cancer. Antibiotics may impair the

efficacy of chemotherapy and radiation since they upset the

balance of the gut microbiome (118). Some gut microbiome can

metabolize chemotherapeutic drugs, which leads to drug

resistance (119, 120). Currently, temozolomide (TMZ) is a

first-choice alkylating agent considered as a gold standard

chemotherapeutic drug for newly diagnosed and recurrent

GBM (121). Although the new alkylating agent TMZ can

improve the outcome of GBM patients and has an impact on

the treatment of malignant gliomas, GBM is still an incurable

disease. Orally administered TMZ is converted to 5-(3-

methyltriazen-l-yl) imidazole-4-carboximide (MTIC) in the

blood (122, 123). MTIC is broken down to methyldiazonium

cation and 5-aminoimidazole-4-carboxamide (AIC) (122).

Subsequently, methyldiazonium cation transfers its methyl

group to DNA, RNA, and cellular proteins (123). These

methyl groups are transferred to the 6th position oxygen

atoms of guanine and O6-methylguanines are formed.

Methylation on the O6 position of guanine is a cytotoxic

lesion, which stimulates the mismatch of nucleotide bases

during DNA replication (124). If O6-methylguanine-DNA

methyltransferase (MGMT) mediated repair does not occur,

mismatch repair(MMR) proteins identify mispairing in the

newly synthesized strand and thymine excision or DNA

damage, followed by cell cycle arrest, leading to programmed

cell death (125). Besides, MGMT promoter methylation can

predict responsiveness to alkylating chemotherapies in

glioblastoma. MGMT testing to select patients with

glioblastoma for clinical trials is feasible, and withholding

TMZ from patients without MGMT promoter methylation is

justified in this context.

Clinically, a majority of patients do not respond to TMZ

during the course of their treatment and the efficacy of TMZ is

limited by antibiotics due to the lack of related immune response

(126). Activation of DNA repair pathways is the principal

mechanism for this phenomenon that detaches TMZ-induced

O-6-methylguanine adducts and restores genomic integrity

(125). Consequently, much remains to be clarified; the

mechanism of chemoresistance and the roles of related

molecules including MGMT, mismatch repair enzymes, DNA

excision repair enzymes, PARP, p53, ABC superfamily, and

apoptosis-related factors. Not only approaches to increase

sensitivity to TMZ but also understanding the cellular biology

underlying chemoresistance and the stem cell phenotype will be

helpful to prolong the survival time of patients with GBM.
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Compared with surgical resection and radiotherapy (RT)

alone, the combination of RT and TMZ can improve the 2-year

survival rate from 10% to 27% (127). Previous studies have

demonstrated that the destruction of the gut microbiome

affects the anti-tumor effect of chemotherapy by changing the

tumor microenvironment (128, 129), and shown that the gut

microbiome can regulate the sensitivity of patients to

chemotherapy. Cyclophosphamide is another major

alkylating anticancer drug, and its anti-tumor efficacy is

also affected by the gut microbiome. What ’s more,

cyclophosphamide is capable of altering the composition of

the gut microbiome in healthy mice (130). However, the

changes in microbiome induced by TMZ in the treatment of

gliomas are rarely studied.

Studies in the glioma mice model have reported that the

abundance of Akkermansia, Bifidobacterium, and Verrucomicrobia

increased at 7 days after TMZ treatment (126), which the abundance

of Anaerotruncus increased at 21 days after TMZ treatment (126).

These results suggest that the gut microbiomemay play a crucial role

in anti-tumor response to chemotherapy and immunotherapy.

Studies in mice glioma models have shown that

Akkermansia is involved in glucose and lipid metabolism, thus

improving metabolic disorders (131). Bifidobacterium plays an

anti-inflammatory and immunomodulatory role by inducing

regulatory T cells and regulating the release of inflammatory

cytokines (132, 133). Besides, Bifidobacterium is also capable of

producing folic acid, which is intimately linked to the DNA

methylation of MGMT (134). The status of MGMT promoter

methylation not only is involved in the inhibition of tumor

proliferation but also is related to the anti-tumor effect of TMZ.

As a result, it may improve the therapeutic efficacy of TMZ by

increasing Bifidobacterium, which induced methylation of

MGMT promoter by producing folic acid. It was also found

that glutathione and lipid metabolism pathways were up-

regulated after TMZ treatment, suggesting that there was a

connection between TMZ, oxidative stress, and fatty acid

levels (126). The increase of Akkermansia and Bifidobacterium

and the decrease of Anaerotruncus may be one of the

mechanisms of anti-tumor response to TMZ therapy. Further

studies are required to confirm the role of the specific gut

microbiota in the anti-tumor response of TMZ.

The immunosuppressive microenvironment limits the efficacy

of GBM immunotherapy. Balancing the abundance and

compos i t i on o f the gu t mic rob iome can reduce

immunosuppression in the GBM tumor microenvironment (32).

What’s more, GBM can attract CTLA-4-expressing T cells and PD-

L1-expressing T cells, resulting in inhibiting the activation and

continuation of the immune response of cytotoxic T cells. PD-1

and CTLA-4 cells can produce a strong synergistic inhibitory effect

in T cells (135). Currently, immunotherapy strategies of GBMs

include monoclonal antibodies (PD-1/PD-L1) that block suppressor

T cell pathways (136). Unexpectedly, the anti-tumor effects of
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Bifidobacterium cooperating with the innate immune system and

PD-L1 blocking were observed. These studies suggested that oral

administration of Bifidobacterium in mice can affect the immune

microenvironment of glioma, including induction of DC

maturation, stimulation of tumor-specific CD8+T cells,

recruitment of other immune cells, and activation of type I

interferon signal, which hinder tumor growth (137). PD-1

blockade therapy combined with antibiotic therapy can damage

the therapeutic effect and reduce overall survival (138). On the other

hand, the anti-CTLA-4 antibodies therapy induces intestinal

mucosal injury, gut microbiome imbalance, and translocation of

specific Burkholderia and Bacteroides fragilis, which can induce IL-

12 activation, DC proliferation, activate fecal specific Th1 cells, and

work together to create an ideal immune microenvironment for

CTLA-4 antibody to stimulate a protective anti-tumor immune

response (139). Therefore, the potential effect of the gut microbiome

on the treatment and intervention of glioma should be

further studied.

Other immunotherapies, such as chimeric antigen receptor T cell

(CAR-T) therapy, oncolytic virotherapy, and tumor vaccine therapy,

have also been widely studied in the treatment of GBM (140, 141).

The first CAR-T cell therapy in GBM, interleukin-13 receptor a 2

(IL13Ra2), is the target (142). With the deepening ofresearch, more

and more targets have been excavated. Three Phase I trials of CAR T

cells targeting IL13Ralpha2, Her2/CMV, and EGFRvIII in the

treatment of recurrent GBM have shown promising results (143,

144). However, as there is a lack of clinical efficacy in the application,

CAR-T therapy has not been used in the clinical treatment of GBM.

Moreover, oncolytic virotherapy and tumor vaccine for GBM

treatment is still in the clinical trial stage. None of these treatments

have been proved clinically. Currently, few studies are showing that

the gut microbiome has an effect on these treatments. Interestingly,

studies have demonstrated that the regulation of the gut microbiome

can enhance PD-L1 therapy (145). What’s more, there are common

immunological characteristics between immune checkpoint therapy

and these immunotherapies. Consequently, the regulation of the gut

microbiome may have the potential to improve the efficacy of these

immunotherapies (146). We speculate that the gut microbiome can

be used to maximize the effectiveness of existing anti-tumor

approaches, and could even be used as a biomarker to predict the

prognosis and therapy response of glioma patients (147). However,

further studies are needed to determine the detailed functions of

certain gut microbiome components in the treatment of gliomas.
3 The intratumoral microbiome
and glioma

The gut microbiome is known to modulate anti-tumor

immune responses and can predict the efficacy of treating with

immune checkpoint inhibitors in cancer patients (148).

Nevertheless, the intratumoral microbiome, which directly
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interacts with the local tumor microenvironment and tumor

immune microenvironment, intuitively, may have an immediate

and ultimate effect on the progression and therapeutic effect of

cancer (149).
3.1 The presence of the intratumoral
microbiome in glioma

Traditionally, commensal microbiota of tumor-bearing

tissues is considered resident only in tumors direct contact

with the outside, such as gastrointestinal cancers. However,

evidence have been emerging that broader types of cancer,

originating from some “sterile” organs, may harbor microbes.

A recent study provided a comprehensive characterization of

the intratumoral microbiota with a large cohort across seven

tumor types (11). The group took rigorous and systematic

methods, combining histological staining, DNA sequencing,

and tissue culture. What’s more, this is the first time that

bacteria have been reported in GBM with histological

evidence, showed that the intratumoral bacteria are

predominantly present in the cytoplasm of both immune cells

and tumor cells. Bacterial lipopolysaccharide (LPS) and

lipoteichoic acid (LTA) are the main components of the cell

wall of gram-negative and gram-positive bacteria, respectively.

This study adopted immunostaining of LPS and LTA in human

GBM tissue sections and reported that bacterial LPS was present

but LTA was not in GBM, whereas gram-positive bacteria

(corresponding to LTA) were detected by 16S rDNA

sequencing. This suggests that intratumoral bacteria may have

altered their envelopes and had defects in their cell walls,

especially gram-positive bacteria. Since there were reports

describing the processing of bacterial LPS by macrophages as

very slow (150), LPS signals may therefore be more easily found

in cancer cells and immune cells. Although the localization of

bacterial LPS and 16S rRNA were examined separately by

immunohistochemistry and RNA fluorescence in situ

hybridization (FISH), the presence of bacteria inside glioma

cells needs to be confirmed by transmission electron

microscopy (TEM).

In addition, they also revealed the composition of the

intratumoral microbiome in glioma by a multiplexed 16s

rDNA sequencing method. They profiled 40 human GBM

samples and discovered that Simpson diversity index and the

numbers of bacterial species of GBM microbiome ranked third

out of the seven tumor types. At the phylum level, the microbiota

in GBM tissue was predominated by Proteobacteria and

Firmicutes, followed by Actinobacteria and Bacteroidetes.

However, they didn’t find characteristic communities of

bacteria due to lack of contrast with normal brain tissue (11).

Subsequently, Zhao et al. proposed a three-dimensional (3D)

quantitative in situ intratumoral microbiota imaging strategy that
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combines tissue clearing, immunofluorescent labeling, optical

sectioning microscopy, and image processing, to visualize

bacterial components colonized in gliomas in a contamination-

free manner. They also demonstrated the irregular shapes and

sparse distribution of bacterial LPS signals within human glioma

samples, mostly localized near nuclear membranes or in the

intercellular space (12). This study provides a novel and

promising method to interrogate the direct interactions between

the res ident microbial community and the tumor

microenvironment, and further, push forward the exploration

concerning the presence of microbiota in the brain tumors.

Although there are only a few studies on the existence and

roles of intratumoral microbiota in gliomas, we believe that it

will become one of the key issues in elucidating the pathogenesis

and exploring treatments of glioma, given the emerging

blockbuster papers interpreting the important physiological

roles of microbiota in tumors such as breast cancer.
3.2 The possible origins of the
intratumoral microbiome in glioma

Exploring possible origins of intratumoral microbiota is

another key point, which will help us find ways to detect their

presence, determine the cause and effect with tumors, and

explore their physiological roles.

The origins of the microbiome in glioma remain to be clarified.

Here are some possible sources of the intratumoral microbiome in

the brain. One possibility is that bacteria may already exist in brain

tissues before the occurrence of the tumor, which subsequently

induce the initiation and migration of gliomas. Alternatively, the

gliomas may change the local microenvironment, allowing bacteria

to invade the tumor from other places. After tumorigenesis, the

destruction of the BBB and cell barriers, coupled with relative

immunosuppression, may increase the likelihood of bacteria

moving through the circulatory system to the normally sterile sites

(151). Furthermore, gut bacteria may enter the brain through the

vagus nerve innervating the gut or crossing the BBB (152). Besides,

bacteria may gain access into the brain through neuronal retrograde

transport via the trigeminal nerve, olfactory nerve, and facial nerve

connected to the brain (153, 154). The finding that intracellular

bacteria reside in tumors in the aforementioned study also raises the

possibility that these bacteria are transported into tumor-bearing

tissues along with the migration of immune and cancer cells (11).

However, all of these speculations have yet to be verified.
3.3 The potential effect of the
intratumoral microbiota on glioma

Studies began to demonstrate that there is a non-negligible

correlation between intratumoral microbiome and tumor
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pathological characteristics. A potential carcinogenesis

mechanism of pancreatic cancer has been proposed in a

report that the inflammation induced by the innate immune

response to pathogenic bacteria was associated with pancreatic

carcinogenesis (155). LPS has been shown to promote the

development of pancreatic cancer by blocking the MyD88-

dependent pathway while blocking TLR4 and MyD88-

independent pathway has a protective effect on pancreatic

cancer (156) . S imi lar mechanisms concerning the

inflammatory response of the innate immune system may be

implicated in other types of cancer. Recently, Fu et al.

demonstrated that the depletion of intratumor bacteria

significantly reduced lung metastasis without affecting

primary tumor growth in a spontaneous murine breast-

tumor model (157). During metastasis colonization, the

intratumoral bacteria carried by circulating tumor cells

enhance their resistance to fluid shear stress by reorganizing

actin cytoskeleton, thus promoting the survival of host cells.

Their further study demonstrated that intratumoral

administration of specific bacterial strains isolated from

tumor-resident microbiota promoted metastasis in two

mouse tumor models with significantly different levels

metastatic potential (157). These findings suggest that

intratumoral bacteria are functional and may be involved in

tumor tumorigenesis and development, which provides a

research direction for the mechanism of intratumoral

bacteria in the future. Moreover, intracellular microbiome

may be a potential target for early prevention of many kinds

of cancer metastasis.

In general, research regarding the role of the intratumoral

microbiome in the occurrence and development of tumors is still

limited, let alone gliomas. Whether the intratumoral

microbiome is involved in tumorigenesis or if it is only a

bystander effect caused by the tumor microenvironment,

which has not been fully clarified. Although, some researchers

consider that the intratumoral microbiome may be inducing

tumorigenesis through related mechanisms results in genetic

alterations and initiation of the glioma. In general, the potential

roles of the microbiome in glioma requires to be

further validation.
3.4 Intratumoral microbiota as a
potential biomarker of glioma

There are three types of links between microbiome and

cancer, which allows microbiota to be described as potential

biomarkers in cancer, including increase or decrease in numbers

of specific organisms, the use of a combination model of several

organisms as predictors and evaluating their performance, and

finally altering in microbial diversity indexes that give an overall

landscape of the microbial community (158). These associations
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can be extended to study and identify specific intratumoral

microbiome as biomarkers of gliomas.

In the first approach, specific microbial species and/or

their unique metabolites can be analyzed and selected to serve

as biomarkers to predict the progression, efficacy, and

recurrence of gliomas (159). Another method is to use the

combined model of several microbiota to maximize the area

under the Receiver Operating Characteristics (ROC) curve or

Area Under Curve (AUC) (160). Finally, alterations in

microbial diversity indicators are used as an alternative to

changes in the microbiome, which may be associated with

certain tumor features, independently of what organisms are

present or absent (158).

As the host tissue and intratumoral microbiome can be

affected by carcinogenesis, the genetic heterogeneity of the

intratumoral microbiome may provide an opportunity for the

diagnosis and localization of gliomas (161, 162). For instance, the

above-mentioned study by Nejman et al. found that the

Proteobacteria to Firmicutes (P/F) ratio appears to vary between

tumor types and the predicted functions of bacteria is associated

with tumor types and subtypes. These correlations between the

profile of intratumoral microbiome and its host tumors, identified

by the state-of-the-art DNA sequencing and data analyzing

technologies, may well serve the clinical diagnosis (11).

So far, there is no evidence in the literature on intratumoral

microbiota as a potential biomarker of glioma. And due to

relatively low biomass of the tumor microbiome and the

possible contamination and interference in the process of

sample collection and sequencing, the diagnostic value of the

intratumoral microbiome is undermined. Also, due to a

requirement of biopsy samples, the diagnostic value of

sequencing and analysis-based methods is limited (163). More

research is needed to improve experimental methods and

procedures if the intratumoral microbiome is to be used to

diagnose and predict tumors
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4 Challenges and perspectives

In the past few decades, microbiome studies have provided a

great deal of evidence linking the human microbiome and

cancer. The tumor microbiome is claimed to play a role in

regulating tumor progression and affect the therapeutic efficacy,

which has also been increasingly attracting attention. Therefore,

understanding the relationship between microbiome and

gliomas is beneficial to elucidate the pathogenesis and

corresponding molecular characteristics of gliomas. Moreover,

it may eventually be transformed into useful clinical biomarkers

for the prevention, diagnosis, and treatment of gliomas

(Figure 3.). Although the role of the glioma microbiome has

not yet been fully determined, mounting evidence and research

in these areas are accumulating.

In the one hand, there are still some problems to be

discussed between gut microbiome and glioma. Firstly, the

relationships between the gut microbiome predicting the

efficacy of immunotherapy and race and drug use are not

clear. Secondly, the mechanism of the effect of the gut

microbiome on the treatment of glioma needs to be further

clarified. Thirdly, the timing, dosage, and course of treatment of

antibiotics in the process of immunotherapy are still unknown.

In the other hand, there are still many problems to be solved

between intratumoral microbiome and glioma. For example,

how to avoid potential contamination in the process of collecting

tumor tissues, blood, and fecal samples for sequencing remains

an outstanding issue (164). In order to enhance the

comparability across studies and increase the explanatory

power of the research results, it is urgent to establish

standardized workflows for tumor microbiome sequencing

from sample collection to bioinformatics analysis (165). More

preclinical and clinical studies are needed to evaluate not only

the composition of the intratumoral microbiome but also the

function and multi-omics information of the tumor
FIGURE 3

Application and transformation of microbiome. Stool and/or tumor samples from the population are collected and then sequenced. According
to the analysis of the sequencing results, glioma patients can be diagnosed and classified, as well as guided personalized treatment.
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microbiome. At present, there is still a lack of longitudinal

studies to monitor ongoing changes in the microbiome during

cancer progression. In addition, changes in external factors may

also lead to the alteration of the microbiome composition over

time, which may affect the results of microbiome manipulation

strategies (166).

Moreover, special attention should be paid to in-depth

mechanistic studies to better determine the relationship

between microbiome and carcinogenesis. Despite the ability of

genomic sequencing technology in profiling the taxonomic

diversity of the complex microbiome with low biomass, the

sequent loss of spatial information prevents a comprehensive

view of the communication between bacteria and cells in the

tumor microenvironment. In situ bacterial detection techniques,

including IHC, FISH, and electron microscopy, etc., have been

used to locate bacteria and decipher the host-bacteria

communication in tumors. However, these methods are not

yet capable of simultaneously detecting multiple markers, and

thin tissue slices provide a limited field of view. Emerging

advances in multiplexing bacteria probing (167, 168) and

three-dimensional visualization of thick tissues (169, 170) are

expected to provide an unprecedented insight into the

complicated tumor microbiome interactions. Finally, the

pioneering spatial multi-omics technology may drive the

mapping of the landscape of glioma host-microbiota

interactions in the near future (171). The development of

organs on a chip (OOCs) provides a brand-new way for

experiments (Wu et al., 2020). The OOCs aim to recur the

physiological environment and functionality of human organs

on a chip by simulating the crucial organotypic cellular

architecture and functionality, 3D extracellular matrix,

biochemical factors, and biophysical cues. It provides access to

the experimental research on the mechanism of microbiome and

glioma (Kim et al, 2021).

In addition to the associated reports on gut microbiome and

intratumoral bacteria with glioma, some findings revealed that

oral microbiota features and gene functions are associated with

glioma malignancy and the IDH1 mutation (172). Certainly,

animal and cell experiments are further needed to determine the

causality of IDH1 mutation on the oral microbiome under

glioma status.

To summarize, tumor microbiology is an exciting field to be

explored. It is a desire to find new treatment strategies for glioma,

including targeted and individualized therapy, to maximize the

effect of anti-tumor therapy. More attention is worth paying to

explore the value of the glioma-associated microbiome as a

potential biomarker of diagnosis, treatment, and prognosis. The

establishment of collaborative multidisciplinary networks will be
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based on enhancing knowledge and optimizing resources. We

should spare no effort to overcome the challenges and ensure that

we are ready at all times.
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