
 International Journal of 

Molecular Sciences

Article

Cross Pharmacological, Biochemical and Computational Studies
of a Human Kv3.1b Inhibitor from Androctonus australis Venom

Sonia Maatoug 1,* , Amani Cheikh 1 , Oussema Khamessi 2, Hager Tabka 1,3 , Zied Landoulsi 1,†,
Jean-Marie Guigonis 4, Sylvie Diochot 5, Saïd Bendahhou 6,‡ and Rym Benkhalifa 1,*,‡

����������
�������

Citation: Maatoug, S.; Cheikh, A.;

Khamessi, O.; Tabka, H.; Landoulsi,

Z.; Guigonis, J.-M.; Diochot, S.;

Bendahhou, S.; Benkhalifa, R. Cross

Pharmacological, Biochemical and

Computational Studies of a Human

Kv3.1b Inhibitor from Androctonus

australis Venom. Int. J. Mol. Sci. 2021,

22, 12290. https://doi.org/10.3390/

ijms222212290

Academic Editor: Steve Peigneur

Received: 1 October 2021

Accepted: 11 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis,
Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; cheikhamani@gmail.com (A.C.);
tabkahager@yahoo.fr (H.T.); zied.landoulsi@uni.lu (Z.L.)

2 Laboratoire des Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13
Place Pasteur BP74, Tunis 1002, Tunisia; oussama.khamassi@pasteur.tn

3 Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia
4 Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche

Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l′Energie Atomique et
aux Énergies Alternatives (CEA), Université Côte d’Azur, F-06107 Nice, France;
Jean-Marie.GUIGONIS@univ-cotedazur.fr

5 Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université
Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; diochot@ipmc.cnrs.fr

6 UMR7370 CNRS, LP2M, Université Côte d’Azur, Labex ICST, Nice, France;
said.bendahhou@univ-cotedazur.fr

* Correspondence: sonia.maatoug@pasteur.utm.tn (S.M.); rym.benkhalifa@pasteur.utm.tn (R.B.);
Tel.: +216-98-81-27-32 (R.B.)

† Current affiliation: Luxembourg Centre for Systems Biomedicine, LCSB, University of Luxembourg, 4362
Esch-Sur-Alzette, Belvaux, Luxembourg.

‡ Authors contributed equally.

Abstract: The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and
are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50,
as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1
channels. In the present study, we focused on the biochemical and pharmacological characterization
of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels.
We used a combined optimization through advanced biochemical purification and patch-clamp
screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described
the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking
experiments are used to study the molecular details of the binding. We identified the first scorpion
venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes
the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time,
the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for
developing therapeutic biomolecules against Kv3.1-associated diseases.

Keywords: Kv3.1 channel; Androctonus australis hector venom; open channel blocker; alpha-KTx

1. Introduction

Ion channels are transmembrane proteins that regulate the flow of ions across biologi-
cal membranes and Kv3.1 channels are one of the Shaw-type voltage-gated K+ channels that
are abundantly expressed in fast-firing neurons such as cortical interneurons, hippocam-
pal interneurons, corticothalamic neurons, auditory brain stem neurons and GABAergic
inhibitory neurons [1–6].

Kv3.1 has an important role in the synchronization of cortical circuits and the gener-
ation of brain rhythms, and it is crucial for perception, alertness, learning, control of the
sleep cycle and motor activity [7,8].
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It is evident that Kv3.1 is functionally relevant in adult Neural Progenitor Cell (NPC)
expansion and neuronal lineage commitment [9,10] and we have also confirmed its role
during 1C11 cell line differentiation, which is used as an in vitro model for serotonergic
release [11]. The pharmacological and genetic disruption of Kv3 currents leads to impaired
fast spiking in inhibitory neurons and increased seizure susceptibility which explains
why Kv3.1 channel loss of function causes many physiological disorders such as ataxia,
myoclonus, tremor, hyperactivity and reduction in sleep time [7,8], in addition to alterations
in synaptic transmission at the parallel fibre–Purkinje cell synapses [12].

Unfortunately, few pharmacological tools have been reported as modulating Kv3.1
current. Modulators such as tetraethylammonium (TEA), Fluoxetine or gambierol are
nonspecific and are functionally limited [13,14]. More recently, Brown and collaborators
reported about two imidazolidinedione derivatives AUT1 and AUT2, that modulate Kv3.1
current by increasing the open probability of the channels [15]. Besides, venoms are a rich
source of neurotoxins [16] that are able to block or modify the function of their targeted
ion channels in excitable cells. Scorpion neurotoxins are classified as either long- or short-
chain toxins. Short-chain toxins usually contain 30–40 residues and three or four disulfide
bridges. Most of the short-chain scorpion toxins described to date block voltage-dependent
K+ channels. Scorpion venom derived AahG50, a fraction previously isolated from the
North African Androctonus australis hector venom, is mainly composed of Na+ channel
toxins even if some K+ channels toxins were reported [17–23]. Indeed, in 2005, Srairi-Abid
and collaborators demonstrated the presence of two toxins in AahG50, KAaH1 and KAaH2,
which are active on Kv1.1 and Kv1.3 subtypes. When tested at 100 nM on Kv3.1 current,
both toxins failed to affect channel activity, comforting us that different peptides in the
AahG50 fraction would be responsible for the current inhibition [24]. A primary screening
of Androctonus australis hector venom showed that, the toxic fraction, AahG50 inhibits IKv3.1
in a dose and potential-dependent manner with IC50 = 40.4 µg/mL, without modifying
the activation threshold [24].

The present work describes a novel Kv3.1 inhibitor peptide isolated from Androctonus
australis hector venom. The research study is based on advanced biochemical analysis
combined with pharmacological characterization using a multitude of techniques in elec-
trophysiology besides High Resolution Mass Spectrometry and computational, in silico
studies based on molecular docking. We identified alpha-KTx 15.1 as the active peptide. It
occludes Kv3.1 channel pore by the means of the lysine (Lys27) lateral chain. The alpha-KTx
15.1 belongs to the alpha-KTx family and presents 93% of homology with AmmTX3, which
is a specific Kv4 channel blocker. Our results provide new insight into the possible targets
of alpha-KTx 15.1 on Kv3.1 channels, besides Kv4 channels type, which should enhance the
development of new therapeutic pathways for the treatment of a variety of dysfunctions.

2. Results
2.1. AahG50 Toxic Venom Fraction of Androctonus australis hector Scorpion Blocks Human
Kv3.1 Channel

Crude Aah venom was separated by gel filtration. The resulting profile (Figure 1(Aa))
shows five partially resolved fractions; (M1, M2, AahG50, M3 and M4).
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Dialyzed venom loaded into a Sephadex G50 column allowed the collect 5 fractions (M1, M2, AahG50, M3 and M4). (A(b)) 

Dose–response curve of Kv3.1 channel inhibition at various concentrations of AahG50. Current amplitudes measured at 

the end of the depolarizing pulse (+60 mV), the percentage of inhibition plotted against respective concentrations of 

AahG50 (10, 25, 50, 100 and 150 µg/mL). (B(a)) Whole-cell currents, recorded in Xenopus oocytes, elicited by the application 

of 250 ms depolarizing pulses from −120 mV to +70 mV in 10 mV increments, from a holding potential of −80 mV, under 

control conditions and after the addition of 50 µg/mL AahG50. (B(b)) The normalized current voltage relationship of Kv3.1 
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cell currents, recorded in CHO cells, elicited by the application of 250 ms depolarizing pulses from −120 mV to +60 mV in 

20 mV increments, from a holding potential of −80 mV, under control conditions and after the addition of 50 µg/mL 

AahG50. (C(b)) The normalized conductance-voltage relationship of Kv3.1 current in CHO cells plotted under control 
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Figure 1. Inhibitory effect of AahG50 on Kv3.1 currents. (Aa) Purification of Androctonus australis hector scorpion venom.
Dialyzed venom loaded into a Sephadex G50 column allowed the collect 5 fractions (M1, M2, AahG50, M3 and M4).
(Ab) Dose–response curve of Kv3.1 channel inhibition at various concentrations of AahG50. Current amplitudes measured
at the end of the depolarizing pulse (+60 mV), the percentage of inhibition plotted against respective concentrations of
AahG50 (10, 25, 50, 100 and 150 µg/mL). (Ba) Whole-cell currents, recorded in Xenopus oocytes, elicited by the application
of 250 ms depolarizing pulses from −120 mV to +70 mV in 10 mV increments, from a holding potential of −80 mV,
under control conditions and after the addition of 50 µg/mL AahG50. (Bb) The normalized current voltage relationship
of Kv3.1 currents in Xenopus oocytes plotted under control conditions and after the perfusion of 50 µg/mL of AahG50.
(Ca) Whole-cell currents, recorded in CHO cells, elicited by the application of 250 ms depolarizing pulses from −120 mV
to +60 mV in 20 mV increments, from a holding potential of −80 mV, under control conditions and after the addition of
50 µg/mL AahG50. (Cb) The normalized conductance-voltage relationship of Kv3.1 current in CHO cells plotted under
control conditions and after the perfusion of 50 µg/mL of AahG50.
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We focused our investigations on the AahG50 fraction since we have previously shown
that it inhibits the Kv3.1 current [24]. Two-Electrodes Voltage Clamp (TEVC) recording
illustrates that AahG50 (50 µg/mL) reduces Kv.3.1 currents (Figure 1(Ba)). The normalized
current voltage (IV) curves obtained before and after addition of AahG50 at 50 µg/mL
shows that the inhibition of IKv3.1 amplitude is voltage-dependent with a maximum of
inhibition of 50 ± 1.3% (n = 10) at +70 mV when currents are fully activated (Figure 1(Bb)).
The inhibition is sustained in presence of AahG50, reaches a steady state within 3 to 4 min,
and could be reversed on washout.

Patch clamp tests, performed in the mammalian CHO cells, are not only useful in
confirming the effect of AahG50 on Kv3.1 current, but also allow the use of small amounts
of the tested fractions. Moreover, whole cell patch clamp tests demonstrate that AahG50
(50 µg/mL) reduces Kv3.1 current (Figure 1(Ca)). The concentration dependence of AahG50
on Kv3.1 is measured after perfusion of AahG50 from 10 to 150 µg/mL. It induces a slight
inhibition about 18.4 ± 3.75% at 10 µg/mL, a maximum of inhibition is reached at 100 and
150 µg/mL with an IC50 value of 52 ± 0.3 µg/mL and Hill coefficient 1.6 ± 0.03 (n = 30),
(Figure 1(Ab)).

Application of AahG50 (at 50 µg/mL) on Kv3.1 channel induced a significant right-
ward shift of 11.04 ± 0.13 mV in V1/2 on the steady state activation with a significant
increase in the slope factor value (n = 30, p < 0.05) (Figure 1(Cb), Table 1). The threshold of
activation did not yield any change and was approximately −20 mV, in control condition
and after perfusion of AahG50 (50 µg/mL) (Figure 1(Cb), Table 1).

Table 1. Analysis of AahG50, F5 and H7 on hKv3.1 channel activation kinetics.

Control AahG50 F5 H7

Midpoint potential (V1/2)
(mV) 0.28 ± 0.06 11.32 ± 0.07 16.70 ± 0.26 12.22 ± 0.24

Slope factor (k)
(mV) 10.91 ± 0.05 15.71 ± 0.07 13.44 ± 0.24 12.69 ± 0.19

Threshold potential (Thresh)
(mV) −20 −20 −20 −20

Mean midpoints of activation curves (V1/2) and the slope factor (k) before and after application of AahG50 (50 µg/mL), F5 (5 µg/mL) and
H7 (1 µg/mL) on hKv3.1 expressed in CHO cells.

2.2. Pharmacological Characterization of the Component Inhibiting Kv3.1 Channel
2.2.1. Whole Cell Tests with AahG50 FPLC Fractions

AahG50 fraction separated by Fast Protein Liquid Chromatography (FPLC) yields
13 subfractions from F1 to F13, as shown on the profile (Figure 2(Aa)). Each of the purified
peaks was then separately tested on IKv3.1 with protocols described in Figure 2(Ba,Ca).
Among AahG50 fractions only F5, eluted at 20 min, reduces Kv3.1 current, contrary to the
other fractions (n = 10) (Figure 2(Ba,Ca)). The I-V curve shows that F5 at 5 µg/mL blocks
Kv3.1 current in a voltage-dependent manner with a maximum effect of 50 ± 0.3% when
channels are fully open (Figure 2(Bb)). The inhibition is sustained in presence of F5, reaches
a steady state within 3 to 4 min, and could be reversed on washout. The concentration
dependence was studied by the application of a test pulse at +60 mV in the presence
of increasing concentrations of F5 from 1 to 20 µg/mL (Figure 2(Ab)). It acts in a dose
dependent manner by reducing Kv3.1 current with a maximum inhibition of 100 ± 2.8%
at a concentration of 20 µg/mL (Figure 2(Ab), Table 1) while IC50 and Hill coefficient are,
respectively 5.45 ± 0.5 µg/mL and 1.19 ± 0.5. The activation curve shows a rightward
shift of 16.42 ± 0.32 mV in V1/2 and an increase in the slope factor value (Figure 2(Cb) and
Table 1) but the activation threshold does not change (n = 30) (Figure 2(Bb,Cb) and Table 1).
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Figure 2. Identification of FPLC subfractions in AahG50 active on Kv3.1 channel. (A(a)) Purification of AahG50 with FPLC. 

Seven milligrams of proteins were loaded per run on a cation exchange Resource S column pre-equilibrated with 0.05 M 

Figure 2. Identification of FPLC subfractions in AahG50 active on Kv3.1 channel. (Aa) Purification of AahG50 with FPLC.
Seven milligrams of proteins were loaded per run on a cation exchange Resource S column pre-equilibrated with 0.05 M
ammonium acetate buffer (pH 6.6). Proteins were eluted with a 40 min linear gradient from 0.05 to 0.5 M ammonium acetate
(pH 6.6) at a flow rate of 1 mL/min; absorbance was monitored at 280 nm. (Ab) Dose–response curve for the inhibition of
Kv3.1 by various concentrations of F5. Current amplitudes were measured at the end of the depolarizing pulse (+70 mV),
the percentage of inhibition was plotted against respective concentrations of F5. The curve was fitted by the Hill equation.
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(Ba) Whole-cell currents, recorded in Xenopus oocytes, elicited by the application of 250 ms depolarizing pulses from
−120 mV, to +70 mV in 10 mV increments, from a holding potential of −80 mV, under control conditions and after the
addition of 5 µg/mL of F5 fraction. (Bb) The normalized current voltage relationship of Kv3.1 currents in Xenopus oocytes
were plotted under control conditions and after the perfusion of 5 µg/mL of F5. (Ca) Whole-cell currents, recorded in
CHO cells, using the same protocol described previously, under control conditions and after the addition of 5 µg/mL of F5.
(Cb) The normalized conductance-voltage relationship of Kv3.1 current in CHO cells is plotted under control conditions
and after the perfusion of 5 µg/mL of F5.

2.2.2. Whole-Cell Tests with HPLC Fractions on IKv3.1

We pursued a combined optimization through “High-performance liquid chromatog-
raphy” (HPLC) purification and patch-clamp screening steps to characterize peptides from
F5 fraction which are candidates to block in a potent and selective manner the Kv3.1 current.

The chromatogram in Figure 3(Aa) represents the reversed phase HPLC purification
of F5 fraction. The sample was fractionated on a C18 reversed phase HPLC column and
gradient conditions adjusted in order to perform the full separation of F5 and to provide a
good level of separation (Figure 3(Aa)). Eighteen peaks were manually collected regarding
the wavelength (OD) at 214 nm at different time of retention as illustrated in the profile.
Peak amplitudes are proportional to protein concentrations in the sample (Figure 3A).
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Figure 3. Characterization of H7 inhibitory effect on Kv3.1. (Aa) HPLC purification of AahG50 venom fraction (F5) obtained
with FPLC method. Fifty micrograms of F5 were loaded per run on a C18 column reversed phase HPLC and 18 fractions
(H1 to H18) eluted at a flow rate of 1 mL/min, using a multi-step gradient (90 min) from 0 to 60% of buffer B (0.1% TFA in
CH3CN) in buffer A (0.1% TFA in water). (Ab) Kv3.1 normalized current at +60 mV shown before, and after perfusion of
H7 at 0.5 and 1 µg/mL and after washing. (Ba) Whole-cell currents, recorded in mammalian cells, elicited by the application
of 250 ms depolarizing pulses from −120 mV, to +60 mV in 20 mV increments, from a holding potential of −80 mV, under
control conditions and after the addition of 1µg/mL of H7. (Bb) The normalized conductance (G) voltage relationship of
Kv3.1 current plotted under control conditions and after the perfusion of 1 µg/mL of H7.
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The 18 fractions obtained with HPLC were examined for their ability to inhibit Kv3.1
current. Only, subfraction number 7, eluted at 37.9 min Figure 3(Aa), reduces Kv3.1 current
as described in Figure 3(Ba). All other subfractions affect neither the amplitude nor the
kinetics of the currents.

Using IV protocol (Figure 3(Ba)), we found that H7 reduces IKv3.1 in a concentration-
dependent manner with 51 ± 0.2% and 25 ± 0.5% of inhibition at 1 µg/mL and 0.5 µg/mL,
respectively (Figure 3(Bb)). The inhibition is sustained in presence of H7 and was partially
reversed upon washing (Figure 3(Ab)).

H7 at 1 µg/mL diminishes Kv3.1 current amplitudes with a rightward shift and
slowing down of the steady state activation curve. Indeed, H7, 1 µg/mL produces a
positive shift, of 11.94 ± 0.3 mV in V1/2, and increases the slope factor value (Figure 3(Ab)
and Table 1) but it does not modify the activation threshold (n = 20) (Figure 3(Bb) and
Table 1).

2.3. Validation of H7 Inhibitory Effect on Kv3.1 Single Current Recording

Figure 4A shows a trace of Kv3.1 current in single channel recording. In control
conditions, Kv3.1 channel openings are detected from a test potential of −60 mV. Am-
plitude histograms for the recording show simultaneous openings of multiple channels
(Figure 4A,B). Fits of Gaussian distributions of multiple histograms led to a single channel
current level of 4.74 ± 0.063 pA at −60 mV in (Figure 4B). Analysis of all events of the full
4 min recording at −60 mV revealed the presence of multiple conductance states of Kv3.1
activity (Levels 1 to 8) in (Figure 4C).

After the addition of H7 (0.6 µg/mL) at the indicated time point (A), the channel
activity was abolished Figure 4D.

Kinetic analysis revealed differences in the open dwell-time distribution before (Figure 4C)
and in presence of H7 at 0.6 µg/mL (Figure 4E). The most noticeable effect observed in open
dwell-time distribution, is an increase in the closed channel lifetimes, but open channel
levels decrease significantly and almost abolished.

2.4. Mass Spectrometric Analysis of H7

For a refined purification, fraction H7 was passed again through a C18 column with a
modified gradient allowing to collect a unique sharp peak, which was further submitted
to mass spectrometry (Figure 5A). H7 subfraction was subjected to disulfide bridges
reduction and trypsin digestion (Promega, Madison, WI, USA), and the obtained peptide
mixture was analysed by NanoLC/HRMS-MS. Putative amino acid sequences obtained
were analysed against nucleotide sequences database dynamically translated in all reading
frames (tBLASTn) from the Uniprot library of Androctonus. The correlation of the measured
mass of the peptides and their sequences allowed to recognize eight known proteins
(Figure 5B); including two beta-toxins (Aah6, Beta-insect excitatory 1 OS), 2 alpha-toxins
(Aah2, Aah3), a non-toxic polypeptide (Neurotoxin-like protein STR 1), a Kunitz trypsin
inhibitor (G-TI), an alpha-KTx (alpha-KTx 15.1) and a Beta-KTx (AaTXK-beta). Among
these eight peptides, six of them (long toxins composed of 66 to 88 amino acids) are anti-
Na+ channel toxins. Indeed, Aah6, Aah2, Aah3, AaH IT1, AaH STR 1, belong to the Na+

channel inhibitor family. They are characterized by a structural arrangement of an alpha-
helix connected to antiparallel beta-sheets by four disulfide bonds, otherwise, only two
of them are voltage gated K+ channel modulators, alpha-KTx 15.1 (37 amino acids) and
AaTXK-beta (64 amino acids) (Figure 5B, Table 2). Since we have successfully identified the
different peptides present in H7 and because native toxins are present in a low amount in
crude venom, we decided to pursue the rest of the work, by using in silico study. Based on
the structure-function relationship studies, on scorpion venom toxins [25,26], we suggest
excluding anti-Na+ channels toxins and to predict how others might bind to Kv3.1 and
whether they are responsible for IKv3.1 inhibition.
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Figure 4. Validation of H7 inhibitory effect on Kv3.1 single current. (A) A representative trace of Kv3.1 channels in planar
lipid bilayer from 4 min of continuous recording at −60 mV. Closed (c) and open (o) levels are indicated. H7 (0.6 µg/mL) is
added at the indicated time point. (B) Fits of Gaussian distributions of multiple histograms led to a single channel current
level of 4.74 ± 0.063 pA at −60 mV. (C) Dwell time of the whole 4 min recording at −60 mV revealed channel conductance
levels (levels 1 to 8). (D,E) represent, respectively multiple histograms and dwell time after addition of H7.
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Figure 5. NanoLC/HRMS-MS analysis of H7. (A) Purification of H7 subfraction. The purification of fraction H7 was
repeated on a C18 column with a modified gradient allowing to collect a unique sharp peak eluted at 38 min. (B) H7 fraction
was subjected to disulfide bridges reduction and trypsin digestion, and the obtained peptide mixture was analysed by
NanoLC/HRMS-MS. Data analysis led to the identification in the H7 fraction of Aah6, Beta-insect excitatory 1 OS, Aah2,
Aah3, Neurotoxin-like protein STR 1, G-TIOS, alpha-KTx 15.1 and AaTXK-beta. Signal peptide and polypeptide sequences
are not reported.

2.5. In Silico Study to Identify the Peptide Blocking Kv3.1
2.5.1. Molecular Models of Alpha-KTx 15.1, AaTXK-Beta and Kv3.1 Channel

The Kv3.1 channel structure model was generated by homology to the crystal structure
of the Kv1.2-Kv2.1 paddle chimera channel (PDB code 2R9R). The sequence of the human
Kv3.1 K+ channel subtype was extracted from the Uniprot database under the accession
number P48547 and contains 511 amino acids. We removed the segments S1, S2, S3 and S4
of Kv 3.1 channel prior to the docking. Indeed, AmmTX3 has the highest sequence identity
(93%) with alpha-KTx 15.1. They differ by only two conserved amino acids (Q/Z) in
position 1 and (N/I) in position 2 of their sequences (data not shown). Alpha-KTx 15.1 is a
polypeptide chain of 37 amino acid residues. It has the characteristic folding of K+ scorpion
toxins: a double stranded antiparallel beta sheet and an alpha helix, reticulated by three
disulfide bonds. In fact, alpha-KTx 15.1 adopts the common Csαβ (Cysteine-stabilized
α/β motif) fold (Figure 6A). AaTXK-beta belongs to the long chain scorpion toxin family
and is a polypeptide chain of 64 amino acid residues cross-linked by only three disulfide
bridges (Supplementary Material, Figure S1).
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Table 2. Classification of the peptides contained in H7 according to their activities.

Toxins Ion Channel Activity

Aah6
Anti-insect beta-toxins: bind in a voltage-independent manner at
site-4 of Na+ channels and shift the voltage of activation toward more
negative potentials [27].

Beta-insect excitatory 1 OS
Beta toxins: specifically active on the insect nervous system by
affecting Na+ channel activation and promoting spontaneous and
repetitive firing [28,29].

Aah2

Alpha toxins: bind in a voltage-independent manner at site-3 of Na+

channels (Nav) and block neuronal transmission. The toxin
principally slows the inactivation process of TTX-sensitive Na+

channels [19,30–33]. AaH2 sterically occludes VSD4 activation by
forming a number of interactions that serve to pin the S3-S4 loop and
S4 helix into a deactivated conformation [23].

Aah3
Alpha toxins: binds in a voltage-independent manner at site-3 of Na+

channels (Nav) and inhibit the inactivation of the activated channels,
thereby blocking neuronal transmission [34,35].

Neurotoxin-like protein STR 1 (50% similarity with Aah6) Non-toxic polypeptide: active on Na+ channel [36].

G-TI Kunitz trypsin inhibitor inhibits Na+ channel.

AaTXK-beta Beta-KTx: peptide activator of Kv7.4, Kv7.3 and Kv7.2/Kv7.3
channels. [37,38].

Alpha-KTx 15.1 Alpha-KTx: inhibits transient K+ channels (IA-type current) by
occluding the outer entry to the K+ conducting pore [39–42].
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2.5.2. Molecular Docking of Alpha-KTx 15.1 and AaTXK-Beta with Kv3.1 Channel

The main goal of the bioinformatic study is to identify which of the toxins, alpha-KTx
15.1 and AaTXK-beta toxin, blocks Kv3.1 channel. We used an in silico protein–protein
docking to predict alpha-KTx 15.1 and AaTXK-beta with Kv3.1 channel mode of interaction.
We found that AaTXK-beta does not interact with Kv3.1 channel (data not shown) contrary
to the alpha-KxT15.1 that occludes the K+ channel pore (Figure 6C). Indeed, the top
10 docking solutions describe the same interaction mode. After visualization with pymol,
we propose the best docking solution as a model of interaction between the alpha-KTx 15.1
toxin and Kv3.1 (Figure 6C) This complex presenting the best score shows an interaction
mode in which the beta sheet of the toxin interacts with the selectivity filter residues.
Lys27 of alpha-KTx 15.1 seems to play an important role in the interaction. The blocking
of the pore is physically achieved by the means of the Lys27 lateral chain of alpha-KTx
15.1 interacting into the K+ channel selectivity filter (Figure 6C). Based on the molecular
docking study, we predict several interactions of medium strength (2–6 Å). R19 and E3
are involved in the interaction and establish a salt bridge owing to Asp377 and His165 at
2.5 Å and 2.1 Å, respectively (Figure 6B). Several other amino acids of alpha-KTx 15.1 are
involved in the interaction with the Kv3.1 K+ channel. Indeed Gln1/Gln191, Glu3/His165,
Lys7/Ser49, Gln9/Pro378, Arg19/Asp377, Lys27/Tyr405, Tyr36/Tyr189 and Pro37/Ser269
of the complex toxin-channel (Figure 6B).

3. Discussion

This original study highlights the discovery of the first scorpion peptide inhibiting
Kv3.1 channel. In fact, in the present work, we describe the biochemical and functional
characterization of an Androctonus australis hector scorpion venom peptide that potently
blocks Kv3.1 channel. To achieve our objective, we combined biochemistry, electrophys-
iology, high-resolution molecular spectrometry, and computational methods, based on
different stages of findings: (1) AahG50 is a toxic venom fraction showing an inhibitory
effect on Kv3.1 current amplitude with an IC50 of 50 µg/mL. (2) Among eighteen sub-
fractions obtained by FPLC, only one (F5) is able to reproduce the AahG50 inhibitor effect
whose IC50 is only about 5 µg/mL. (3) HPLC of F5 yields 18 peaks among which only the
seventh (H7) inhibits the whole cell Kv3.1 current with IC50 equal to 1 µg/mL. (4) The
blocking effect of H7 was confirmed on Kv3.1 single channel recordings. (5) H7 content
analysis with NanoLC/HRMS-MS shows the presence of eight peptides and only two of
them are voltage-gated K+ channels ligand, AaTXK-beta and alpha-KTx 15.1. (6) In silico
studies demonstrate that only one toxin might block the Kv3.1. This toxin is alpha KTx15.1,
a short 37 amino-acids peptide with one alpha helix, two stranded beta sheets and three
disulfide bridges.

At the macroscopic level, H7 seems to act on the Kv3.1 channel as an open channel
blocker such as fluoxetine [14], paroxetine [43] and psoralen [44] with the following prop-
erties: (1) the inhibition of Kv3.1 current is in the entire voltage range over which Kv3.1
channels are activated at potentials between −20 mV and +60 mV. (2) This induced inhibi-
tion is voltage dependent and increases steeply in the voltage range of channel activation
(3) the toxin does not affect the threshold of channel activation (Thresh =−20 mV). Contrary
to BDS-I and BDS-II, the first peptides able to inhibit Kv3 current [45] and gambierol, which
instead bind to the resting state of the voltage sensor of Kv3.1 channels [46,47]. At the
single channel level, H7 (0.6 µg/mL equivalent to 170 nM) strongly decreases the current
amplitude and induces the channel closing supporting the data obtained in whole cell
mode. By contrast to AUT1 (10 µM) that increases the single Kv3.1 channel activity at
negative potentials [15].

The analysis of H7 with NanoLC/HRMS-MS accompanied by data mass mapping
identified 8 known proteins. Six of them were previously classified and described, based
on their structural features and their functional aspects, as Na+ channel toxins [25]. Only
two were described as voltage-gated K+ channel modulators, an alpha-KTx (alpha-KTx
15.1) and a beta-KTx (AaTXK-beta). AaTXKβ was described as the first peptide activator
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of Kv7.4 channels which also acts as a subtype-selective activator of Kv7.3, Kv7.2/3, and
Kv7.5/3 subunits [38]. Moreover, alpha-KTx 15.1 belongs to the alpha-KTx family. About
half of the known 120 alpha-KTx have been tested directly against different K+ channels.
The majority of the reported functions have been determined on A-type K+ channel [48–50],
Shaker-related channels [39], Kv4 [51–53], hERG currents [42] or on the Ca2+-activated
K+ channels [26]. The alpha-KTx 15.1 has a high affinity for transient K+ current [39–48].
The mechanism of blockade is in a simple bimolecular and pore-directed binding fashion,
which resembles the mechanism that is described for other K+ channels by MacKinnon and
Miller and Giangiacomo et al. using Charybdotoxin and Iberiotoxin, respectively [54,55].

However, the activity of AaTXKβ and alpha-KTx 15.1 on Kv3.1 has never been investi-
gated. We used molecular modelling of the Kv3.1 channel to understand how they interfere
with the Kv3.1 channel protein. The molecular docking shows that only alpha-KTx 15.1
occludes Kv3.1 channel pore contrary to AaTXK-beta that does not show any interaction
with this channel.

Indeed, alpha-KTx 15.1 shows 94% sequence homology with AmmTX3 isolated from
the venom of the scorpion Androctonus mauretanicus and 91% homology with BmTX3 from
Buthus martensi which blocks at 0.1 µM A-type K+ currents in cerebellum granular cells
and striatum cultured neurons, respectively [50–52]. We found that alpha-KTx 15.1 affinity
to the whole cell Kv3.1 channel is in the same range, about 170 nM. The molecular docking
study confirms that alpha-KTx 15.1 interacts with the S4 site in Kv3.1 channel selectivity
filter owing to Lys27 located in its lateral chain, as previously suggested that the critical
Lys27 protrudes into the pore of the channel [56] and the interaction is strengthened by the
basic amino acid, Lys19, among alpha-KTx 15.1 sequence. In fact, alpha-KTx15 peptides
define their targets more precisely, due to the “hot spot” composed of two basic residues
Arg18 and Lys19, near the end of the α-helix [42]. Alpha-KTx 15.1 and Kv3.1 interaction
is consolidated through KTX N-terminal pyroglutamic acid and Q191. It was previously
shown that the generation of pyroglutamic acid at the N-terminus can greatly enhance
the blocking effect of toxins for their targeted channels [57]. The computational study
highlights also the importance of the C-terminal region of alpha-KTx 15.1 represented by
Tyr36 and Pro37, that are involved in the interaction with the Kv3.1. It is, actually, known
that members of alpha-KTx are dotted with a “hot spot” that interferes with K+ channel
pore, qualified as the canonical dyad previously proposed to be necessary for blocking K+

channel conduction with high efficacy [41–58]. Moreover, a previous study showed that
Tyr36 is a crucial amino acid required in the functional surface of BmTX3 to stabilize the
toxin/receptor complex, via the aromatic ring [41].

This study provides new insight into the possible targets of alpha-KTx 15.1 on Kv3.1
channels, besides Kv4 channels type, suggesting its emerging potential therapeutic im-
plications to be tested for the treatment of neuroinflammation and neurodegenerative
disorders. Indeed, Kv3.1 channels have a remarkable role in the fast action potential
repolarization abundant in rapidly firing neurons, such as the auditory brainstem, and
hippocampal and cortical interneurons and play a critical role in the synchronization of
cortical circuits and in the generation of rhythms. Kv3.1b is expressed in embryonic and
perinatal neurons and their selective blockade increases NPC proliferation in vitro [9] that
are to be used for the treatment of neurodegenerative disorders. Furthermore, suppressing
Kv3.1 by 4-aminopyridine (4-AP) alters neural circuit activity, that may enhance brain
derived neurotrophic factor (BNDF) signalling and hence protect axons from inflammatory
insults [59]. Moreover, recent studies investigated the role of Kv3.1, as a new therapeutic
target for cancer metastasis by inhibiting cell migration and invasion [60]. Further in vivo
pharmacological tests should be performed to validate the therapeutical potential of alpha-
KTx 15.1 when the toxin will be available in its pure form, including its toxicity and its
pharmacokinetics dynamic.

In conclusion, we identified alpha-KTx 15.1 as the short toxin from Aah scorpion
venom having the ability to inhibit, in a potent manner, the Kv3.1 channel by occluding
the pore. It seems that this toxin inhibits 51 ± 0.2% of whole cell IKv3.1 at 1 µg/mL
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concentration. Its inhibitory effect is confirmed on Kv3.1 single channel recordings. In
silico, studies reinforce this conclusion and elucidate the different sites involved by this
active peptide in the complex formation and so, in the Kv3.1 blockade.

Further investigations include the generation of Kv3.1 mutants at the deduced inter-
acting residues to validate the strong interaction of alpha-KTx 15.1 with Kv3.1 channel
binding site. Otherwise, and since native toxins are present in a low amount in crude
venom, including alpha-KTx 15.1, work is in progress to study the effect of synthetic
alpha-KTx 15.1 analogs on Kv3.1 channel compared with the native toxin. In addition,
studies may be performed on the specific affinity of these analogs on other Kv.3 channels
family (Kv3.2 to Kv3.4) compared with Kv3.1 and with A-type K+ channels, especially
Kv4.2 and Kv4.3 that are abundantly expressed in the brain [61,62]. These findings will
give a deeper understanding of the specificity effect of alpha-KTX 15.1 as a peptidic tool
useful for a structure-function relationship investigation of Kv3.1 and for developing a
model of therapeutic biomolecules against diseases involving this channel.

4. Materials and Methods
4.1. Materials

Scorpion Venom: Venom of Androctonus australis hector was collected from Beni
Khedache (Tunisia) by the veterinarian service of the Pasteur Institute of Tunis (Tunis,
Tunisia) and was kept frozen at −20 ◦C in its crude form until use.

4.2. Methods
4.2.1. Biochemistry

Venom Purification. Crude venom was dissolved in water and loaded on Sephadex
G50 gel filtration chromatography columns (2_K26/100; Pharmacia; GE HealthCare, Velizy-
Villacoublay, France). Columns were equilibrated and eluted with 0.1 M acetic acid buffer,
pH 4.7. After freeze drying, the resolved fractions were stored at −20 ◦C until use. The
elution profile of Aah was collected in five subfractions (M1, M2, AahG50, M3 and M4).
The major fraction named AahG50, is the toxic one and contains toxins of 3000–7000 Da.
After lyophilization, the AahG50 was fractionated by FPLC on a cation exchange Resource
S pre-equilibrated with 0.05 M ammonium acetate pH 6.6. Proteins were eluted with
a 60 min linear gradient from 0.05 to 0.5 M ammonium acetate, pH 6.6, at a flow rate
of 0.8 mL/min. Absorbance was monitored at 280 nm. HPLC purification of the FPLC
fraction was performed using a C18 reversed-phase HPLC column (5 mm, 4.6–250 mm,
Beckman), equipped with a Beckman Series 125 pump and a Beckman diode array detector
set. Elution was controlled by means of the GOLD software. Proteins were eluted from the
column at a flow rate of 1 mL/min, using a multi-step gradient (90 min) from 0 to 60% of
buffer B (0.1% TFA in CH3CN) in buffer A (0.1% TFA in water). Polypeptide concentration
was determined using QuantiPro BCA Assay Kit (Sigma Aldrich, Darmstadt, Germany).

Protein Precipitation, Disulfide Bridges Reduction and Enzymatic Hydrolysis. Purified
venom fraction was dissolved in 100 mM NH4HCO3 (Sigma Aldrich, Darmstadt, Germany),
and dithiothreitol (Sigma Aldrich, Darmstadt, Germany) was added to a final concentration
of 10 mM. Sample was allowed to react at 55 ◦C for 1 h. Iodoacétamide (375 mM) (Sigma
Aldrich, Darmstadt, Germany) was added, and the sample incubated 30 min at 37 ◦C
then acetone was added, and the sample was conserved at −20 ◦C overnight. Enzymatic
digestion was then performed by adding trypsin (Promega, Madison, WI, USA), with an
enzyme/substrate ratio of 1/50 w/w at 37 ◦C overnight. Formic acid was added at a final
concentration of 5%, the sample was dried by speedvac and was conserved at −80 ◦C.

4.2.2. Electrophysiology

• Two-Microelectrodes Voltage Clamp

Expression of Kv3.1 in Xenopus laevis oocytes: Experiments on Xenopus oocytes were
carried out following the European Community Council Directive (2010/63/EU), for ex-
perimental animal care and procedures. The protocol of animal handling and oocytes
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extraction was approved by the Pasteur Institute of Tunis Biomedical Ethic Committee
(Approval code 05/19; reference: 2018/39/I/LR16IPT08/V0). cDNA encoding for human
Kv3.1b was cloned in the Xenopus oocyte expression vector pcDNA. After linearization with
HpaI, capped cRNA was transcribed in vitro using the SP6 mMessage mMachine kit (Am-
bion, Foster City, CA, USA). X. laevis adult females were anesthetized with 0.17% solution
of 3-aminobenzoic acid ethyl ester methane sulfonate salt (Sigma-Aldrich, Saint-Quentin
Fallavier, France), and parts of ovaries were surgically removed from the abdominal cavity
and bathed in sterile modified Barth’s solution (MBS) of the following composition (in mM):
88 NaCl, 1 KCl, 0.4 MgCl2, 2.4 NaHCO3, 0.8 MgSO4, 10 HEPES, 2.4 CaCl2, and 0.3 Ca(NO3)2,
pH 7.4. Xenopus oocytes were then defolliculated enzymatically by incubation for 2 h in
sterile MBS containing 2 mg/mL collagenase (type A and type B; Roche, Indianapolis, IN,
USA), followed by three to four washes in MBS. Stage V and VI oocytes were injected with
50 nL of mRNA (10 ng/oocyte) using an automatic microinjector (Nanoject; Drummond
Scientific, Broomall, PA, USA). Oocytes were kept at 18 ◦C in sterile MBS supplemented
with 0.1 mM gentamicin until electrophysiological experiments were performed.

Measurements: two days after mRNA injection, the two-microelectrodes voltage-
clamp measurements in Xenopus oocytes were performed at room temperature (22–24 ◦C)
using a Geneclamp 500 B amplifier combined with Digidata 1440 A (Molecular Devices,
Foster City, CA, USA). Micropipettes were pulled from borosilicate glass capillaries on a
Flaming/Brown type pipette puller (P-97; Sutter Instruments, Novato, CA, USA) and had a
tip resistance of 1–2 MΩ when filled with 3 M KCl. Data were filtered at 1 KHz, and voltage
step protocols and current analysis were performed with pCLAMP 10 software (Molecular
Devices). During the recordings, oocytes were perfused with MBS solution containing (in
mM): 96 NaCl, 4 KCl, 1 MgC12, 1.8 CaC12, 5 HEPES, at pH 7.6, in a small chamber (1 mL
volume). The perfusion system was controlled by a Manifold Solution Changer (MSC-200;
Bio-Logic, Grenoble, France). Kv3.1 currents were induced by 250 ms depolarizing pulses
from a holding potential of −80 mV, in the −70 to 70 mV range and 10 mV steps. Scorpion
fraction activity was monitored using a single depolarizing step at +40 mV during 250 ms.

• Whole-cell patch-clamp

Cell transfection: Kv3.1 channels were expressed in Chinese hamster ovary (CHO)
cells by transient transfection, using plasmid containing cDNA encoding human Kv3.1b
cloned in pcDNA3 (Zhang, Yalan, Yale University School of Medicine, New Haven, CT,
USA). According to the experimental protocol, these plasmids were expressed individually
with a plasmid-expressing enhanced green fluorescent protein (GFP) used as a transfection
marker. Total cDNA in the transfection mixture was kept at 1.5 µg. CHO cells were grown
in 30 mm plastic Petri dishes in Dulbecco’s modified Eagle’s medium containing 10%
fetal bovine serum, penicillin (50 U/mL), and streptomycin (50 mg/mL) in a humidified
atmosphere at 37 ◦C with 5% CO2. The cells were transfected the next day with the appro-
priate cDNA using Lipofectamine 2000 (Life Technologies, Carlsbad, CA, USA), according
to the manufacturer’s protocol. Electrophysiological experiments were performed 48 h
after transfection.

Whole-cell recordings: currents from CHO cells were recorded at room temperature
(24 ◦C) in whole-cell configuration with an EPC-10 amplifier (HEKA Electronic, Lambrecht,
Germany). The media used within the pipette were, respectively (mM): 110 KCl, 5 NaCl,
2 MgCl2, 10 ethylene glycol-bis (2-aminoethyl ether)-N, N, N0, N0-tetraacetic acid (EGTA)
and 5 mM HEPES and in the bath (mM): 100 N-methyl-D-Glucamine-Cl, 5 KCl, 2 MgCl2,
50 NaOH, 50 acetic acid and 5 HEPES at pH 7.3. Membrane currents were elicited from a
holding potential of −80 mV, by depolarizations ranging from −120 to +60 mV. Scorpion
fraction activity was monitored using a single depolarizing step at +40 mV for 250 ms. We
used only cells with series resistance less than 5 MΩ for analysis. Patchmaster, Fitmaster
(HEKA Electronic, Lambrecht, Germany) and IgorPro (WaveMetrics, Inc., Lake Oswego,
OR, USA) software were used for data acquisition and analysis. Recording pipettes were
from glass capillaries (Hematocrit, Modulohm A/S, DK). Their resistances were 1.5–4 MΩ
and pulled with a PC-10 Narishige puller.
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• Single channel recording

Principle: The Orbit mini system (Nanion Technologies, München, Germany) was used
for single-channel recording. Kv3.1 channel proteins are expressed in planar lipid bilayers.
The lipid bilayers were formed using 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti
Polar Lipids, Alabaster, AL, USA) in the level of the four holes (100 µM) in 150 mM
MOPS solution pH 7.4. Kv3.1 channels were expressed in CHO cells in presence of GFP
by transient transfection. Fluorescence-activated cell sorting (FACS) was used to select
GFP positive-cells. The purified Kv3.1 proteins were supplemented with n-Dodecyl β-D-
maltoside (DDM) (Thermo Scientific, Strasbourg, France) detergent (1 µL) (0.015%) and
added to a preformed bilayer.

Single-channel recording: Currents were recorded at −60 mV holding potential using
Elements Data Reader (Nanion, München, Germany) and analysed using Clampfit (Axon
Instrument Inc., Burlingame, CA, USA) software, sampled at 100 µs and filtered at 1.25 kHz.

4.2.3. Data and Statistical Analysis

For Kv3.1 currents in Xenopus oocytes, whole-cell conductance (G) was calculated
according to the following equation: G = I/(V − EK), where I is the steady state cur-
rent measured at the end of each depolarizing step, V is the step potential, and EK is
the reversal potential for potassium, which was calculated to be −84.6 mV. Normalized
conductance voltage plots were obtained by normalizing conductance (G) to maximal con-
ductance (Gmax) and were fitted to a single Boltzmann distribution of the following form:
G = Gmax/{1 + exp[(V − V1/2)/k]}, where V is the test potential, V1/2 is the half-activation
potential, and k is the slope factor [63].

Statistical differences between data groups were performed using excel and were
expressed as mean ± S.E.M. Differences were tested, using XLSTAT software, applying an
unpaired two-tailed Student’s t test, assuming that the population follows a Gaussian dis-
tribution. Differences were considered statistically significantly different versus respective
controls when p < 0.05.

4.2.4. Proteomics

• Protein identification: NanoLC/HRMS-MS:

Ten microliters of the resulting supernatant were analysed using an ESI-Q Exactive
Plus mass spectrometer coupled to an Ultimate 3000 RSLC Nano System (Thermo Scien-
tific). Liquid chromatography was performed with an EASY-Spray Pepmap C18, 2 µm,
25 cm × 75 µm and 100 µm column. The flow rate was set at 0.3 µL/min with a 5–45%
gradient of solvent B (80% acetonitrile, 20% water, 0.1% formic acid) against solvent A
(0.1% formic acid, 100% water) for 240 min. For MS analyses, full-scan mass spectra were
measured from 350 to 1500 m/z with an AGC (Automatic Gain Control) target of 3 × 106

and a resolution of 70 K. A top 15 data-dependent method was used for MS/MS spectrum
acquisition with an AGC target of 1 × 105, a resolution of 35 K and a dynamic exclusion of
40 s.

All MS raw data files were analysed by Proteome Discoverer software 1.4 (Thermo
Scientific) using the Sequest HT search engine against the Uniprot database (Version
2015_2). Precursor mass tolerance was set to 10 ppm and fragment ion tolerance was
0.02 Da. Carbamidomethylation of cysteine (+57.021 Da) was set as static modifications
and oxidized Methionine as dynamic modification (+15.995 Da).

A decoy database search strategy was also used to estimate the false discovery rate
(FDR) to ensure the reliability of the proteins identified and at least two peptides were
required for matching a protein entry for its identification.

4.2.5. Computational or In Silico Study

• Molecular modelling of alpha-KTx 15.1, AaTXK-beta and Kv3.1 potassium channel
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The pairwise alignment of target sequences with the templates, identified from the
Protein Data Bank (PDB) based on their sequence identity, was built with the Needlemane
Wunsch algorithm implemented in EMBOSS [64]. We used the comparative modelling by
satisfaction of spatial restraints implemented in the program MODELLER in its version
9.24 [65]. The Kv3.1 channel structure model was generated by homology to the crystal
structure of the Kv1.2-Kv2.1 paddle chimera channel. The sequence of the human Kv3.1 K+

channel subtype was extracted from Uniprot database under the accession number P48547.
The sequence of the human Kv3.1 K+ channel subtype contains 511 amino acids. The chosen
template for model building of alpha-KTx 15.1 and AaTXK-beta is, respectively AmmTx3
from Androctonus mauretanicus (PDB code 6GGZ) [66] and Hge36 Scorpine-like Peptide from
Hadrurus gertschi (PDB code 5IPO). Indeed, AmmTX3 has the highest sequence identity
(93%) with alpha-KTx 15.1. They differ by only two conserved amino acids (Q/Z) in
position 1 and (N/I) in position 2 of their sequences. Overall, 500 structures were generated
for alpha-KTx 15.1 and Kv3.1 channel, respectively, by using the default parameters of the
program. The generated conformations were assessed with the DOPE (Discrete Optimized
Protein Energy), a based knowledge potential implemented in MODELLER [67], from
which we selected the structure with the best score. Several conformational and energetic
evaluation methods (Ramachandran Plot, ProsaII and verify 3D) were used to assess the
quality of the models [68–70].

• Toxin-channel docking study

Docking approaches are firstly based on research into the various partner linkage
methods, then on the selection of the most probable model according to certain specific
criteria. In some cases, it is possible to orient the research by experimental, evolutionary, or
statistical data (guided docking). In this research study, the strong homology between our
toxin and AmmtX3 and by reference to AmmtX3 of interaction with Kv4.3 channel led us
to a guided docking based on the functional dyad (Lys27-Tyr36) [71]. In order to predict a
reasonable model of interaction between alpha-KTx 15.1 or ATXK-beta and Kv3.1, we used
ClusPro software for protein–protein docking [72]. The docking surface is restricted to the
extracellular surface of the Kv3.1 K+ channel. The server performs three computational
steps as follows: (1) rigid body docking by sampling billions of conformations, (2) root-
mean-square deviation (RMSD) based clustering of the 1000 lowest energy structures
generated to find the largest clusters that will represent the most likely models of the
complex, and (3) refinement of selected structures using energy minimization.
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