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S u m m a l ' y  

The effect of brain-enriched gangliosides on constitutive and cytokine-inducible expression of 
major histocompatibility complex (MHC) class I and II genes in cultured astrocytes was studied. 
Before treatment with gangliosides, astrocytes expressed constitutive MHC class I but not class 
II molecules, however, the expression of both MHC dass I and II cell surface molecules on astrocytes 
was induced to high levels by interferon T (IFN-'y). Constitutive and IFN-T-inducible expression 
of MHC class I and II molecules was suppressed by treatment of astrocytes with exogenous 
bovine brain gangliosides in a dose-dependent manner. Constitutive and induced MHC class 
I and II mRNA levels were also suppressed by gangliosides, indicating control through transcriptional 
mechanisms. This was consistent with the ability of gangliosides to suppress the binding activity 
of transcription factors, especially NF-tcB-like binding activity, important for the expression of 
both MHC class I and II genes. These studies may be important for understanding mechanisms 
of central nervous system (CNS)-specific regulation of major histocompatibility molecules in 
neuroectodermal cells and the role of gangliosides in regulating MHC-restricted antiviral and 
autoimmune responses within the CNS. 

1 f"~ells of the central nervous system (CNS) express ex- 
tremdy low levels of MHC class I and II molecules com- 

pared with cells of other tissues (1-3). The lack of MHC 
class I and II molecules may relate to the suppression of MHC- 
restricted T cell-mediated immune responses in the CNS as 
indicated by previous reports demonstrating (a) the lack of 
T cell-mediated clearance of tumors or neurotropic viruses 
from the CNS compared with other tissues (4, 5); and (b) 
genetic resistance to CNS autoimmune disease in rodent strains 
that express relatively low amounts of MHC class II mole- 
cules on CNS cells compared with those of susceptible strains 
(6-9). 

To study the basis for the lack of MHC class I and II ex- 
pression in the CNS, astrocytes have been extensively ana- 
lyzed in vitro. Previous studies (2, 6, 10-13) have shown that 
astrocytes express little or no MHC class I or II molecules 
in vivo or when freshly isolated from the brain. However, 
upon cultivation, these cells constitutively express low levels 
of MHC class I molecules, and in some instances, class II 

IAbbreviations used in this paper: a, asialo; BP, binding protein; CaM, 
Ca 2+/calmodulin; CNS, central nervous system; CRE, class I reguhtory 
element; ICAM-1, intracellular adhesion molecule 1; ICS, interferon 
consensus sequence; MRI, mean fluorescence intensity; NANA, 
N-acetylneuraminic acid; NCAM, neural cell adhesion molecule; PKC, 
protein kinase C. 

molecules (10, 11, 14-16). Cultured astrocytes can be further 
induced by IFN-3' to express high levels of both MHC class 
I and II molecules (14-17). However, whether astrocytes can 
be induced by cytokines to express significant amounts of 
MHC class I and II molecules in vivo during normal im- 
mune responses to infectious agents is unclear. Induction of 
MHC class I and II molecules on astrocytes is generally lacking 
relative to induction on cells of the monocyte lineage that 
either reside within the CNS (microglial cells) or migrate 
into the CNS during an immune response in this tissue (5, 
12, 13, 18). Therefore, MHC class I and II genes appear to 
be negatively regulated in cells of neuroectodermal origin, 
including astrocytes, relative to other tissue cell types, and 
may be important for suppressing immunopathogenic reac- 
tions within the CNS (5). This is consistent with observa- 
tions of localized expression of MHC class I and II molecules 
on astrocytes in some cases of acute immunopathogenic inflam- 
matory T cell responses such as occurs during active lesion 
formation in multiple sclerosis, experimental allergic en- 
cephalomyelitis, and virus-induced encephalomyelitis (19-24). 

The present investigation analyzes the possible role of CNS- 
enriched polysialogangliosides (25, 26) in the suppression of 
both MHC class I and II molecules on astrocytes. Complex 
brain-derived gangliosides are highly immunosuppressive in 
vivo, which is thought to relate to direct inhibitory effects 
on T cells (27, 28). However, indirect effects of gangliosides 

1357 J. Exp. Med. �9 The Rockefeller University Press �9 0022-1007/93/10/1357/07 $2.00 
Volume 178 October 1993 1357-1363 



on APCs (29, 30) may also account for immunosuppression. 
It is shown here that brain-enriched gangliosides profoundly 
and specifically suppress constitutive and IFN-q,-inducible 
expression of both MHC class I and II molecules on astro- 
cytes. The MHC suppressive activity of gangliosides may ex- 
plain the lack of both MHC class I and II molecules on CNS 
cells in general, and may be the basis for the immunoprivihged 
status of the CNS. 

Materials and Methods 
Primary Astrocyte Cultures. BIO.A (H-2 ~) newborn mice were 

obtained from Harlan Sprague Dawley, Inc. (Indianapolis, IN). As- 
trocytes were prepared from 1-2-d-old mouse neonatal cerebral hemi- 
spheres as previously described (10). Astrocytes were treated with 
IFN-7 and gangliosides at 8 d of primary culture and analyzed 
at varying times after treatment as indicated in the text. Im- 
munofluorescent staining of cultures with antibody to glial fibril- 
lary acidic protein (GFAP) showed that the cultures consisted of 
>95% GFAP + astrocytes. 

Gangliosides. Mixed bovine brain gangliosides (>98% pure by 
TIC) contained 21% GM1, 40% GDu, 16% GVlb, and 19% Grlb 
(Calbiochem-Novabiochem Corp., San Diego, CA). Purified GM, 
asialo(a)-GM, ceramide, and N-acetylneuraminic acid (sialic acid; 
NANA) were purchased from Sigma Chemical Co. (St, Louis, MO). 
GDU and GQlb were obtained from Calbiochem-Novabiochem 
Corp. G,b was purchased from Matreya, Inc. (Pleasant Gap, PA). 
Sterile stock solutions were stored at 4~ and diluted with serum- 
free medium (DMEM) directly before adding to astrocyte cultures 
at concentrations ranging from 1 to 100 #g/ml for mixed ganglio- 
sides and at 50 #M for individual gangliosides. 

Immunofluorescence Staining for FACS | Analyses. 8-d primary 
astrocytes were incubated in medium, with or without recombinant 
murine IFN-7 (Genentech Inc., South San Francisco, CA) and 
processed for flow cytofluorimetry using a FACS | (Becton Dick- 
inson Immunocytometry Systems, Mountain View, CA) as previ- 
ously described (31). Some control and IFN-7-treated cultures also 
received mixed bovine brain or individual gangliosides as indicated 
in the text. Mouse or rat mAbs specific for either MHC class I 
molecules (M1/42.3.9.8) (32), MHC class II I-A k molecules 
(OX-6) (Bioproducts for Science, Inc., Indianapolis, IN) (33), mu- 
fine Thy-l.2 molecules (Accurate Chem. & Sci. Corp., Westbury, 
NY), murine intercellular adhesion molecule I (ICAM-1) (Seikagaku 
America, Inc., Rockvilh, MD), or murine neural cell adhesion mol- 
ecules (NCAM) (Chemicon International, Inc., Temecula, CA) (34) 
were used. The cells were analyzed by FACS | to determine the 
mean fluorescence intensities (MFI) and standard errors of samples 
of 10,000 cells. 

Northern Blot Hybridization. Total RNA was extracted from pri- 
mary astrocyte cultures as previously described (10, 31) using a guani- 
dine isothiocyanate technique (35). 15/~g of RNA from each spec- 
imen was electrophoresed in a 0.9% agarose gel and then transferred 
to a nylon filter. The RNA was hybridized with 3ZPqabeled cDNA 
probes to MHC class I H-2L a (36), B-actin (37), MHC class II 
I-A~" chain (38), and MHC class II I-Eo" chain (38). ~-actin was 
used as an internal hybridization control since expression was not 
affected by IFN-',? or gangliosides. Autoradiograms of the filter were 
analyzed by densitometry. 

Nuclear Extracts from Astrocytes. Nuclear extracts from astro- 
cytes were prepared using a miniprep technique (39), as described 
previously (31). 

Oligonucleotides. All oligonucleotides were synthesized as de- 
scribed (40). The foUowing duplex oligonucleotides contain highly 

conserved enhancer sequences in the upstream promoter region of 
MHC dass I genes, as previously described (31, 41) and were used 
as probes or competitors for gel mobility shift assays: (a) the MHC 
class I regulatory element region I (MHC-CRE region I; from - 173 
to -161 relative to the transcriptional start site position of +1); 
this sequence is closely related to the NF-KB enhancer binding site 
shown below (42); and (b) the interferon consensus sequence (ICS) 
(from -167 to -139) of the H-2L d gene. The NF-gB oligonu- 
cleotide (5'CTCAACAGAGGGGACTTTCCGAGAGGCCAT 3') 
(43) used was previously described (40, 41). 

Gel Mobility Shift Assay. Binding of nuclear proteins to the 
MHC-CRE region I/NF-gB-related or ICS enhancer sequences 
was studied by the gel mobility shift assay (41, 44, 45) as previ- 
ously described (31, 46). The density of specific competible bands 
on autoradiograms was quantified by densitometry. 

Results 
Ganglioside-mediated Suppression of MHC Class I and II Mol- 

ecules. Astrocytes in culture constitutively expressed low levels 
of MHC class I molecuhs (10, 31) (Fig. 1 A), but not class 
II molecules (Fig. 1 B) (7). Induction of M HC class I mole- 
cules by IFN-3, treatment for 2 d was dose dependent and 
resulted in levels five to six times higher than constitutive 
levels (Fig. 1 A). Mixed bovine brain gangliosides suppressed 
both constitutive as well as IFN-q,-inducible expression of 
MHC class I molecules in a dose-dependent manner, at 2 d 
after treatment (Fig. 1 A). Treatment with 10 and 100/~g/ml 
gangliosides resulted in a greater than threefold reduction in 
constitutive expression of M HC class I molecules. Ganglio- 
sides at 100 t~g/ml totally blocked IFN-~/induction of MHC 
class I molecules to levels 10-fold lower than those seen with 
1 and 10 U/ml IFN-3' alone and lower than constitutive levels 
(Fig. 1 A). 

Treatment of astrocytes with increasing doses of IFN-3' 
induced MHC class II molecules (I-A k) to levels well above 
background in a dose-dependent manner (Fig. 1 B). As with 
M HC class I molecules, gangliosides suppressed the IFN-3' 
induction of M HC class II molecules (Fig. 1/3). Cultures 
treated with 10 U/ml IFN-3, and 100/zg/ml gangliosides 
expressed 25-fold lower levels of MHC class II molecules than 
astrocytes treated with 10 U/ml IFN-~/alone (Fig. 1 B). 

The effect of gangliosides on MHC class I and II mole- 
cules appeared specific for IFN-3,-inducible genes because (a) 
the level of constitutive cell surface expression of both NCAM 
(34) and Thy-1 (11) molecules was not affected by either IFN~  
or gangliosides; and (b) both constitutive and IFN-7-induc- 
ible ICAM-1 molecules were affected similarly to MHC mol- 
ecules (Table 1). 

Gangliosides Specifically Suppress Levels of MHC Class I and 
II mRNA. IFN-3' and ganglioside treatments that affect 
the expression of M HC class I and II molecules at the call 
surface also affect, in paralld, the expression of MHC class 
I and II mRNA in astrocytes. MHC class I mRNA was con- 
stitutively expressed in astrocytes (Table 2) (10, 31) and treat- 
ment with 50 #g/ml gangliosides for 2 d decreased constitu- 
tive M HC class I mRNA to undetectable levels (Table 2). 
IFN-3' (10 U/m1) induced M HC class I m R N A  by approxi- 
mately threefold over constitutive levels, and addition of gan- 
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Suppression of constitutive and IFN-~,-inducible cell surface expression of MHC class I and II molecules by gangliosides. Primary mouse 
astrocytes were treated with varying doses of IFN-3" in the presence or absence of different concentrations of bovine brain gangliosides (/~g/ml) as 
indicated in the figure. After 2 d of treatment, the cells were stained for MHC class I and II molecules and analyzed by FACS ®. mAbs to MHC class 
I molecules (M1/42.3.9.8) and MHC dass II (I-A ~) (Ox-6) were used. (MFI) Mean fluorescence intensity. 10,000 cells were analyzed per specimen. 
The SE of the means is indicated by vertical lines at the top of the bars. Absence of a vertical line above a bar indicates a SE of <1. The means at 
10 and 100 #g/ml ganglioside were significantly lower (*) than the means for cultures without gangliosides (Student's t test; p <0.05-O.001). 

gliosides to parallel IFN-3,-treated cultures suppressed this 
increase in M H C  class I m R N A  to basal constitutive levels 
(Table 2). 

M H C  class II m K N A  (I-A~ k and I-E~) was undetectable 
in cultures not treated with IFN-3'  (Table 2), which was con- 
sistent wi th  the absence of constitutive cell surface expres- 

sion. IFN-qr (10 U/ml )  induced I-A,~ and I-Ea m R N A  to 
detectable levels (Table 2). Gangliosides suppressed IFN-~/in- 
duction of m R N A  by over 12-fold for I-A,, and to unde- 
tectable levels for I-Ea (Table 2). 

Suppression of MHC Molecules by Gangliosides Is Dependent 
on Sialylation. The bovine brain ganglioside preparation used 

Table 1. Specific Suppression of IFN-7-inducible Proteins by Gangliosides 

IFN-~ (units/ml) 

0 1 10 100 

MHC class I - *  286 (28) 502 (42) 872 (40) 1241 (72) 

+ 84 (10) 117 (13) 507 (40) 1085 (75) 
MHC class II - 4 (1) 5 (1) 36 (4) 89 (7) 

+ 5 (1) 3 (1) 12 (2) 29 (3) 
ICAM-1 - 115 (12) 141 (14) 173 (16) 232 (21) 

+ 89 (10) 101 (10) 124 (12) 152 (15) 
NCAM - 48 (6) 46 (6) 44 (5) 48 (5) 

+ 47 (6) 42 (7) 40 (5) 40 (4) 
Thy-1 - 130 (21) 156 (23) 163 (24) 148 (22) 

+ 150 (23) 146 (21) 154 (22) 150 (21) 

Values represent the MFI of each sample. Values in parentheses represent the SE of the mean. 
" ( + ) Presence or ( - ) absence of 25 #g/ml gangliosides. 
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Table 2. Densitometric Quantification of mRNA Levels 

- IFN-3' + IFN-'F 

Gangliosides - + - + 
MHC class I 6.86 0.20 20.17 6.63 
MHC class II (I-A~) 0.13 0.44 21.28 1.69 
MHC class II (I-Ea) 0.30 0.35 3.02 0.05 

8-d astrocyte cultures were treated with either medium alone ( - IFN-'y) 
or medium with 10 U/ml IFN-~ (+ IFN-'y) for 2 d in the presence or 
absence of 50/~g/ml bovine brain gangliosides. RNA was extracted and 
Northern blots were probed for MHC class I, MHC class II, and B-actin 
mRNA, and autoradiograms were scanned hy a derlsitometer. Values 
represent the density of bands relative to ~-actin mRNA. 

in the studies described above contained a mixture of tetraose 
gangliosides. To determine (a) whether the suppressive ac- 
tivity on astrocytes involved a cooperative effect of  the mixed 
gangliosides; (b) whether individual ganglioside species are 
able to suppress M H C  class I and II molecules; and (c) whether 
the number of sialic acid groups per ganglioside molecule 
is important for suppression, the relative suppressive activity 
of equimolar amounts of GM1, C_~u, Grlb, and GQlb was 
tested. As well, asialo-Gr~ was used to determine the abso- 
lute requirement for sialic acid. As shown in Table 3, individual 

sialylated gangliosides suppressed the expression M H C  mol- 
ecules on astrocytes. In contrast, asialo-GM1 had no suppres- 
sive activity. Suppressive activity depended on the number 
of sialic acid groups such that GQlb = GTIb ~> GDla ~> GM1. 
Ganglioside components ceramide and sialic acid (NANA) 
were totally nonsuppressive (Table 3). 

The Effect of Gangliosides on the Expression of Transcription 
Factor Binding Activities in Astrocytes. Because the ability of 
gangliosides to suppress steady state levels of M H C  class I 
and II protein and m R N A  may be related to direct effects 
on transcription, levels of transcription factors important for 
these genes were analyzed. The transcription of M H C  class 
I genes in a variety of cells, including astrocytes (31) is con- 
trolled primarily by two juxtaposed enhancers, designated 
the MHC-CRE and the ICS, located in the upstream pro- 
moter region of these genes (31, 40, 46). These enhancers 
function by binding specific nuclear protein transcription 
factors, including NF-KB (47, 48). Treatment of astrocytes 
with gangliosides suppressed both constitutive and IFN-y-in- 
ducible expression of both NF-KB-like and ICS binding ac- 
tivities (Table 4). IFN-y (10 U/ml) induced both ICS-binding 
protein (ICS-BP) (by 10-fold) and NF-KB-like activity (by 
fourfold) in astrocytes not treated with gangliosides. Induced 
levels were suppressed by 3.6-fold for ICS-BP and by 60-fold 
for NF-KB (Table 4) by gangliosides. This suppression is likely 
to be important in the suppression of M H C  class I and II 
m R N A  in astrocytes (Table 2) and indicates that ganglio- 

Table 3. C, anglioside Sialylation and Suppressive Activity 

- GM1 C~t~ GTIb GQ1b aGM1 NANA Ceramide 

MHC dass I 1.00 0.66 0.27 0.13 0.14 1.17 1.12 1.04 
MHC class II 1.00 0.15 0.16 0.11 0.10 1.21 1.06 i.07 

Values represent MFI of astrocytes treated with 10 U/rot IFN-T in the presence of 50 #M ganglioside relative to cultures treated with IFN-'y in 
the absence of gangliosides. 

Table 4. Gel Shift Assay of Specific ICS and MHC-CRE Region I (NF-/cB-like) Binding Activities: Effect of IFN-y and 
Bovine Brain Gangliosides 

NF-KB-like ICS-BP 

- IFN-y + IFN-'y - IFN-y + IFN-3, 

Gangliosides (/~g/ml) 
0 93,307 398,044 15,756 152,289 

50 12,368 6,671 7,252 42,678 

Fold suppression 7.5 60.0 2.2 3.6 

8 d primary astrocyte cultures were incubated in medium alone ( - IFN-~r) or medium containing 10 U/ml IFN-'y ( + IFN-) in the presence or absence 
of 50/~g/ml bovine brain gangliosides for 2 d. Nuclei were prepared and proteins were extracted and analyzed by gel mobility shift assay. Specific 
competible bands in autoradiograms were quantified by densitometry and are listed in the table. All densities are relative to a background of 1,100 
for the probe alone. Fold suppression represents the level of binding activities in astrocytes without gangliosides divided by the level of binding 
activities in astrocytes with gangliosides. 
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sides may directly affect transcription factors and transcrip- 
tional activity of these genes. 

Discussion 

To identify possible intrinsic or extrinsic factors present 
in the CNS environment that suppress the expression of both 
MHC class I and II molecules within the CNS in vivo, the 
effect of brain-derived gangliosides on cultured astrocytes was 
analyzed. Brain gangliosides were chosen for study because 
of previous reports on the immunosuppressive capacity of 
gangliosides (27, 28, 49). The present study identifies, for 
the first time, a defined factor, enriched within the CNS, that 
can selectively suppress the expression of both MHC class 
I and II molecules on CNS cells. This suppression may par- 
tially account for the immunosuppressive activity of ganglio- 
sides, particularly within the CNS. 

The mechanism of ganglioside action on astrocytes with 
respect to MHC class I and II gene suppression is unknown. 
The induction of MHC class I and II molecules by IFN-y 
has been shown to involve either protein kinase C (PKC) or 
Ca 2+/calmodulin (CAM) activation, depending on cell type 
(17, 50-53). This may be relevant in the present study be- 
cause gangliosides have been shown to specifically bind to 
and suppress the activity of both PKC and CAM (54, 55). 
Such ganglioside interactions are implicated in the present 
study because the suppressive activity of individual ganglio- 
sides on PKC and CaM closely correlates with MHC- 
suppressive activity as presently shown (Table 3). Also, pos- 
sible ganglioside-mediated modulation of CAM or PKC may 
relate to mechanisms that specifically downregulate MHC 
gene expression, subsequent to signal transduction, such as 
increasing intracellular cAMP (38, 56) and/or alteration of 
transcription factors (42, 57). This latter possibility is con- 
sistent with observations that (a) gangliosides can suppress 
constitutive expression of both MHC class I and ICAM-1 
molecules; and (b) posttreatment of astrocytes with ganglio- 
sides can also suppress MHC class I and II genes subsequent 
to induction by IFN-'), (Massa, P. T., unpublished obser- 
vations). 

Because gangliosides appeared to ultimately regulate MHC 
molecules at the transcriptional level, the ability of ganglio- 
sides to specifically downmodulate the binding activity of 
transcription factors important for the expression of both 
MHC class I and II genes was analyzed. An especially pro- 
found suppressive effect on NF-KB-like binding activity and 
an effect on the binding activity to the ICS enhancer of MHC 
class I gene promoters was observed. This suppression may 
account for the tissue-specific lack of these transcription factors 
both in the brain (47) and in cultivated neurons, as recently 
described (46). As for MHC class I expression, the suppres- 
sive effect of gangliosides on NF-KB-like activity may play 
a role in MHC class II I-A, chain, MHC class II invariant 
chain, and ICAM-1 gene expression (58-62). Further anal- 
ysis of other transcription factors of MHC class II genes is 
in progress, in particular, those that act at highly conserved 
X, Y, and W box enhancers (59, 63, 64). 

Of  all CNS cell types, the suppression of MHC class I 
and II molecules appears to be most complete in neurons. 
Neurons do not constitutively express MHC class I or II mol- 
ecules (1, 46) nor can these molecules be induced by cytokines 
on these cells, either in vivo or in vitro (12, 46). With re- 
spect to the present study, this suppression is consistent with 
the ability of these cells to synthesize high levels of complex 
polysialogangliosides compared with other CNS cell types 
or to cells of other tissues (25, 65-68). It is further proposed 
that the transfer of tetraose polysialogangliosides from neurons 
to astrocytes (65, 66) may be an important mechanism for 
the suppression of MHC class I and II molecules on astro- 
cytes as well as on other CNS cells in vivo. This hypothesis 
is consistent with the sharp decrease in the levels of complex 
tetraose gangliosides in cultured astrocytes (65, 66), the con- 
comitant increase in expression of constitutive and inducible 
MHC class I and II molecules on astrocytes with time in 
culture (6, 10, 31, 69), and the suppression of constitutive 
and inducible expression of both MHC class I and II mole- 
cules by exogenous application of CNS-enriched gangliosides 
to astrocytes in vitro as presented in this study. 
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