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Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea.

Both in vitro and in vivo studies have shown that HC injury can spontaneously activate

Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC

regeneration requires the understanding of the mechanism of HC regeneration, and this

requires knowledge of the key genes involved in HC injury-induced self-repair responses

that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected,

we found that neomycin-treated Lgr5+ progenitors (NLPs) had significantly greater

HC regeneration ability, and greater but not significant proliferation ability compared

to untreated Lgr5+ progenitors (ULPs) in response to neomycin exposure. Next, we

used RNA-seq analysis to determine the differences in the gene-expression profiles

between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea.

We first analyzed the genes that were enriched and differentially expressed in NLPs

and ULPs and then analyzed the cell cycle genes, the transcription factors, and the

signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+

progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16

cell-signaling pathway genes that were significantly upregulated or downregulated after

neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to

show the interaction and connections of genes that are differentially expressed in NLPs

and ULPs. This study has identified the genes that might regulate the proliferation and

HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the

roles and mechanisms of these genes in the cochlea should be performed in the future

to identify potential therapeutic targets for HC regeneration.
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INTRODUCTION

Sensory hair cells (HCs) in the inner ear are specialized
mechanoreceptors for sound recognition. Damage to these
HCs leads to sensorineural hearing loss, which is one of the
most common sensory disorders affecting millions of children
and adults around the world (Duthey, 2013). HC damage is
irreparable in adult mammals due to the absence of cochlear
HC regeneration, and this results in permanent hearing loss. In
contrast, the supporting cells (SCs) located within the auditory
and vestibular system of non-mammalian animals such as birds
and fish retain the ability to proliferate and regenerate HCs
in response to both internal and external auditory/vestibular
damage (Corwin and Cotanche, 1988; Balak et al., 1990; Stone
and Cotanche, 2007; Ma et al., 2008; Warchol, 2011). Several
recent studies have shown that a subset of SCs expressing
Lgr5 can act as progenitor cells in the mammalian cochlea,
and these cells possess limited regenerative capacity during
the early postnatal period (Bermingham-McDonogh and Reh,
2011; Chai et al., 2011, 2012; Shi et al., 2013; Bramhall et al.,
2014; Cox et al., 2014; Waqas et al., 2016a). HC injury in
the neonatal mouse cochlea can initiate self-repair processes
that involve the spontaneous regeneration of HCs from these
Lgr5+ progenitors, and this has been demonstrated both in vitro
and in vivo (Bramhall et al., 2014; Cox et al., 2014). However,
this regenerative ability is lost as the mice age and disappears
completely by the time they reach adulthood (White et al., 2006;
Oesterle et al., 2008; Cox et al., 2014).

In the organ of Corti, the specific arrangement of SCs and
sensory HCs is not only necessary to maintain the mosaic-
like structure, but the SCs might also serve as a reservoir for
regenerating HCs after damage (Li et al., 2003; Lee et al., 2006;
Sinkkonen et al., 2011; Cox et al., 2014; Li W. et al., 2015).
Although the resident SCs in the cochlea are postmitotic by
nature or due to the complex organization of the organ of Corti
(Malgrange et al., 2002; Waqas et al., 2016b), these SCs can be
cultivated in vitro and have been shown to form floating spheres
with the ability to differentiate into various cell types of the inner
ear, including HCs (Oshima et al., 2007a; Martinez-Monedero
et al., 2008; Wang T. et al., 2015). In vitro and in vivo regulation
of key developmental factors such as Wnt (Malgrange et al.,
2002; Yamamoto et al., 2006; Shi et al., 2013; Liu L. et al., 2016),
Notch (Li et al., 2003; Doetzlhofer et al., 2009; Kelly et al., 2012;
Ni et al., 2016), and Atoh1 (Zheng and Gao, 2000; Shi et al.,
2012; Kuo et al., 2015) in these SCs can stimulate the increased
formation of myosin7a+ HCs. In addition, studies have shown
that upon cochlear HC damage, non-sensory SCs/progenitors
display at least some capacity to proliferate and mitotically
regenerate HCs as a self-repair response (Li et al., 2003; Cox et al.,
2014). To better understand the HC regeneration mechanism
and to develop strategies to promote HC regeneration in adult
mammals, it is important to identify the key genes involved in the
HC injury-induced self-repair response, including proliferation
of SCs/progenitors and their differentiation into HCs.

Lgr5 is a downstream target gene of the Wnt pathway and is
a marker for adult stem cells that is expressed in a subpopulation
of cochlear SCs (Chai et al., 2011). In the inner ear, Lgr5+

progenitors exist in a quiescent state, but they have been shown
to proliferate and regenerate HCs via both mitotic division
and direct transdifferentiation after HC injury (Madisen et al.,
2010; Chai et al., 2012; Bramhall et al., 2014; Cox et al., 2014).
Genetic ablation of HCs in vivo stimulates the Lgr5+ progenitors
to acquire the HC fate in all three cochlear turns but with
significantly higher frequency in the apex compared to the base
(Cox et al., 2014). Similarly, in the in vitro ototoxic damage
model, the new HCs originate from the Lgr5+ progenitors that
are present in the organotypic culture of the neonatal cochlea
(Bramhall et al., 2014). These studies have demonstrated that
damage to the neonatal cochlea results in regeneration of HCs
initiated by the Lgr5+ progenitors. Our previous work also
demonstrated that after neomycin injury the Wnt signaling
pathway is activated in the cochlea as part of the repair process
(Kelly et al., 2012), but the key genes involved in neomycin
injury-induced self-repair responses have not yet been identified.
It is important to understand the detailed molecular mechanism
regulating the ability of Lgr5+ progenitor cells to proliferate and
regenerate HCs after neomycin injury because this might provide
new targets for stimulating these Lgr5+ progenitors to regenerate
more HCs after ototoxic damage and to restore hearing.

In this study, we explored the molecular mechanism
behind the proliferation and HC regeneration capacity of
Lgr5+ progenitors after neomycin damage. We found that
after neomycin treatment, Lgr5+ progenitors located within
the neonatal cochlea showed a significantly greater ability to
proliferate and regenerate HCs. We further performed RNA-seq
profiling of the Lgr5+ progenitors in order to determine the
genes involved in regulating proliferation and HC regeneration
after neomycin treatment. Finally, we predicted the function
of the differentially expressed genes involved in inner ear
HC regeneration using the STRING bioinformatics tool to
construct a protein-protein interaction network. These datasets
are expected to systematically explain the detailed regulatory
mechanisms of Lgr5+ progenitors in HC regeneration after
neomycin damage.

MATERIALS AND METHODS

Animals and Genotyping PCR
Lgr5-EGFP-IRES-creERT2 mice (Stock #008875, Jackson
Laboratory) and Rosa26-tdTomato reporter mice (Stock
#007914, Jackson Laboratory) of either sex were used in the
experiments (Pannier et al., 2009). We performed all animal
procedures according to protocols that were approved by the
Animal Care and Use Committee of Southeast University and
were consistent with the National Institute of Health’s Guide for
the Care and Use of Laboratory Animals. We made all efforts
to minimize the number of animals used and to prevent their
suffering.

The tail tips were collected from transgenic mice, and genomic
DNA was obtained by adding 180 µl 50mM NaOH, incubating
at 98◦C for 60min, and adding 20 µl 1M Tris-HCl (PH 7.0). The
genotyping PCR was carried out by using 2 × Tag Master Mix
(Vazyme), and the PCR protocol was as follows: 94◦C for 3min;
37 cycles of 94◦C for 30 s, 60◦C for 30 s, and 72◦C for 45 s; 72◦C
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for 5min; and holding at 4◦C. The genotyping primers were as
follows: Lgr5 (F) CTG CTC TCT GCT CCC AGT CT, wild-type
(R) ATA CCC CAT CCC TTT TGA GC, mutant (R) GAA CTT
CAG GGT CAG CTT GC; tdTomato wild-type (F) AAG GGA
GCT GCA GTG GAG T, (R) CCG AAA ATC TGT GGG AAG
TC;mutant (F) GGCATTAAAGCAGCGTATC, (R) CTGTTC
CTG TAC GGC ATG G.

In vitro Lineage Tracing of Lgr5+ Cells in
the Neomycin-Damaged and Undamaged
Cochleae
Heterozygous Lgr5-EGFP-creERT2 mice were crossed with
homozygous Rosa26-tdTomato mice to trace the fate of Lgr5+
cells in the neomycin-damaged and undamaged cochleae.
Postnatal day (P)1 mice were sacrificed, and the cochleae
from Lgr5-EGFP-creER/Rosa26-tdTomato double-positive mice
were dissected out and cultured in DMEM/F12 medium
supplemented with N2 (1:100 dilution, Invitrogen), B27 (1:50
dilution, Invitrogen), heparin sulfate (50 ng/ml, Sigma), and the
growth factors bFGF (10 ng/ml, Sigma), EGF (20 ng/ml, Sigma),
and IGF-1 (50 ng/ml, Sigma) (full medium). The cochleae were
treated with 500 nM 4OH-tamoxifen for 4 days all through the
culture. At 12 h after the beginning of the culture, the cochleae
were treated with 0.5mMneomycin (Sigma) or PBS for 12 h. EdU
was added to the medium at a final concentration of 10 µM to
label dividing cells. The damaged and undamaged cochleae were
examined after 4 days of culture.

Isolation of Lgr5+ Cells via Flow Cytometry
Approximately 30–40 postnatal day (P)1–2 Lgr5-EGFP-creERT2
mice were sacrificed, and the cochleae were dissected out and
cultured in full medium as described above and allowed to
recover for a few hours. The cochleae were treated with 0.5mM
neomycin (Sigma) or PBS for 12 h and then allowed to recover in
full medium for 24 h. The cochleae were collected and trypsinized
by prewarmed 0.125% trypsin/EDTA (Invitrogen) at 37◦C for
8min. The same amount of soybean trypsin inhibitor (10 mg/ml,
Worthington Biochem) was then added to terminate the trypsin
reaction in the neomycin-damaged and undamaged cochlear
samples. Cochleae were separated into single cells by pipetting
up and down 80–100 times with blunt tips and then percolating
through a 40 µm cell strainer (BD Biosciences). Dissociated cells
from damaged and undamaged cochleae were sorted on a BD
FACS Aria III using the GFP channel.

Real-Time PCR
Total RNA was extracted from ∼20,000 FACS-sorted neomycin-
treated Lgr5+ progenitors (NLPs) and 20,000 untreated Lgr5+
progenitors (ULPs) with an RNeasy micro kit (QIAGEN).
RevertAid First Strand cDNA Synthesis Kit (Thermo) was used
to synthesize cDNA. Real-time PCR was carried out by using the
SYBR Green PCR Master Mix (Roche) on a BIO-RAD C1000
Touch thermal cycler (BIO-RAD). Each 25 µL PCR reaction
mixture contained 12.5 µL 2 × SYBR Green PCR Master Mix,
0.5 µL forward primer (10 µM), 0.5 µL reverse primer (10
µM), 2 µL template, and 9.5 µL sterilized distilled water. Each
group contained three samples, and each PCR was carried out

in triplicate. The PCR protocol was as follows: 50◦C for 2 min;
95◦C for 10min; 45 cycles of 95◦C for 15 s, 60◦C for 1 min; and
a melting curve was performed starting at 65 up to 95◦C with an
increase of 0.5◦C per 1 s to verify primer specificities. Expression
levels of each gene was normalized to the GAPDH in the same
samples. The primers were listed in Table 1.

Immunostaining and Image Acquisition
Neomycin-damaged and undamaged cochleae were fixed in 4%
PFA for 1 h at room temperature, washed with PBS, blocked
with blocking solution (5% donkey serum, 0.5% Triton X100,
0.02% sodium azide, and 1% bovine serum albumin in pH 7.4
PBS) for 1 h at room temperature and then incubated with
primary antibodies diluted in PBT1 (2.5% donkey serum, 0.1%
Triton X100, 0.02% sodium azide, and 1% bovine serum albumin
in pH 7.4 PBS) at 4◦C for overnight. This was followed by
washing with 0.1% (v/v) Triton X100 in pH 7.4 PBS three
times and incubating with fluorescence-conjugated secondary
antibody for 1 h at room temperature. After washing with 0.1%
(v/v) Triton X100 in pH 7.4 PBS three times, the cochleae
were mounted in antifade fluorescence mounting medium
(DAKO). Anti-Myosin7a (Proteus Bioscience, #25-6790, 1:1,000
diluted in PBT1) and anti-Sox2 (Santa Cruz Biotechnology,
#17320, 1:400 diluted in PBT1) primary antibodies were used.
Donkey anti-rabbit Alexa Fluor 555 and 647 fluorescence-
conjugated secondary antibodies (Invitrogen, #A-31572, #A-
31573) were used for Myo7a, and donkey anti-goat Alexa Fluor
647 fluorescence-conjugated secondary antibody (Invitrogen,
#A-21447) was used for Sox2. All the fluorescent secondary
antibodies were diluted 1:400 in PBT2 (0.1% Triton X100 and
1% bovine serum albumin in pH 7.4 PBS). The Click-it EdU
imaging kit (Invitrogen) was used after blocking to measure cell
proliferation. The fluorescence images were obtained with a Zeiss
LSM 710 confocal microscope and were analyzed using ImageJ
(NIH) and Photoshop CS5 (Adobe Systems).

RNA Extraction for RNA-Seq
Approximately 20,000 NLPs and 20,000 ULPs were used to
extract total RNAwith an RNeasymicro kit (QIAGEN). The RNA
samples from NLPs and ULPs were split into three fractions for
separate replicates.

RNA-Seq
The double-strand cDNA was synthesized from the total RNA
obtained from the NLPs and ULPs using a TruSeq R© RNA LT
Sample Prep Kit v2 (Illumina). Illumina adapters were ligated
to the cDNA molecules after end repair. The ligated cDNA
was cleaned up with AmpureBeads (Beckman). The library was
amplified using 10 cycles of PCR for the enrichment of adapter-
ligated fragments. Transcriptome sequencing was carried out
with the Illumina-Hiseq2500 system (Illumina).

RNA-Seq Data Analysis
The TopHat (version 1.3.2) and CuffLinks (version 2.2.1) pipeline
was used for the alignment and gene expression counting
of the RNA-seq data. The reference genome was mm9. The
FPKM (Fragments per kilobase of exon per million fragments
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mapped) values of all mouse genes were summarized together
for all samples (three NLP samples and three ULP sample).
Spearman’s rank correlation was calculated for all pair-wise
combinations of samples based on the FPKM values of all mouse
genes. The correlation plot was generated with the corrplot
package in R. A total of 46,983 mouse RefSeq transcripts
were included in the RNA-seq data, and the means and
standard deviations of the normalized data were calculated. A
value of p < 0.05 was considered statistically significant. The
expression levels of all of the transcriptional units were measured
according to their FPKM values, and a cutoff level of 0.1 was
chosen as the lowest gene expression level. The Gene Ontology
(GO) analysis was done with DAVID GO Annotation. The
protein-protein interaction information was extracted from the
STRING database. The interaction network graph was drawn
by Cytoscope 3.4. Important gene lists of different signaling
pathways (Wnt, Notch, TGFβ, Hippo) were determined based on
information from the KEGG database.

Statistical Analysis
For each condition, at least three individual experiments were
conducted. Data are presented as mean ± standard errors of
the means (SEM), and GraphPad Prism6 software was used to
analyze the data. Statistical significance was determined using
a two-tailed, unpaired Student’s t-test. A value of p < 0.05 was
considered statistically significant.

RESULTS

Neomycin Injury Significantly Increases the
HC Regeneration Ability of Lgr5+

Progenitors
Lgr5+ progenitors can generate HCs in the neonatal mouse
cochlea both in vivo and in vitro (Madisen et al., 2010; Chai
et al., 2012). Here we performed an in vitro lineage-tracing
experiment by crossing Lgr5-EGFP-creER mice with the Rosa26-
tdTomato reporter strain (Pannier et al., 2009). P1 Lgr5-EGFP-
creER/Rosa26-tdTomato double-positive mouse cochleae were
dissected out and cultured in full medium with 500 nM 4OH-
tamoxifen to lineage trace the Lgr5+ progenitors. The cochleae
were damaged by neomycin as described in the Section Materials
and Methods (Figure 1A). We found that significantly more
tdTomato/Myo7a double-positive HCs were generated from
NLPs compared to ULPs in all three turns of the cochlea
(Figures 1B–D, p < 0.05, n ≧ 4), suggesting that the Lgr5+
progenitors generated significantly more HCs after neomycin
injury in vitro.

Neomycin Injury Increases the Proliferation
of Lgr5+ Progenitors, but Not Significantly
To determine the capacity of Lgr5+ progenitors in the damaged
and undamaged cochleae to mitotically regenerate HCs, EdU
was added to the culture medium from day 0 to day 4 of
the culture (Figure 2A). Consistent with previous reports, there
were no tdTomato+/EdU+ cells in the undamaged cochleae
(Figures 2B,C). In contrast, tdTomato+/EdU+ cells, which

represent the mitotically proliferated Lgr5+ progenitors, could
be found in the damaged cochleae (Figure 2C), indicating
that neomycin treatment induced the proliferation of Lgr5+
progenitors. However, due to the very small number of
tdTomato+/EdU+ cells in neomycin-treated cochleae, the
increase was not significant compared to the control group
(Figure 2B, p= 0.093, n ≧ 5).

Analysis of RNA-Seq Results
P1 Lgr5-EGFP-creER mice were sacrificed, and their cochleae
were dissected out, cultured in full medium for 12 h, and then
treated with 0.5mM neomycin for 12 h to damage the HCs.
The cochleae were allowed to recover for another 24 h before
trypsinization and cell sorting (Figures 3A,B). After cell sorting,
20,000 isolated NLPs and 20,000 ULPs were collected and RNA-
seq analysis was performed to determine their gene-expression
profiles (supplementary Data Sheet 1). Principal component
analysis was performed to assess the reproducibility of the
measurements, and theNLP andULP groups were well-separated
by principal component 1 (Figure 3C). After excluding FPKM
values below 0.1, 20,362 and 17,123 transcripts were examined
separately in the NLPs and ULPs, respectively, and 14,877
transcripts were expressed in both cell populations (Figure 3D).

Genes Enriched in Lgr5+ Progenitors from
Neomycin-Damaged and Undamaged
Cochleae
To determine the expression profiles of the richly expressed
genes in NLPs and ULPs, the expression levels and abundance
rankings of the most abundantly expressed genes were analyzed.
Figure 4A shows the expression levels for the top 200 most
abundant transcripts in ULPs (blue bars). The expression levels
(red bars) and the abundance rankings (red numbers) of the
same transcripts in NLPs are also illustrated for comparison.
Similarly, Figure 4B shows the 200 most abundant transcripts in
NLPs (red bars) compared to expression levels (blue bars) and
abundance rankings (blue numbers) of the same transcripts in
ULPs. As shown in both figures, most of the transcripts that were
abundantly expressed in NLPs were also abundantly expressed in
ULPs. However, Gm10800, Net1, Gm28438, Nr4a1, Krt18, Ler2,
and Dpysl2 (NLP rank > 1,000) were only richly expressed in
ULPs, and Cdkn1a, Ccng1, and Suco (ULP rank > 1,000) were
only richly expressed in NLPs.

Differentially Expressed Genes in Lgr5+

Progenitors from Neomycin-Damaged and
Undamaged Cochleae
In order to characterize the genes that are significantly
differentially expressed in NLPs and ULPs, we selected the
differentially expressed genes in NLPs and ULPs by comparing
their expression levels (fold change > 2.0, p < 0.05). Figure 5A
shows an overall picture of the expressed transcripts in NLPs and
ULPs. We found 549 genes that were significantly upregulated
and 1,817 genes that were significantly downregulated in the
NLPs. Figures 5B,C show the top 150 differentially expressed
genes in ULPs and NLPs. Among these differentially expressed
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FIGURE 1 | In vitro lineage tracing of Lgr5+ cells in the neomycin-treated and untreated cochleae of postnatal mice. (A) 4OH-tamoxifen was added to the culture

medium of P1 Lgr5-EGFP-creER/Rosa26-tdTomato mouse cochleae throughout the entire culture period. Neomycin was added at 12 h after the start of the culture

and was allowed to incubate for 12 h, and the same amount of PBS was added to the untreated cochlear culture medium for the same amount of time. The cochleae

were examined after 4 days of culture. (B,C) Images of the neomycin-treated and untreated cochleae show that tdTomato+/Myo7a+ cells were found in the outer hair

cell subset (arrow) in the apical, middle, and basal turns. (D) The cochleae were divided into three equal parts by length (apex, middle, and base), and all of the

tdTomato+/Myo7a+ cells in each turn of the neomycin-treated cochleae and untreated cochleae were counted and statistically analyzed. *p < 0.05, **p < 0.01, n is

shown in parentheses. Scale bars are 20 µm in (B,C).

genes, the functions of some genes have been reported previously.
Fgfr3 (Bermingham-McDonogh et al., 2001; White et al., 2012),
Egfr (Saleem and Siddiqui, 2015), Frem2 (Nadol et al., 2015),
Alms1 (Oshima et al., 2007b; Jagger et al., 2011), and Lif (Marzella
et al., 1999; Su et al., 2015) were upregulated in NLPs, while
Hes1, Hes5 (Zheng et al., 2000; Zine et al., 2001; Li et al., 2008;
Murata et al., 2009; Abdolazimi et al., 2016), Hey1 (Tateya et al.,
2011; Korrapati et al., 2013; Benito-Gonzalez and Doetzlhofer,
2014; Petrovic et al., 2015), HeyL (Kamaid et al., 2010), Id1,
Id2, and Id3 (Ozeki et al., 2005; Jones et al., 2006; Laine
et al., 2010) were downregulated in NLPs. We did not find any
functional reports for the other differentially expressed genes
in the cochleae, and these should be further studied in the
future.

Cell Cycle Analysis
Cells in the postnatal mammalian cochlea have exited the cell
cycle, and they have very limited capacity for proliferation. In
order to promote mitotic HC regeneration, it is important to

induce HC progenitors to re-enter the cell cycle and tomitotically
regenerate HCs. In the present study, we have demonstrated
that neomycin injury could induce the proliferation of Lgr5+
progenitors; however, the detailed mechanism behind this
proliferative ability remains unclear. It has been reported that
some of the cell cycle genes play important roles in the
cochlea. To identify the possible genes regulating the cell
cycling of Lgr5+ progenitors, we examined the expression
levels of cell cycle genes in NLPs and ULPs. We found
that Cdkn1a, Mdm2, Tfdp1, and Wee1 were significantly
upregulated in NLPs and that Ccne2, Gadd45g, Nek2, Sfn, and
Stmn1 were significantly downregulated in ULPs (Figure 6A).
Real-time PCR was also performed to confirm the RNA-seq
results, and these two results were consistent (Figure 6D).
Only the roles of Cdkn1a (Laine et al., 2007; Laos et al.,
2017) and Mdm2 (Mahmoodian Sani et al., 2016) in the
inner ear have been described, and there are no reports of
the roles of the other cell cycle genes we identified in ULPs
and NLPs.
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FIGURE 2 | EdU labeling measures the proliferation of Lgr5+ cells in the neomycin-treated and untreated cochleae of postnatal mice. (A) 4OH-tamoxifen and EdU

were added to the culture medium of P1 Lgr5-EGFP-creER/Rosa26-tdTomato mouse cochleae throughout the culture period. Neomycin was added at 12 h after the

start of the culture and was allowed to incubate for 12 h, and the same amount of PBS was added to the untreated cochleae culture medium for the same amount of

time. The cochleae were examined after 4 days of culture. (B) All of the tdTomato+/EdU+ cells found in the neomycin-treated cochleae and the untreated cochleae

were counted and statistically analyzed. The p = 0.093, n is shown in parentheses. D3, the third-row Deiters’ cells; PC, inner pillar cells; IPC, inner phalangeal cells;

GER, the lateral greater epithelial ridge. (C) Images of the neomycin-treated and untreated cochleae show that tdTomato+/EdU+ cells were found in the

neomycin-treated cochleae (arrows). Scale bars are 20 µm in (B).

Transcription Factor Analysis
Transcription factors (TFs) are able to bind to enhancer or
promoter regions of their downstream target genes and control
their expression levels. There are many TFs involved in inner
ear development and HC regeneration. In the present study,
we have demonstrated that NLPs have significantly greater HC
regeneration capacity compared to ULPs (Figure 1, p < 0.05,
n ≧ 4). However, the roles of a large number of TFs in the
inner ear and in HC regeneration are unknown. To determine
the TFs that might be involved in HC regeneration from Lgr5+
progenitors, we compared the expression levels of TFs in the
mouse genome between NLPs and ULPs. Figure 6B shows the
88 significantly differentially expressed TFs in NLPs and ULPs
(fold change > 2, p < 0.05). Some of the TFs that were
downregulated in NLPs, includingHes1,Hes5 (Zheng et al., 2000;
Li et al., 2008; Murata et al., 2009; Abdolazimi et al., 2016), Hey1
(Tateya et al., 2011; Korrapati et al., 2013; Benito-Gonzalez and
Doetzlhofer, 2014; Petrovic et al., 2015), HeyL (Kamaid et al.,
2010), Id1, Id2, and Id3 (Ozeki et al., 2005; Jones et al., 2006;
Laine et al., 2010), have been reported to play roles in negatively
regulating HC fate and patterning regulation during inner ear
development (Figure 6B). Real-time PCR was also performed
to confirm the RNA-seq results, and these two results were
consistent (Figure 6E). However, a significant number of the
differentially expressed TFs have not been characterized in the
inner ear before and need to be further studied in the future.

MicroRNA Analysis
MicroRNAs (miRNAs) are untranslated RNAs that control gene
expression by binding to target mRNAs. A few miRNAs have
been reported to play important roles in HC protection and HC
regeneration (Jen et al., 1997; Li et al., 2010; Wang et al., 2010;
Patel and Hu, 2012). We found that 149 miRNAs were uniquely
expressed in ULPs, 151 miRNAs were uniquely expressed in
NLPs, and 59 miRNAs were expressed in both ULPs and
NLPs. Among these miRNAs, eight miRNAs were significantly
differentially expressed in NLPs and ULPs (p < 0.05, fold
change > 2; Figure 6C).Mir466i was upregulated in NLPs, while
Mir7007,mmu-mir-703,Mir107,Mir361,Mir6918,Mir6982, and
Mir3099 were downregulated in NLPs. These miRNAs have not
been characterized in the inner ear and need to be further studied
in the future.

Signaling Pathway Analysis
A few signaling pathways have been shown to be involved
in inner ear development and HC regeneration. To determine
which pathways might be involved in regulating HC regeneration
from Lgr5+ progenitors, we compared the expression of genes
involved in these pathways between the NLPs and ULPs. The
most significantly different expression was in genes involved
in the Notch and TGFβ pathways. Among the Notch signaling
genes examined here, Hes1, Hes5, Hey1, HeyL, and Notch4
were all significantly downregulated in NLPs compared to ULPs
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FIGURE 3 | FACS sorting of Lgr5+ cells in the neomycin-treated and untreated cochleae of postnatal mice. (A,B) Neomycin was added for 12 h to the P1

Lgr5-EGFP-creER/Rosa26-tdTomato mouse cochleae, and the same amount of PBS was added to the untreated cochlear culture medium for the same amount of

time. After a 24 h recovery period, the cochleae were trypsinized and dissociated into single cells for FACS sorting. (C) PCA analysis for all three replicates of NLPs

(Neo1, Neo2, Neo3) and ULPs (Con1, Con2, Con3). (D) Venn diagram showing the number of genes expressed in NLPs (Neomycin) and ULPs (Control).

(Figure 7A). Among the TGFβ pathway genes, Tfdp1 and Bmpr2
were upregulated, while Id1, Id2, and Id3 were downregulated in
NLPs (Figure 7C). Among the Wnt pathway genes, Wnt7a and
Fzd7 were upregulated, while Sfrp1,Ctnnbip1,Mapk10, andDkk2

were downregulated in NLPs (Figure 7B). Among the Hippo
pathway genes, Bmpr2,Wnt7a, and Fzd7 were upregulated, while
Id1, Id2, and Id3 were downregulated in NLPs (Figure 7D).
Real-time PCR was also performed to confirm the RNA-seq
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FIGURE 4 | Expression levels of the top 200 genes in NLPs and ULPs. (A) Expression levels of the top 200 genes in ULPs in descending order. The red numbers on

the right side of each panel represent the ranking of the same genes in NLPs. (B) Expression levels of the top 200 genes in NLPs in descending order. The blue

numbers on the right side of each panel represent the ranking of the same genes in ULPs. *p < 0.05, **p < 0.01.

results, and these two results were consistent (Figure 7E). The
differential expression of genes in the Notch, TGFβ, Wnt, and
Hippo pathways suggests that these pathways might be involved
in neomycin-inducedHC regeneration. Some studies have shown
that the Notch and Wnt pathways regulate the development
of inner ear progenitor cells (Chai et al., 2012; Kelly et al.,
2012). Thus, although the TGFβ and Hippo pathways are not
well-studied they are probably the pathways that regulate HC
regeneration.

Gene Ontology and Network Analysis of
the Genes That Are Differentially Expressed
in Lgr5+ Cells from Neomycin-Damaged
and Undamaged Cochleae

To view the interactions and connections of genes that are
differentially expressed in NLPs and ULPs, we constructed a
STRING protein-protein interaction network for the significantly
differentially expressed genes (fold change > 2.0, p < 0.05) with
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FIGURE 5 | Differentially expressed genes in NLPs and ULPs. (A) All differentially expressed genes in NLPs and ULPs. The red line represents the expression level of

transcripts from NLPs, and each blue dot represents the expression level of the same transcript from ULPs. (B) The 150 most differentially expressed genes in ULPs.

The blue numbers on the right side of each panel represent the gene expression fold change in ULPs compared to NLPs. (C) The 150 most differentially expressed

genes in NLPs. The red numbers on the right side of each panel represent the gene expression fold change in NLPs compared to ULPs.

the functional categories in the gene ontology (GO) analysis
(DAVID; Figure 8B). This comprehensive analysis revealed a
complex gene network that might regulate HC regeneration. We

also applied GO analysis to genes with altered expression levels
in NLPs (fold change> 2.0, p< 0.05; Figure 8A). The genes with
altered expression in NLPs were highly enriched in functional
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FIGURE 6 | Expression of cell cycle-related genes, TFs, and miRNAs. (A) Expression levels of 60 genes that are involved in cell cycle regulation. (B) Fold change

expression levels of differentially expressed transcription factors in descending order. (C) Expression levels of 57 microRNAs expressed in the cochlea. In all three

panels, the red and blue numbers separately represent the fold change in upregulated and downregulated gene expression in NLPs compared to ULPs. *p < 0.05,

**p < 0.01. (D) Real-time PCR analysis of the cell cycle genes. (E) Real-time PCR analysis of the TFs reported in the inner ear. *p < 0.05, **p < 0.01. n = 3.

categories such as auditory receptor cell fate determination,
neuron fate determination, signaling, and extracellular matrix
formation and maintenance.

DISCUSSION

The Lgr5+ cells of the cochlea are reported to be an enriched
population of HC progenitors that have high potential for
HC regeneration. Previous studies have shown that Lgr5+
progenitors regenerate more HCs upon damage in vitro and in
vivo, but the detailed mechanisms behind NLP HC regeneration
and the gene expression profile differences between NLPs and

ULPs are not well-understood. Here, we found that NLPs show
much greater capacity for HC regeneration than ULPs and that
NLPs have slightly greater proliferation than ULPs. We carried
out RNA-seq experiments to analyse the detailed gene expression
profile of NLPs and ULPs. We first analyzed the top 200 most
abundant genes and top 150 most differentially expressed genes
in NLPs and ULPs, and we found 9 cell cycle genes, 88 TFs, and
16 signaling pathway genes that were differentially expressed in
NLPs and ULPs. Some of the differentially expressed genes have
been reported to be involved in inner ear development and HC
regeneration in neonatal mice. However, many of the other genes,
which might be potential targets regulating HC regeneration,
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FIGURE 7 | Expression of genes in the Notch, Wnt, TGFβ, and Hippo signaling pathways. (A) Expression levels of 32 genes that are important for the Notch signaling

pathway. (B) Expression levels of 105 genes that are important for the Wnt signaling pathway. (C) Expression levels of 59 genes that are important for the TGFβ

signaling pathway. (D) Expression levels of 80 genes that are important for the Hippo signaling pathway. In all four panels, the red and blue numbers separately

represent the fold change in upregulated and downregulated gene expression in NLPs compared to ULPs. *p < 0.05, **p < 0.01. (E) Real-time PCR analysis of the

signaling pathway genes. *p < 0.05, **p < 0.01. n = 3.
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FIGURE 8 | Gene ontology (GO) and network analysis of the differentially expressed genes in NLPs and ULPs. (A) GO analysis of differentially expressed genes in

NLPs and ULPs. (B) STRING protein-protein interaction analysis of genes that are upregulated (red) and downregulated (blue) in NLPs. The gray lines indicate

protein-protein interactions in the STRING database. The DAVID GO annotation was used to cluster the genes according to biological function.
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TABLE 1 | Real-time PCR primers.

Gene symbol Primers (5′–3′) Gene symbol Primers (5′–3′)

Hes1-F CCAGCCAGTGTCAACACGA Nek2-F TTCCATCCTCAGCCATGAAGA

Hes1-R AATGCCGGGAGCTATCTTTCT Nek2-R CCTGCACTTGGACTTGGCAA

Hes5-F AGTCCCAAGGAGAAAAACCGA Sfn-F GTGTGTGCGACACCGTACT

Hes5-R GCTGTGTTTCAGGTAGCTGAC Sfn-R CTCGGCTAGGTAGCGGTAG

Hey1-F GCGCGGACGAGAATGGAAA Stmn1-F TCTGTCCCCGATTTCCCCC

Hey1-R TCAGGTGATCCACAGTCATCTG Stmn1-R AGCTGCTTCAAGACTTCCGC

HeyL-F CAGCCCTTCGCAGATGCAA Notch4-F CTCTTGCCACTCAATTTCCCT

HeyL-R CCAATCGTCGCAATTCAGAAAG Notch4-R TTGCAGAGTTGGGTATCCCTG

Id1-F CCTAGCTGTTCGCTGAAGGC Bmpr2-F TTGGGATAGGTGAGAGTCGAAT

Id1-R CTCCGACAGACCAAGTACCAC Bmpr2-R TGTTTCACAAGATTGATGTCCCC

Id2-F ATGAAAGCCTTCAGTCCGGTG Wnt7a-F GGCTTCTCTTCGGTGGTAGC

Id2-R AGCAGACTCATCGGGTCGT Wnt7a-R TGAAACTGACACTCGTCCAGG

Id3-F GACGACATGAACCACTGCTAC Fzd7-F GCCACACGAACCAAGAGGAC

Id3-R CCTGGCTAAGCTGAGTGCC Fzd7-R CGGGTGCGTACATAGAGCATAA

Cdkn1a-F CCTGGTGATGTCCGACCTG Sfrp1-F CAACGTGGGCTACAAGAAGAT

Cdkn1a-R CCATGAGCGCATCGCAATC Sfrp1-R GGCCAGTAGAAGCCGAAGAAC

Mdm2-F TGTCTGTGTCTACCGAGGGTG Ctnnbip1-F GCCACAGCACTCCATCGAC

Mdm2-R TCCAACGGACTTTAACAACTTCA Ctnnbip1-R GTCTCCGATCTGGAAAACGC

Tfdp1-F TTGAAGCCAACGGAGAACTAAAG Mapk10-F AAGCCAGGGATTTGTTGTCTAAG

Tfdp1-R TGGACTGTCCGAAGGTTTTTG Mapk10-R GGATGGAGGGAGACTCTCACT

Wee1-F GTCGCCCGTCAAATCACCTT Dkk2-F CTGATGCGGGTCAAGGATTCA

Wee1-R GAGCCGGAATCAATAACTCGC Dkk2-R CTCCCCTCCTAGAGAGGACTT

Ccne2-F ATGTCAAGACGCAGCCGTTTA Wwtr1-F CATGGCGGAAAAAGATCCTCC

Ccne2-R GCTGATTCCTCCAGACAGTACA Wwtr1-R GTCGGTCACGTCATAGGACTG

Gadd45g-F GGGAAAGCACTGCACGAACT Ppp2r2b-F TGCCTTATATCTTCAGACCTCCA

Gadd45g-R AGCACGCAAAAGGTCACATTG Ppp2r2b-R AATGTCAGCTTCAGTATGGCAG

have not been well-studied and need to be further studied in the
future.

Differentially Expressed Genes in NLPs and
ULPs
We have demonstrated that NLPs are able to regenerate many
more HCs than ULPs, which has been reported previously
(Bramhall et al., 2014). To determine the detailed mechanisms
behind this difference, we compared the expression levels of all of
the transcripts in NLPs with those of ULPs. We identified 549
genes that were significantly upregulated and 1,817 genes that
were significantly downregulated in the NLPs compared to the
ULPs. The functions of some of the differentially expressed genes
have been reported previously. Egfr governs the regenerative
proliferation of auditory p75+ SCs in birds and mammals after
HC damage (Saleem and Siddiqui, 2015). Mutation of Fgfr3
causes hearing loss and inner ear defects and might be involved
in regulating the proliferation of SCs (Bermingham-McDonogh
et al., 2001; White et al., 2012). Mutations in Frem2 have
been linked to Fraser’s syndrome, which is a rare autosomal
recessive disorder with a spectrum of malformations, including
malformations of the ear (Nadol et al., 2015). Mutations in
Alms1 cause Alstrom’s syndrome, which is an autosomal recessive
syndromic genetic disorder with sensorineural hearing loss

(Bermingham-McDonogh et al., 2001; White et al., 2012). Lif
controls neural differentiation and maintenance of stem cell-
derived murine spiral ganglion neuron precursors (Marzella
et al., 1999; Su et al., 2015). Hes1, Hes5, Hey1, and HeyL
are downstream effectors of the Notch pathway and have
been reported to negatively regulate HC differentiation and
regeneration (Zheng et al., 2000; Zine et al., 2001; Li et al., 2008;
Murata et al., 2009; Abdolazimi et al., 2016). Id1, Id2, and Id3
are downstream targets of the TGFβ and Hippo pathways and
regulate HC formation during inner ear development (Ozeki
et al., 2005; Jones et al., 2006; Laine et al., 2010; Zhan et al., 2017).
These results support our hypothesis that NLPs have a much
greater potential to generate HCs in the neonatal cochlea than
ULPs. However, it should be noted that not all of the differentially
expressed genes that we identified have been characterized, so
there might still be mechanisms at work that we are not yet
aware of.

Cell Cycle Analysis
Mammalian cochlear SCs do not enter the cell cycle or proliferate
after birth under normal circumstances. We demonstrated that
Lgr5+ progenitors that re-enter into cell cycle and proliferate
could be found in the neomycin-damaged cochlea, but no such
cells could be found in the control group. To identify the
possible genes regulating the cell cycling of Lgr5+ progenitors,
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we compared cell cycle gene expression in NLPs and ULPs.
Tfdp1 (Vairapandi et al., 2002; Yasui et al., 2003; Lu et al., 2016),
which was upregulated in NLPs, is a positive regulator of the
cell cycle, while Gadd45g and Sfn, which were downregulated
in NLPs, are negative regulators of the cell cycle (Liu et al.,
2010; Aktary et al., 2013; Vogel and Herzinger, 2013; Phan et al.,
2015). However, Cdkn1a (Duan et al., 2005; Laine et al., 2007;
Mollapour et al., 2010; Laos et al., 2017), Wee1 (Lin et al., 2006;
Tominaga et al., 2006; De Schutter et al., 2007; Frum et al.,
2009), andMdm2 (Helps et al., 2000; Giono and Manfredi, 2007;
Shangary et al., 2008), which were upregulated in NLPs, have
been reported to play roles in regulating cell proliferation, and
Nek2 (Schultz et al., 1994; Fry et al., 1995; Nabilsi et al., 2013;
He et al., 2016), Stmn1 (Johnsen et al., 2000; Wang et al., 2011;
Li X. et al., 2015; Guo et al., 2016; Zhou et al., 2016), and Ccne2
(Chen et al., 2015; Clausse et al., 2016; Gorjala et al., 2016), which
were downregulated in NLPs, have been reported to negatively
regulate cell proliferation. Interestingly, these genes (Cdkn1a,
Mdm2, Wee1, Nek2, Stmn1, and Ccne2) are all involved in p53-
dependent cell cycle arrest (Fry et al., 1995; Giono and Manfredi,
2007; Kiernan, 2013; Clausse et al., 2016; Zhou et al., 2016;
Laos et al., 2017), and the changes in expression of these genes
might be because neomycin injury also slightly activates the p53
pathway in Lgr5+ progenitor cells. The expression changes of
Tfdp1,Gadd45g, and Sfn promote cell cycle progression, while the
expression changes of Cdkn1a, Mdm2, Wee1, Nek2, Stmn1, and
Ccne2 repress cell cycle progression, which might be the reason
for the lack of significant proliferation in the neomycin treated
cochleae.

Transcription Factor Analysis
TFs, which bind to the promoter region of their downstream
target genes and regulate gene expression, are important factors
involved in development, cell proliferation, differentiation, and
other cellular functions. Hes1, Hes5, Hey1, and HeyL are
downstream effectors of Notch signaling, which is a well-known
signaling pathway regulating HC fate and patterning (Malgrange
et al., 2002; Li et al., 2003; Saito et al., 2009; Hartman et al.,
2010; Kamaid et al., 2010; Pan et al., 2010; Jeon et al., 2011),
and inhibition of Notch induces significant HC regeneration in
newborn mice (Li et al., 2003; Kamaid et al., 2010). Id1, Id2,
and Id3 (inhibitors of differentiation and DNA binding) regulate
HC formation during development by negatively regulating
Atoh1 (Ozeki et al., 2005; Jones et al., 2006; Laine et al.,
2010; Zhan et al., 2017). These data support our hypothesis
that these TFs participate in the increased HC regeneration of
NLPs. Furthermore, we have identified many TFs that have not
been characterized in the inner ear before. Croxs (Calderon
et al., 2012), Lcor (Yu et al., 2014), Nfil3 (Seillet et al., 2014a,b;
Malishkevich et al., 2015), Adnp (Nakajima et al., 2008; Oz et al.,
2012), and Tfdp1 (Vairapandi et al., 2002; Yasui et al., 2003; Lu
et al., 2016) were upregulated in NLPs, and these genes have all
been shown previously to have a stimulatory effect on the cell
cycle or on the growth of some tumor cells and some normally
proliferative tissues and/or on neurodevelopment and lymphoid
cell development. Some of the TFs that were downregulated in
NLPs, including Esx1 (Asanoma et al., 2015), Bhlhe41 (Cui et al.,

2016), andDmrt1 (Krentz et al., 2009; Zou et al., 2016), have been
reported to play critical roles in negatively regulating cancer cell
and stem cell growth in other tissues. The involvement of these
genes in the differential HC regeneration capacity of NLPs and
ULPs should be investigated in the future.

MicroRNA Analysis
miRNAs bind to target mRNAs and signal their degradation, and
they play a key role in the control of gene expression and the
regulation of cellular differentiation, proliferation, and apoptosis.
Several miRNAs have been reported to play important roles in
inner ear development (Jen et al., 1997; Li et al., 2010; Wang
et al., 2010; Patel and Hu, 2012). We found eight significantly
differentially expressed microRNAs in NLPs and ULPs (p <

0.05, fold change > 2). Mir466i was upregulated in NLPs, while
Mir7007,mmu-mir-703,Mir107,Mir361,Mir6918,Mir6982, and
Mir3099 were downregulated in NLPs. Among these miRNAs,
Mir107 (Chen et al., 2013; Song et al., 2015; Xia et al., 2016; Yang
et al., 2016) and Mir361 (Wu et al., 2013; Jacques et al., 2014;
Chen et al., 2016; Sun et al., 2016) have been reported to suppress
tumor growth and stem cell growth. However, none of the eight
miRNAs have been reported previously in the inner ear and need
to be further studied in the future.

Signaling Pathway Analysis
Several signaling pathways have been shown to be involved in
inner ear development and HC regeneration (Malgrange et al.,
2002; Yamamoto et al., 2006; Bermingham-McDonogh and Reh,
2011; Chai et al., 2012; Kelly et al., 2012). Among these signaling
pathways, Wnt and Notch are the two most well-studied
pathways in HC regeneration (Bermingham-McDonogh and
Reh, 2011; Chai et al., 2012; Kelly et al., 2012). Overexpression
of Wnt increases SC proliferation and Lgr5+ cell clustering and
leads to increased numbers of EdU+/Lgr5-EGFP+ cells (Zhao
et al., 2006; Madisen et al., 2010; Chai et al., 2012; Bohnenpoll
et al., 2014). Inhibition of Notch significantly increases HC
differentiation from SCs/Lgr5+ progenitors (Malgrange et al.,
2002; Saito et al., 2009; Hartman et al., 2010; Pan et al., 2010; Jeon
et al., 2011). Notch inhibition also increases HC regeneration
through induction of the Wnt pathway (Li et al., 2003). Other
pathways, such as Shh (Liu et al., 2002; Loh et al., 2014), Hippo
(Murillo-Cuesta et al., 2015), and TGFβ (Kawamoto et al., 2003;
Butts et al., 2005; Yang et al., 2009; McLean et al., 2017), also
play important roles in inner ear development. In a recent report,
a TGFβ receptor inhibitor increased Lgr5+ cell expansion in
vitro (Du et al., 2013). To determine which pathways might be
involved in regulating HC regeneration from Lgr5+ progenitors,
we examined the differences in expression of pathway-related
genes that might play a role in inner ear development between
the NLPs and ULPs.

Hes1, Hes5, Hey1, HeyL, and Notch4 are genes of the Notch
signaling pathway, which is a well-known signaling pathway
regulating HC fate and patterning (Zheng et al., 2000; Zine
et al., 2001; Zine and de Ribaupierre, 2002; Li et al., 2008;
Murata et al., 2009; Tateya et al., 2011; Korrapati et al., 2013;
Ku et al., 2014; Petrovic et al., 2015; Abdolazimi et al., 2016),
and were significantly downregulated in NLPs. Inhibition of
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Notch can lead to HC regeneration mainly by inducing SCs to
transdifferentiate into HCs (Malgrange et al., 2002; Saito et al.,
2009; Hartman et al., 2010; Pan et al., 2010; Jeon et al., 2011).
Although, there is no direct evidence for regulating HC fate and
patterning, HeyL is thought to be a target and potential Notch
effector of Notch signaling (Kamaid et al., 2010; Bui et al., 2017).
Notch4 is involved in the migration and invasion of several kinds
of cancers (Melchor et al., 2009; Qian et al., 2016).

Five genes of the TGFβ pathway were differentially expressed.
Tfdp1 and Bmpr2 were upregulated, while Id1, Id2, and Id3 were
downregulated in NLPs. Id1, Id2, and Id3 regulate HC formation
during development by negatively regulating Atoh1 (Ozeki et al.,
2005; Jones et al., 2006; Laine et al., 2010; Zhan et al., 2017). Tfdp1
encodes a TF that binds to the promoter regions of a number of
genes whose products are involved in cell cycle regulation or in
tumor proliferation (Vairapandi et al., 2002; Yasui et al., 2003; Liu
S. et al., 2016; Lu et al., 2016). Bmpr2 encodes a member of the
bone morphogenetic protein receptor family of transmembrane
serine/threonine kinases that play important roles in stem cell
differentiation (Zeng et al., 2012; Larabee et al., 2015; Ramos-
Solano et al., 2015). The roles of these genes in HC regeneration
remain unclear and need to be studied in the future.

Six genes of the Wnt pathway were differentially expressed.
Wnt7a and Fzd7 were upregulated, while Sfrp1, Ctnnbip1,
Mapk10, and Dkk2 were downregulated in NLPs. Wnt7a, a gene
coding for one of the Wnt genes (Chiu et al., 2010; Qu et al.,
2013; King et al., 2015; Qiu et al., 2016), and Fzd7 (Sienknecht
and Fekete, 2008; Yang et al., 2011; Song et al., 2014; Deng
et al., 2015; Wang K. et al., 2015), one of the Wnt protein
receptors, were both upregulated in NLPs and have been reported
previously to be expressed in the inner ear (Wang K. et al., 2015).
Wnt7a and Fzd7 are both reported to induce cell proliferation
and differentiation in other tissues and cell types (Sienknecht
and Fekete, 2008; Chiu et al., 2010; Yang et al., 2011; Song
et al., 2014; Deng et al., 2015; King et al., 2015; Qiu et al.,
2016), but their roles in the inner ear remain unclear and
need to be further studied in the future. Sfrp1, which codes
for a secreted Wnt antagonist that directly interacts with Wnt
ligand (Satoh et al., 2008; Lee et al., 2010; Tong et al., 2015),
is downregulated in NLPs. Ctnnbip1, which is downregulated
in NLPs, encodes a protein that negatively regulates Wnt
signaling by preventing the interaction between β-catenin and
TCF/LEF family members (Guo et al., 2015; Qi et al., 2015; Li
and Luo, 2017). Mapk10, a target of miR-27a-3p, is envolved
in nasopharyngeal carcinoma cell proliferation and migration
(Phillips et al., 2011). Dkk2, which is downregulated in NLPs,
encodes a protein that antagonizes canonical Wnt signaling by
inhibiting LRP5/6 interactions with Wnt (Mukhopadhyay et al.,
2006; Fleury et al., 2010).

Six genes of the Hippo pathway were differentially expressed.
Bmpr2, Fzd7, and Wnt7a were upregulated in NLPs, while Id1,
Id2 and Id3 were downregulated in NLPs. Id1, Id2, and Id3, as
mentioned above, have been reported to regulate HC formation
during inner ear development (Ozeki et al., 2005; Jones et al.,
2006; Laine et al., 2010; Zhan et al., 2017). Bmpr2, as mentioned
above, plays important roles in stem cell differentiation (Zeng
et al., 2012; Larabee et al., 2015; Ramos-Solano et al., 2015). The

roles of these genes and the Hippo pathway in HC regeneration
remain unclear and need to be studied in the future.

STRING Prediction of Inner Ear HC
Development
We used the GO analysis to determine the functional categories
of the differentially expressed genes in NLPs and ULPs, and
the STRING database was used to construct a protein-protein
interaction network for the differentially expressed genes.
Importantly, NLPs and ULPs have very different expressions of
genes involved in inner ear development, neuron differentiation,
signaling pathways, and extracellular matrix. Among the
genes involved in inner ear development, Fgfr3 (Bermingham-
McDonogh et al., 2001; White et al., 2012), Egfr (Saleem and
Siddiqui, 2015), Frem2 (Nadol et al., 2015), Alms1 (Oshima
et al., 2007b; Jagger et al., 2011), and Lif (Marzella et al., 1999;
Su et al., 2015), which are all positively involved in inner ear
development and HC differentiation, were upregulated in NLPs.
Hes1, Hes5 (Zheng et al., 2000; Zine et al., 2001; Li et al., 2008;
Murata et al., 2009; Abdolazimi et al., 2016), Hey1 (Tateya et al.,
2011; Korrapati et al., 2013; Benito-Gonzalez and Doetzlhofer,
2014; Petrovic et al., 2015), HeyL (Kamaid et al., 2010), Id1,
Id2, and Id3 (Ozeki et al., 2005; Jones et al., 2006; Laine et al.,
2010), which all negatively regulate inner ear development and
HC differentiation, were downregulated in NLPs. It would be
interesting to investigate the involvement of these genes in
regulating HC regeneration of Lgr5+ progenitor cells in the
future.

In summary, we found that NLPs have a greater capacity
to regenerate HCs and a slightly greater capacity to proliferate
compared to ULPs. We investigated the differences in the
transcriptomes between the NLPs and ULPs, and we identified
several differentially expressed genes that might regulate the
ability of Lgr5+ progenitor cells to proliferate and to regenerate
functional HCs. Lastly, to further analyze the interactions
and connections of the differentially expressed genes in
HC regeneration, we constructed a STRING protein-protein
interaction network. The transcriptomes of the NLPs and ULPs
reported here provide numerous target genes that should be
characterized for HC regeneration in the future.
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