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Epilepsy, which is characterized by spontaneous recurrent seizures, is one of the most
common and serious chronic neurological diseases in the world. 30% patients failed to
control seizures with multiple anti-seizure epileptic drugs, leading to serious outcomes.
The pathogenesis of epilepsy is very complex and remains unclear. Brain-derived
neurotrophic factor (BDNF), as a member of the neurotrophic factor family, is
considered to play an important role in the survival, growth and differentiation of
neurons during the development of the central nervous system. Recent years, a series
of studies have reported that BDNF can maintain the function of the nervous system and
promotes the regeneration of neurons after injury, which is believed to be closely related to
epileptogenesis. However, two controversial views (BDNF inhibits or promotes
epileptogenesis) still exist. Thus, this mini-review focuses on updating the new
evidence of the role of BDNF in epileptogenesis and discussing the possibility of BDNF
as an underlying target for the treatment of epilepsy.
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INTRODUCTION

Epilepsy, which currently afflicts approximately 0.5–1% of population in the world (Fisher et al.,
2014; Chen L. et al., 2020), is a chronic progressive central nervous system (CNS) disorder with a
sudden abnormal discharge of neurons in the brain. Epilepsy is characterized by spontaneous
recurrent seizures (SRS), which can lead to a range of serious consequences including temporary
brain dysfunction, accidental injury, neurological damage and cognitive decline (Thijs et al., 2019).
The clinical treatment of epilepsy is mostly dependent on anti-seizure drugs (ASDs). However, about
30% patients still failed to control seizures after regular treatment with multiple ASDs, who may
gradually develop into intractable epilepsy patients (Wang and Chen, 2019). So there is an urgent
need for seeking new therapeutic drugs or strategies. Since the pathogenesis of epilepsy is not yet
clarified clearly, more and more researchers focus on the mechanism research of epilepsy and expect
to find new therapeutic targets via further understanding the underlying mechanisms of several
complex neural circuits (Wang et al., 2017; Xu et al., 2019) and associated molecules (Wang and
Chen, 2019; Xu et al., 2021).

Several important pathological processes, such as neuronal damage, regeneration, and abnormal
neural circuits formation in the epileptogenesis, have been reported (Chen B. et al., 2020; Chen LY.
et al., 2020). Accumulated studies have focused on some key molecules that may be involved in these
pathological processes, including brain-derived neurotrophic factor (BDNF). BDNF is an important
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member of the neurotrophic factor family. It has a major role in
promoting neuronal survival, growth and differentiation during
the development of the CNS (Binder, 2004; Sharma et al., 2020);
moreover, it can maintain the survival and function of the
nervous system and promotes neuro-regeneration after injury
(Song et al., 2008; Sun and Alkon, 2019). It was found that BDNF
mainly exerts its effects through binding to at least twomembrane
receptors: tyrosine kinase receptor B (TrkB) and low affinity
neurotrophic factor receptor (LNGFR, also known as p75)
(Carito et al., 2014). TrkB is a high-affinity receptor for
BDNF, while p75 is a low-affinity receptor, which is
preferentially binded by BDNF precursor (proBDNF). A
significant number of studies have shown an association
between the BDNF-p75 pathway and psychiatric symptoms
such as anxiety, depression and irritability (Lin and Huang,
2020), while very few studies have shown an effect of this
pathway on epileptogenesis (Grabenstatter et al., 2014). The
BDNF-TrkB pathway triggers a series of cascade reactions in
downstream pathways, which is considered to play a main role in
BDNF function (Naumenko et al., 2015). The signaling pathways
downstream of the BDNF-TrkB include the following three:
phospholipase Cγ, phosphatidylinositol 3-kinase and
extracellular signal-regulated kinase cascade pathways, which
are cross-linked to form a complex signaling network. All of
them ultimately lead to the phosphorylation and activation of the
cyclic adenosine monophosphate-response element-binding
protein (CREB), which mediates the transcription of genes
related to neuronal differentiation and survival (Cunha et al.,
2010).

Basic and clinical studies have successively found that BDNF
in the brain has a broad effect. It can alleviate neurological
damage caused by diseases, such as Alzheimer’s disease,
Parkinson disease, spinal cord injury, stroke, and other
neurological disorders (de Boer et al., 2017; Tanila, 2017; Rosa
et al., 2019; Vidal-Martinez et al., 2019), and is strongly associated
with the development of cognitive function, learning, memory,
and depression (Hing et al., 2018). For instance, BDNF
couldregulate synaptic plasticity and long-term potentiation
(LTP) in the hippocampus and other brain regions to affect
learning and memory (Leal et al., 2014). Hippocampal LTP is
damaged in mice lacking BDNF in their neurons, and BDNF can
enhance synaptic plasticity and LTP in the hippocampus and
visual cortex (Mattson, 2008). Due to synaptic plasticity and LTP
being closely related with temporal lobe epilepsy (TLE) and long-
term memory (Tramoni-Negre et al., 2017), it is speculated that
BDNF may be involved in TLE and the long-term memory
deficits after TLE (Hattiangady et al., 2020).

In recent years, BDNF and its downstream pathways have also
been found to play a role in the epileptogenesis (Walczak et al.,
2013), but its exact role and potential mechanisms have not been
completely illuminated. Based on the available studies, two
opposing hypotheses have been proposed, that is BDNF may
facilitate or inhibit the process of epileptogenesis (McNamara and
Scharfman, 2012; Lin et al., 2020).

Therefore, to further understand the role of BDNF in the
epileptogenesis, we aim to review the two views by summarizing
the relevant literature in recent years, which may provide certain

references for further elucidating the formation process of
epilepsy and finding new targets for epilepsy treatment.

BDNF EXPRESSION INHIBITS
EPILEPTOGENESIS

The hypothesis suggested that the expression of BDNF can
suppress epileptogenesis by a combined receptor-ligand
pathway; and the TrkB binding to BDNF may be the most
closely associated with epilepsy between its two corresponding
receptor-ligand pathways (McNamara and Scharfman, 2012;
Iughetti et al., 2018).

Evidences From Preclinical Trials
In cell experiments, BDNF and proBDNF were found to have a
strong regulation in neuronal injury and repair as well as
plasticity of synapses, both of which are derived from a
protein expressed in the CNS: pre-BDNF precursors (Pre-
proBDNF). BDNF and proBDNF mainly bind to TrkB and
p75, respectively (Walczak et al., 2013). Their binding activates
a series of signal cascade responses that may suppress epilepsy by
decreasing pyramidal neuron excitability (Gibon et al., 2015). It is
well known that different processes of epileptogenesis eventually
pass through two necessary pathways: increased excitability of
excitatory synapses and diminished inhibition of GABAergic
neurons (Pitkanen and Lukasiuk, 2009). So the results
suggested that the proBDNF has another pathway except for
transforming into BDNF, which also can suppress epilepsy. In an
animal experiment, BDNF was also found to attenuate the
decrease in the electrical potential of GABAergic neurons in
the brain tissue of epilepsy model of rats (Cifelli et al., 2013).
It is hypothesized that BDNF may inhibit epilepsy by promoting
phosphorylation of certain subunits of GABAergic neurons to
attenuate the disease-induced decrease in GABAergic neuronal
excitability (Cifelli et al., 2013). In a recent study, loss of BDNF-
TrkB signaling in the cortistatin-expressing interneurons resulted
in behavioral hyperactivity and SRS in mice (Maynard et al.,
2020). Meanwhile, BDNF could alleviate the inflammatory
response associated with epileptogenesis and thus reduce the
disruption of the blood-brain barrier, as well as reduce the
number of SRS in an epilepsy model of rats (Bovolenta et al.,
2010). These results also suggested that BDNF has an inhibitory
effect on epileptogenesis. In addition, a study in epileptic
pregnant rats and their offsprings reported that the treatment
of phenytoin increased the level of BDNF in the offspring born by
epileptic rats and exhibited neuroprotection effects. It is suggested
that BDNF reduces the CNS damage caused by epilepsy through
its neurotrophic effect and then reveals the inhibitory effect on
the epileptogenesis (Soysal et al., 2016). Notably, the effects of
drugs and hormones themselves on epileptogenesis could not be
ignored in this study, so this study should be considered as a side
or indirect evidence.

In the study of drugs, Chiu et al. investigated the protective
effect of dexmedetomidine on brain injury in a rat model of kainic
acid (KA) epilepsy and found that dexmedetomidine ameliorated
KA-induced neuronal apoptosis in rats and increased the
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expression of BDNF and TrkBmeanwhile (Chiu et al., 2019). Also
by exploring the effect of pantoprazole on pentylenetetrazol-
induced seizures in rats, it is found that pantoprazole
treatment delayed seizures, protected memory, and likewise
increased the level of BDNF in the brain (Taskiran et al.,
2021). From the above two studies, it is hypothesized that
BDNF expression may inhibit the formation and recurrence of
epilepsy and improve the prognosis through the protective effect
of neurons. In addition, it has been found that CREB is an
important nuclear transcription factor that regulates signaling
pathways in the brain and is closely related to the expression of its
downstream BDNF proteins, forming the CREB/BDNF pathway
(Jiang et al., 2021). A recent study showed that hesperidin can
promote the activation of the CREB-BDNF pathway and
maintain physiological levels of BDNF to inhibit
pentylenetetrazol-induced convulsions in zebrafish (Sharma
et al., 2020). Thus, these drug studies suggested that BDNF
expression may inhibit epileptogenesis from a side as well.

In general, many cellular and animal studies have shown a
consistent relationship between decreased levels of BDNF and
increased incidence of epilepsy, or that recovery of BDNF
expression may alleviate epilepsy in experimental epilepsy.
Notably, we noted that many studies have found the
importance of maintaining normal levels of BDNF in
suppressing epileptogenesis, but more direct evidences are still
needed to clarify whether increasing BDNF to above
physiological levels can significantly suppress epileptogenesis.
Furthermore, although these results have suggested that BDNF
expression may play a role in inhibiting the epileptogenesis, the
precise mechanisms remain unsolved. Therefore, it is worthy of
further researching the exact molecular mechanism of
epileptogenesis inhibited by BDNF and its corresponding
pathways, which may mainly involve in the binding of BDNF
and proBDNF to TrkB and p75 followed by a series of signaling
cascade reactions, the regulatory role of BDNF on GABA, and the
CREB/BDNF pathway and so on.

Evidences From Clinical Studies
Only a few studies reported the relationship between serum levels
of BDNF and epilepsy in patients. A clinical study in patients with
TLE showed that BDNF serum level in patients with TLE was
significantly lower than that in the healthy controlsand the BDNF
serum levels correlated with epilepsy duration (Chen et al., 2016).
Recently, Poniatowski et al.divided the subject patients (n � 143)
into a generalized tonic-clonic seizure group (n � 50) and chronic
epileptic patients (n � 93) to determine their serum BDNF levels
after seizures separately compared to the control group (n � 48).
They found a significant decrease in serum BDNF levels in
patients after generalized tonic clonic seizures, at 1 and 72 h
after seizures in this group (Poniatowski et al., 2021). These data
suggest a direct relationship between the decrease in BDNF levels
and the occurrence of epilepsy. However, it is not clear whether
the decrease in BDNF levels causes the epileptogenesis or isonly a
concomitant phenomenon of epilepsy. Hence, further clinical
studies on this issue are warranted. In addition, BDNF is rarely
reported worldwide as an epilepsy-related screening index, while
BDNF-related genes are now found to be strongly associated with

the development of epilepsy in patients. It has been found (Shen
et al., 2016) that polymorphisms in BDNF-related genes
(Val66Met) will lead to abnormal BDNF secretion and
functional alterations, which in turn will affect the progressive
course of the disease in patients with TLE. Other clinical studies
have found that several miRNAs are involved in the BDNF-TrkB
pathway and certain miRNAs can increase the expression of
BDNF and activate its downstream signaling pathways, which
have an inhibitory effect on the development of epilepsy (Wang
et al., 2016). For example, it has been shown that the expression of
CREB, a key molecule in the downstream signaling pathway of
BDNF, and its corresponding genes increased at the original foci
in patients with intractable epilepsy, while miR-124 may retard
the process of epileptogenesis by reducing the expression of
mRNA corresponding to CREB1 to diminish the effect of
CREB1 on its downstream receptor NMDAR (Wang et al.,
2016). The close relationship among miRNAs, the BDNF-TrkB
pathway, and epilepsy suggests that miRNAs acting on the
BDNF-TrkB pathway may be a promising antiepileptic
treatment strategy.

BDNF EXPRESSION PROMOTES
EPILEPTOGENESIS

The other hypothesis suggests that abnormal activity or increased
levels of BDNF play a positive role in inducing epilepsy and
promoting epileptogenesis (McNamara and Scharfman, 2012;
Iughetti et al., 2018).

Evidences From Preclinical Trials
It has been reported that the deletion of TrkB in mice caused a
significant reduction in behavioural evidence for epileptogenesis
(He et al., 2004; Kotloski and McNamara, 2010), and BDNF and
TrkB expression increased in the amygdala of rats with epilepsy
and depression (Liu et al., 2013; Briz et al., 2015). Ghadiri et al.
found that BDNF levels were reduced in the hippocampus of rats
given 32 mg/kg progesterone in an epilepsy model, while the
number of apoptotic cells in the ipsilateral hippocampus and the
number of damaged neurons was significantly reduced. Thus, the
data showed an antiepileptic effect, which suggested that BDNF
may promote neuronal cell damage and apoptosis to induce
epilepsy formation (Ghadiri et al., 2019). In addition,
decreased percentage of BDNF alleles in KA-induced epilepsy
model of rats causes stronger mossy fiber sprouting to lead to the
formation of abnormal excitatory circuits in the brain, which are
thought to be associated with the epileptogenesis (Skupien-
Jaroszek et al., 2021). This finding is consistent with some
previous studies that BDNF takes part in sprouting events in
epilepsy (Danzer et al., 2002; Scharfman et al., 2002), which
suggests BDNF may play a positive role for epileptogenesis via
promoting the mossy fiber sprouting and the formation of
abnormal circuits. In addition, BDNF induces ryanodine
receptor channel-mediated Ca2+ release and reactive oxygen
species (ROS) production (Yang et al., 2020), while oxidative
damage to mitochondria leads to disruption of mitochondrial
function and cell death signalling, allowing excessive ROS
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production and ultimately triggering epilepsy (Quan et al., 2020).
Therefore, it is speculated that BDNF may induce epilepsy by
causing an increase in ROS production. Overall, BDNF may
contribute to the development of epilepsy by activating its
downstream pathways to modulate a variety of factors, (e.g.,
neuronal cell damage and apoptosis, mossy fiber sprouting,
increase in ROS, etc.).

TrkB is a main downstreammolecule of BDNF. Reduced TrkB
receptors in the amygdala and hippocampus can hinder the
process of epileptogenesis in TrkB receptor-related knockout
mice (Kotloski and McNamara, 2010). The mechanism is
believed that increased TrkB receptor activity inhibits Cl−

efflux by reducing KCC2 expression, which inhibits
GABAergic neuron function and induces epilepsy (Liu et al.,
2014). Similarly, transient inhibition of the TrkB receptor by a
TrkB inhibitor can effectively suppress TLE in mice (Liu et al.,
2013). REST/NRSF, an upstream gene of BDNF, acts to prevent
seizures by inhibiting the activation of the seizure-associated
BDNF-TrkB pathway, suggesting a possible role of the BDNF-
TrkB pathway in promoting epileptogenesis (Chmielewska et al.,
2020). In addition, BDNF overexpression in astrocytes in a
lithium-pilocarpine mouse model worsened their phenotype,
while neuroprotective effects were exhibited after lithium-
pilocarpine treatment in the mice with hippocampal neurons
or astrocyte-specific genes deficient of TrkB and significant
retention of spatial learning ability was observed in the mice
with astrocyte-specific gene deletion of TrkB (Fernandez-Garcia
et al., 2020). The data further suggests that the damaging effects of
the BDNF-TrkB pathway on nerves may be associated with
epileptogenesis.

In summary, these cellular and animal studies have shown that
increased BDNF levels seem to be correlated with the incidence of
epilepsy and increased BDNF may be companied with the
neuronal cell damage. However, the related molecular
mechanisms still require to be further investigated, including
whether increased BDNF levels have a direct damaging effect on
neuronal cells and whether high levels of BDNF can reverse their
protective effect on neurons at low levels.

Evidences From Clinical Studies
Although BDNF has a nutritional and supportive effect on
neurons under physiological conditions, overexpression of
BDNF seems to play an opposite role. Excessive BDNF
significantly increases excitability of neurons and increases
susceptibility to epilepsy, thus producing damage to neurons
and possibly promoting epileptogenesis (Scharfman et al.,
2002). BDNF was found to increase excitatory synaptic
transmission and decrease the inhibitory effect of inhibitory
neurotransmitters on activated synapses, thereby enhancing
the transmission of epileptiform discharges in neural networks
(Doherty et al., 2019). The clinical study also found that the
majority of epileptic patients had higher levels of serum BDNF
than healthy individuals, and the expression of BDNF and TrkB
receptors were positively correlated. It is suggested that BDNF
may play an important role in the occurrence and development of
TLE through TrkB receptors (Iughetti et al., 2018). In addition,
BDNF and its conjugated receptor (TrkB) is increased in both

animal models and human epilepsy patients, especially in the
temporal and hippocampal regions which provides a surgical
strategy for epilepsy surgery. The distribution of BDNF showed
the levels of BDNF and TrkB receptors in the cerebrospinal fluid
of patients with TLE are higher than that in peripheral blood. This
phenomenon was also seen in some drug trials and studies.
Investigating 80 epilepsy patients, who were already using new
ASDs, and 13 healthy subjects, a study found that BDNF levels
were higher in patients with focal epilepsy and new ASDs levels
were negatively correlated with BDNF levels in serum and
positively correlated with total quality of life scores in patients
with multiple new ASDs (Demir et al., 2020). Therefore, the
serum or cerebrospinal fluid test of BDNF may be a convenient
and reliable test for prognostic assessment of TLE and
medications.

Excessive transcriptional expression of BDNF has also been
investigated in epileptic patient (Martinez-Levy et al., 2018). The
use of BDNF gene polymorphism to replace the corresponding
amino acid (Val66Met replaced by methionine) has a good
therapeutic effect on epilepsy, while inhibiting the secretion of
activity-dependent BDNF can prevent seizures (Egan et al., 2003;
Chen et al., 2004). Some epidemiological studies have also found
that BDNF Met66 allele carriers are relatively less prone to
epilepsy in patients with Rett syndrome (Nectoux et al., 2008),
suggesting that altering the molecular structure of BDNF may
have an inhibitory effect on epilepsy formation and BDNF may
have an important role in promoting epilepsy formation. A recent
investigation from Hong Kong and Malaysia for BDNF
genotyping showed a significant correlation between BDNF
and risk of symptomatic epilepsy in Malaysian Indians
(Sha’ari et al., 2016), suggesting that BDNF polymorphisms
may increase the incidence of epilepsy in Malaysian Indians.
Thus, all these studies support the idea that high expression of
BDNF in certain brain regions may cause epilepsy.

In the above clinical study, BDNF levels were indeed higher in
the serum or the cerebrospinal fluid of epileptic patients than that
in normal subjects. However, due to technical and ethical
limitations, we are generally unable to measure the changes of
BDNF in epileptic patients during the epileptogenesis. Therefore,
we have not been able to determine whether this elevation of
BDNF induces neuronal excitation to promote epilepsy, or it is
simply a stressful increase of the body to repair neurons after the
onset of epilepsy. More researches are needed to further elucidate
this issue in the future.

Outlook
Despite accumulated evidences have indicated BDNF is closely
associated with epileptogenesis in recent years, the exact role of
BDNF in the epileptogenesis is still controversial, which may be
concerned with the expression level of BDNF, the brain region of
expression, its upstream and downstream molecules and other
factors. It is speculated that there exist two possible hypotheses
needed to be further verified. One is the expression level of BDNF
in the brain needs to be maintained in certain range; that means,
too high or too low may be unbeneficial for preventing from
epileptogenesis. The other is that the influence of BDNF
expression on epileptogenesis in different neural circuits, brain
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area, or subgroup of neurons may also be diverse. In addition, its
upstream and downstream molecules may be involved in
epileptogenesis. However, the role of several molecules such as
p75 on epileptogenesis is still unclear, which is worthy to be
further studied and clarified. Therefore, more researches and
more direct evidences are needed to further elucidate these issues
in the future; especially the elucidation of the role of BDNF in
different neural circuits, which may have important significance
for further understanding of epileptogenesis. Furthermore, many
proteins and molecules within the BDNF-related signaling
pathway are expected to be molecular targets for clinical
epilepsy detection and treatment, which may be exploited to
participate in the clinical treatment, risk assessment and
prognosis of epilepsy. Hence, BDNF-related translational
research is also a research direction to be focused on in the future.

SUMMARY

BDNF is closely related to epilepsy, since its upstream related
genes and downstream receptors are found to be involved in the
epileptogenesis. Various proteins and molecules in the whole
pathway cross each other to form a complex signal transduction
network; meanwhile, it is regulated by various exogenous
substances. It may play a key role in the excitatory/inhibitory
balance of neurons, which also has important significance of the

occurrence and development of epilepsy. Currently, despite
BDNF showed its effect in several preclinical researches,
clinical studies using BDNF as a therapeutic agent have not
been encouraging. Thus, BDNF is considered as a potential
therapeutic target but not a drug and the modulation of
BDNF and its upstream or downstream molecules by other
agents may have certain clinical feasibility.
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