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ABSTRACT
Many epidemiological studies have linked low birthweight to an increased risk of non-commu
nicable diseases (NCDs) in later life, with epigenetic proceseses suggested as an underlying 
mechanism. Here, we sought to identify neonatal methylation changes associated with birth
weight, at the individual CpG and genomic regional level, and whether the birthweight-asso
ciated methylation signatures were associated with specific maternal factors. Using the Illumina 
Human Methylation EPIC array, we assessed DNA methylation in the cord blood of 557 and 483 
infants from the UK Pregnancies Better Eating and Activity Trial and Southampton Women’s 
Survey, respectively. Adjusting for gestational age and other covariates, an epigenome-wide asso
ciation study identified 2911 (FDR≤0.05) and 236 (Bonferroni corrected p ≤ 6.45×10−8) differen
tially methylated CpGs (dmCpGs), and 1230 differentially methylated regions (DMRs) (Stouffer 
≤0.05) associated with birthweight. The top birthweight-associated dmCpG was located within the 
Homeobox Telomere-Binding Protein 1 (HMBOX1) gene with a 195 g (95%CI: −241, −149 g) 
decrease in birthweight per 10% increase in methylation, while the top DMR was located within 
the promoter of corticotropin-releasing hormone-binding protein (CRHBP). Furthermore, the 
birthweight-related dmCpGs were enriched for dmCpGs previously associated with gestational 
hypertension/pre-eclampsia (14.51%, p = 1.37×10−255), maternal smoking (7.71%, p = 1.50 x 10 
−57) and maternal plasma folate levels during pregnancy (0.33%, p = 0.029). The identification of 
birthweight-associated methylation markers, particularly those connected to specific pregnancy 
complications and exposures, may provide insights into the developmental pathways that affect 
birthweight and suggest surrogate markers to identify adverse prenatal exposures for stratifying 
for individuals at risk of later NCDs.
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Introduction

Birthweight can be affected by multiple intrauterine 
exposures, such as maternal smoking [1,2], maternal 
body mass index (BMI) [3–5], hypertensive disor
ders of pregnancy [6,7], gestational diabetes [5,8], 
and maternal nutrition [9]. All these factors influ
ence foetal growth and, as a consequence, birth
weight. Many observational and epidemiological 
studies have shown a U-shaped relationship between 
birthweight and an increased risk of later non- 
communicable diseases (NCDs), including cardio- 
metabolic disease [10–13], cancer [10,14] and 

increased mortality [10,15], with babies born at 
both low and high birthweight being at increased 
risk. Although a relatively crude marker of foetal 
growth, birthweight may nonetheless act as a proxy 
measure for the quality of the intrauterine environ
ment and of detrimental prenatal exposures.

Several mechanisms have been suggested to 
underlie the associations between birthweight, 
and by extension the intrauterine environment, 
and risk of later NCDs, including DNA methyla
tion. A role for DNA methylation in mediating 
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the effects of early life environment on later health 
is supported by a substantial body of evidence 
from experimental models [16,17] as well as by 
large epigenome-wide association studies (EWAS) 
in humans. The latter have linked adverse early 
life environments induced by maternal smoking 
[18,19], dysglycaemia [20,21], hypertension [22] 
and unbalanced nutrition during pregnancy [23] 
to altered DNA methylation in neonatal blood 
and then to increased susceptibility to later 
NCDs. Consistent with birthweight being 
a proxy for prenatal exposure to environmental 
factors, it has also been shown to be associated 
with neonatal DNA methylation [24]. To date, the 
majority of the published work on the associations 
between DNA methylation and birthweight, 
including the meta-analysis in the PACE consor
tium by Küpers et al. [24], have been carried out 
using the Illumina Human Methylation450K 
array, which measures the methylation at 
~450,000 CpGs in the genome [25]. This repre
sents approximately 1.6% of the total CpGs in the 
genome and was designed to cover regulatory 
regions involved in transcriptional regulation of 
gene expression, and as such were located in CpG 
islands 5�UTR, 3�UTR and bodies of annotated 
genes, gene promoters, and a limited number of 
enhancers. With the updated EPIC array, which 
measures ~850,000 CpGs, including 90% of the 
CpGs found on the 450 K array, there is increased 
coverage across the genome, including a much 
greater number of probes at regions identified as 
potential enhancers by both the FANTOM5 [26] 
and ENCODE [27] projects. Therefore, we sought 
to investigate the associations between neonatal 
blood DNA methylation, as measured on the 
EPIC array, with birthweight. As well as looking 
at methylation changes at the individual CpG 
level, we sought to identify differentially methy
lated regions (DMRs) associated with birthweight. 
We then investigated the relationships between 
the birthweight-associated methylation changes 
and the differentially methylated CpGs 
(dmCpGs) previously reported to be associated 
with maternal smoking, obesity, folate levels and 
pregnancy hypertension/preeclampsia. Finally, we 
examined whether the methylation at the 
dmCpGs associated with birthweight may play 
a functional role by assessing the overlap between 

these dmCpGs and published cis-expression 
quantitative trait methylation (cis-eQTMs).

Materials and Methods

Study participants

UPBEAT – UK Pregnancies Better Eating and 
Activity Trial
This prospective cohort study was a secondary 
analysis using data from UPBEAT (isrctn.org 
registration number 89,971,375). UPBEAT was 
a multi-centre RCT of a complex dietary and phy
sical activity intervention designed to prevent 
GDM in obese women and reduce the incidence 
of large-for-gestational-age (LGA) infants [28]. 
The cohort comprised 1555 women, older than 
16 years of age with a BMI of 30 kg/m2 or higher, 
recruited between 2009 and 2014, who were ran
domized between 15 weeks 0 days’ and 18 weeks 
6 days’ gestation (15+0 and 18+[6] weeks’ gesta
tion) to either a behavioural intervention super
imposed on standard antenatal care or standard 
antenatal care. As the primary outcomes (GDM 
and LGA infants) did not differ between interven
tion and control arms (p = 0.68 and p = 0.40, 
respectively) [28], all women recruited to the trial 
were treated as a single cohort for the purposes of 
this study. Educational attainment was categorized 
using the highest educational qualification 
achieved (None, GCE (or equivalent), vocational 
qualification, A level (or equivalent), first degree, 
higher degree). Gestational weight gain was char
acterized as adequate, inadequate or excessive 
according to the USA National Academy of 
Medicine 2009 categories (NAM), formerly 
known as the Institute of Medicine (IOM). [29]. 
The trial protocol required an Oral Glucose 
Tolerance Test (OGTT) at 27+0 to 28+[6] weeks’ 
but for this study a clinically pragmatic approach 
was adopted with OGTTs at 23+[2] to 30+0 weeks’ 
(mean 27+[5]) included. Diagnosis of GDM was 
according to International Association of Diabetes 
and Pregnancy Study Groups (IADPSG) criteria 
(fasting glucose ≥5.1 mmol/l and/or 1 hr 
≥10.0 mmol/l and/or 2 hr ≥8.5 mmol/l in response 
to a 75 g oral glucose load) All aspects of the trial, 
including the analyses in the present study, were 
approved by the National Health Service Research 
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Ethics Committee (UK Integrated Research 
Application System; reference 09/H0802/5) and 
all participants, including women aged 16 and 17 
using Fraser guidelines, provided written informed 
consent.

SWS – Southampton Women’s Survey
The SWS is a prospective mother–offspring cohort 
study that has assessed the diet, body composition, 
physical activity, and social circumstances of non- 
pregnant women aged 20–34 years living in 
Southampton, UK. Comprehensive details of SWS 
have been previously published [30]. Educational 
attainment was categorized using the highest educa
tional qualification achieved (None, CSE, O levels, 
A levels, Higher national diploma, degree). 
Gestational weight gain was characterized as ade
quate, inadequate or excessive according to the 
USA NAM categories. The SWS cohort did not 
require an OGTT to be carried out for all partici
pants, therefore, GDM status was obtained from 
clinical records. Follow-up of the children and sam
ple collection/analysis was carried out under 
Institutional Review Board approval (Southampton 
and South West Hampshire Research Ethics 
Committee, references 276/97, 307/97, 153/99 w, 
and 10/H0504/30) with written informed consent.

DNA extraction

Genomic DNA (gDNA) was extracted from the 
buffy coat of umbilical cord blood samples from 
UPBEAT using the QIAamp Blood DNA mini kit 
(Qiagen), and using a standard high salt method for 
the SWS umbilical cord blood samples. Quality of 
the genomic DNA was assessed by agarose gel elec
trophoresis and quantity of gDNA was checked on 
the NanoDrop ND-1000 (NanoDrop Technologies).

Infinium Human OmniExpress genotype arrays

SNP genotyping was carried using Human 
OminiExpress-24v1.2 at the Edinburgh Clinical 
Research Facility. Genotyping was analysed in 
Illumina Genome Studio 2.0.2 using genotyping 
Module 2.0.2 following the manufacturer’s technical 
note. PLINK version 1.9 beta [31] was used for SNP 
data management and quality control. Genotyping 
imputation was carried out using Sanger imputation 

(https://imputation.sanger.ac.uk). The UK10K [32] 
and 1000 Genomes Phase 3 [33] reference panels 
were used with the EAGLE2 imputation pipeline 
[34,35]. Imputed SNPs were further filtered using 
imputation info score (INFO >0.8), genotyping call 
rate 0.05, missingness 0.01, minor allele frequency 
0.01, and Hardy-Weinberg equilibrium 1 × 10−6. 
SNPs with a minor allele frequency (MAF) <5% in 
the whole dataset were excluded from downstream 
analysis. GEM [36] was used to investigate the 
genetic influence on methylation.

Infinium Human MethylationEPIC BeadChip 
array

DNA methylation using the Infinium Human 
MethylationEPIC BeadChip array was used to 
interrogate DNA methylation including 17 techni
cal replicates. 1 µg of the genomic DNA was trea
ted with Sodium Bisulphite using the Zymo EZ 
DNA Methylation-Gold kit (ZymoResearch, 
Irvine, California, USA, D5007) and processing 
of the Human MethylationEPIC (Infinium 
Methylation 850 K; Illumina, Inc. CA, USA) plat
form was carried out by the Centre for Molecular 
Medicine and Therapeutics (CMMT, Canada) 
(http://www.cmmt.ubc.ca).

Infinium Human MethylationEPIC BeadChip 
array data processing

Infinium 850 K data was then processed using the 
Bioconductor package minfi [37] in R (version 
3.4.2). 557 arrays from UPBEAT and 483 arrays 
from SWS were combined for the purpose of this 
study with cohort being adjusted for in the analysis 
(see below). The two cohorts were combined for 
the initial analysis as power calculations using the 
pwr package in R calculated that to identify robust 
associations that pass a Bonferroni adjustment 
(0.05/775,539) explaining 10% of the variance in 
birthweight, 758 samples would be required for 
90% power. Beta-mixture quantile (BMIQ) normal
ization was applied to remove array biases and 
correct for probe design. Probes with a detection 
p-value >0.01 (n = 18,745) and beadcount <3 
(n = 263) were removed from the dataset. CpGs 
known to cross-hybridize to other locations in the 
genome [38] (n = 14,759), coinciding with SNPs 
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(n = 77,261), aligning to the sex chromosomes 
(n = 17,063) and non-CpG probes (n = 2905) 
were also removed from the dataset. Duplicate 
samples were included and hierarchical clustering 
grouped the pairs together. Participant sex was 
predicted using the getSex() function in minfi. 
Data was further assessed by visualization of 
methylation density plots and calculation of median 
absolute deviation (MAD) scores. Duplicates were 
removed after normalization but before inference 
(the duplicate with the lowest MAD score was 
removed). Eleven samples showed aberrant methy
lation densities and MAD scores lower than −5 so 
were removed from the analysis, while nine sam
ples showed aberrant grouping on 
a multidimensional scaling (MDS) plot, separated 
by infant sex, and sex discrepencies were removed 
from subsequent analysis. After excluding preterm 
births (<37 weeks, n = 35), 985 samples were taken 
forward for further analysis. ComBat was applied 
to remove batch (plate) and chip effects [39], and 
the batch-corrected methylation values used for 
downstream analysis. The removal of batch effects 
using ComBat was sufficient to account for the two 
cohorts used in this study, with PCA analysis 
showing after BMIQ normalization but before 
adjustment for chip and cohort of each sample, 
PC1 separates the two cohorts from each other, 
while after ComBat the samples are no longer 
separated by cohort, removing the variation due 
to cohort from the data (Figure S1). Model 
assumptions were assessed by visual inspection of 
QQ plots and p-value histograms and calculation 
of genomic inflation factor lambda (λ) value, 
defined as the ratio of the median observed chi 
squared value distribution to the expected distribu
tion. Genomic inflation (λ) >1.2 was suggestive of 
test statistic bias and inflation; therefore the bacon 
package [40] in R was used to reduce this inflation. 
Raw data used in this analysis has been deposited 
in the Gene Expression Omnibus (GEO) under 
accession numbers GSE141065 (UPBEAT) and 
GSE154915 (SWS).

Infinium Human MethylationEPIC BeadChip 
array data analysis

As cord blood comprises a heterogeneous cell 
population, and no cell composition data was 

available for these samples, a reference-based pre
diction of the cell composition was carried out to 
obtain predicted cellular compositions using the 
algorithm by Houseman et al. [41], using the 
FlowSorted.CordBlood.450k [42] package in R, 
which utilizes the reference for cord blood cell 
compositions estimated by Andrews and Bakulski 
[42]. Robust linear regression models using limma 
[43] were run with methylation as the outcome 
variable. All models included the following as cov
ariates: Maternal age, maternal smoking during 
pregnancy, maternal ethnicity, neonate sex, parity, 
Sentrix position, GDM status (30% of mothers in 
UPBEAT were diagnosed with GDM by IADSPG 
criteria [44]), gestational age, and the predicted 
values for B-cells, CD4 T-cells, CD8 T-cells, gran
ulocytes, monocytes, natural killer cells, and 
nucleated red blood cell composition. The analysis 
was controlled for multiple testing with the 
Benjamini–-Hochberg adjustment for false discov
ery rate (FDR). Sensitivity analyses were carried 
out to determine the effect of baseline maternal 
BMI and educational attainment on any genome- 
wide methylation changes observed.

Statistical analysis

All statistical analysis was carried out in R (version 
3.4.2). For the purpose of the combined analysis, 
educational attainment was combined into 5 levels: 
None, CSE/GCE/O levels, higher national diploma 
(HND)/vocational qualification, A levels, and 
Degree. Fisher exact test was used to determine 
over/under-representation of dmCpGs amongst 
genomic locations. The hypergeometric distribution 
probability test was used to determine enrichment of 
dmCpGs.

Results

Participant characteristics

We used data from 995 neonates from the SWS 
and UPBEAT studies, representing mainly partici
pants of European heritage (SWS = 98.5%, 
UPBEAT = 73.7%, combined = 85.4%), with a min
ority of African and Asian ethnicities. There were 
similar proportions of male and female infants in 
the two cohorts (52.7% males in the combined 
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dataset). While maternal age and parity were simi
lar in the two cohorts, the average pre-pregnancy 
BMI in the mothers was higher in UPBEAT 
(35.2 kg/m2 (6.0)) compared to SWS (24.0 kg/m2 

(5.2)), as was the incidence of GDM (30% of 
women in the UPBEAT cohort compared to 0.9% 
in SWS), and maternal smoking (16.6% in 
UPBEAT, 13.7% in SWS). Birthweight (3522.2 g 
in SWS infants, 3559 g in UPBEAT infants) was 
not different between the two cohorts, however, 
gestational age was slightly less in UPBEAT com
pared to SWS (39.9 and 40.1 weeks, respectively, 
p = 0.046).

Identification of dmCpGs in cord blood 
associated with birthweight

DNA from 995 cord blood samples were interro
gated for genome-wide DNA methylation levels 
using the Infinium Human MethylationEPIC 
BeadChip array. After adjustment for the follow
ing covariates; maternal age, GDM status, parity, 
smoking, ethnicity, neonate sex, gestational age, 
Sentrix position, and cell-type heterogeneity, 
methylation levels at 2911 CpGs were found to 
be associated with birthweight (FDR≤0.05) 
(Figure 1a+b, Table 2+S1). Of these, 236 CpGs 
survived the more stringent Bonferroni correction 
(p < 6.45 x 10−8), of which 165 were associated 
with 152 unique genes. Of the 2911 CpGs with an 
FDR<0.05, 57.1% showed a negative association 
with birthweight, while 72.5% of the CpG associa
tions that remained after Bonferroni correction 
showed a negative association with birthweight 
(Figure 1c). The top two dmCpGs associated 
with birthweight following Bonferroni correction 
were cg26901873 (Bonferroni = 1.30 x 10−9, Figure 
1f), located in the 5�UTR of the Homeobox 
Telomere-Binding Protein 1 (HMBOX1) gene, 
which was associated with a 195 g decrease in 
birthweight for every 10% increase in methylation 
(95% CI: −241, −149 g, methylation range = 0.308–
0.814), and cg18878242 (Bonferroni = 8.93 x 10−9, 
Figure 1g), located in the 5�UTR of the Ribosomal 
Protein L39 like (RPL39L) gene, associated with 
a 222 g decrease in birthweight for every 10% 
increase in methylation (95% CI: −274, −170 g, 
methylation range = 0.206–0.661). cg08801887, 
located in the body of the T Cell Immune 

Regulator 1, ATPase H+ Transporting V0 
Subunit A3 (TCIRG1) gene, had the largest posi
tive association, with a 10% increase in methyla
tion associated with a 422 g increase in birthweight 
(95% CI: 275, 569 g, methylation range = 0.626–
0.911). cg07749613, located in the intergenic 
region on chromosome 2 had the largest negative 
association, with a 10% increase in methylation 
associated with a 507 g decrease in birthweight 
(95% CI: −685, −330 g, methylation range = 0.021–
0.164).Table 1

Of the dmCpGs remaining after Bonferroni cor
rection, there was an over-representation of CpGs 
in the OpenSea regions (odds ratio = 3.95, p = 4.99 
x 10−19) compared to a significant under- 
representation of CpGs in islands (odds 
ratio = 0.13, p = 1.83 x 10−13) and shores (odds 
ratio = 0.35, p = 252 x 10−6)(Figure 1d). Of the 165 
dmCpGs that were associated with a gene, there 
was a significant underrepresentation of CpGs at 
the transcription start site of genes (odds 
ratio = 0.45, p = 1.42 x 10−4)(Figure 1e).

Sensitivity analysis

As a number of maternal factors such as maternal 
BMI [45,46], gestational weight gain [47], and edu
cational attainment [48,49] have previously been 
shown to be associated with birthweight, we carried 
out a series of sensitivity analyses, analysing DNA 
methylation with respect to birthweight with adjust
ment for each of these factors in the original model 
as additional covariates. After the addition of mater
nal BMI into the regression model, 2911 CpGs 
showed a significant association with child’s birth
weight (FDR<0.05, table S2)), of which 243 survived 
the more stringent Bonferroni correction for multi
ple comparisons; there was a 91.6% overlap amongst 
the dmCpGs with an FDR <0.05 from the original 
analysis, and a 53.91% overlap amongst the 
Bonferroni adjusted birthweight dmCpGs. Of the 
dmCpGs with an FDR<0.05, there was also 
a strong correlation between the effect estimates of 
the birthweight associated CpGs (Pearson correla
tion coefficient = 0.999, ICC = 0.999, p < 2.2 x 10−16, 
figure S2a). After the addition of gestational weight 
gain (GWG) into the original regression model, 1195 
dmCpGs were associated with birthweight 
(FDR<0.05, Table S3), of which 87 remained after 
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the more stringent Bonferroni adjustment. All 87 of 
the Bonferroni adjusted and 98.3% of the FDR<0.05 
dmCpGs in GWG adjusted analysis were also 

significantly associated with birthweight in the 
main analysis. Of the dmCpGs with an FDR<0.05, 
there was also a strong correlation between the effect 

Figure 1. (a) Manhattan plot of the differential methylation results with respect to birthweight, highlighting the genome-wide 
changes in DNA methylation with respect to birthweight. The black line represents p = 1 x 10−5, while the red line represents 
Bonferroni p = 6.45 x 10−8. (b) Volcano plot of the methylation results, with CpGs passing the Bonferroni threshold highlighted in 
red. The black line represents p = 1 x 10−5, while the green line represents Bonferroni p = 6.45 x 10−8. (c) Proportion of the 
Bonferroni dmCpGs showing a negative(red)/positive(blue) association with birthweight. (d) Genomic location of the Bonferroni 
dmCpGs relative to CpG islands (mainly in open sea – blue). (e) For the dmCpGs associated with a gene, the location of the dmCpG 
relative to that gene. (F + G) Scatterplots of birthweight (g) and methylation % for the top two birthweight-associated dmCpGs.
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estimates of the birthweight associated CpGs 
(Pearson correlation coefficient = 0.997, 
ICC = 0.996, p < 2.2 x 10−16, figure S2b). 

Furthermore, when the model was additionally 
adjusted for maternal educational attainment, 2922 
CpGs showed a significant association with child’s 

Table 1. Participant characteristics.
SWS 

(n = 460)
UPBEAT 

(n = 525)
Combined 
(n = 985)

Neonate Sex Male (%) 52.0 53.2 52.7
Maternal ethnicity White (%) 98.5 73.7 85.4

Asian (%) 0.0 5.3 2.8
Black (%) 1.1 16.4 9.2
Other (%) 0.4 4.6 2.6

Educational attainment 
(4 missing)

None (%) 1.3 1.9 1.6

CSE/O levels/GCE (%) 34.1 13.9 23.4
HND/Vocational (%) 8.1 24.8 17.0
A levels (%) 31.3 15.5 22.9
Degree (%) 25.3 43.9 35.1

IOM weight gain category 
(49 missing)

Adequate (%) 28.4 37.1 33.0

Inadequate (%) 22.0 29.3 25.9
Excessive (%) 49.7 33.7 41.1

GDM 
(8 missing)

Yes (%) 0.9 30.0 16.1

Parity Primiparous (%) 50.96 52.29 51.7
Smoking Smoker (%) 13.7 16.6 14.97
Birthweight (g)† 

(2 missing)
3523.2 ± 490.3 3559.1 ± 469.0 3542.1 ± 479.3

Maternal BMI (kg/m2)* 24.0 (5.2) 35.2 (6.0) 32.0 (11.7)
Maternal Age (years)† 31.2 ± 3.6 30.9 ± 5.4 31.1 ± 4.7
Gestational age (weeks)† 40.1 ± 1.2 39.9 ± 1.3 40.0 ± 1.3
B cell† 0.08 ± 0.02 0.11 ± 0.05 0.10 ± 0.04
CD4 T cells† 0.12 ± 0.06 0.13 ± 0.08 0.13 ± 0.07
CD8 T cells† 0.14 ± 0.04 0.12 ± 0.04 0.13 ± 0.04
Granulocytes† 0.50 ± 0.09 0.45 ± 0.13 0.48 ± 0.11
Monocytes† 0.09 ± 0.02 0.10 ± 0.04 0.10 ± 0.04
Natural Killer cells† 0.01 ± 0.01 0.02 ± 0.03 0.01 ± 0.02
Nucleated Red Blood Cells† 0.10 ± 0.06 0.10 ± 0.07 0.10 ± 0.06

*median (IQR), †mean±sd, CSE = Certificate of Secondary Education, GCE = General Certificate of Education, O level = Ordinary level, HND = Higher 
National Diploma, A level = Advanced level, IOM = Institute of Medicine, GDM = Gestational Diabetes Mellitus, BMI = Body Mass Index 

Table 2. Top 20 dmCpGs associated with birthweight.
CpG Estimate FDR Bonferroni hg19 coordinates Gene Gene location Relation to CpG Island

cg26901873 −1949.77 1.30E-09 1.30E-09 chr8:28,811,004- HMBOX1 5�UTR OpenSea
cg18878242 −2220.21 4.47E-09 8.93E-09 chr3:186,848,672+ RPL39L 5�UTR OpenSea
cg19274030 −1809.59 2.28E-08 6.84E-08 chr3:98,489,745+ ST3GAL6 5�UTR OpenSea
cg24797865 −2444.55 3.64E-08 1.45E-07 chr21:46,331,470+ ITGB2 5�UTR OpenSea
cg16015397 −1806.24 6.02E-08 3.03E-07 chr21:46,331,472+ ITGB2 5�UTR OpenSea
cg25124943 −2974.16 6.02E-08 3.61E-07 chr10:4,117,248+ OpenSea
cg16058496 3435.52 7.34E-08 5.14E-07 chr11:64,527,499+ PYGM 1stExon OpenSea
cg00464852 −2500.34 3.73E-07 2.98E-06 chr14:68,610,155+ RAD51B Body OpenSea
cg18001737 −2230.54 9.65E-07 8.68E-06 chr1:150,081,706+ VPS45 Body OpenSea
cg19152802 −2355.45 1.10E-06 1.10E-05 chr5:109,849,887- MIR548F3/ 

TMEM232
TSS1500/Body OpenSea

cg09782624 −1721.53 1.26E-06 1.39E-05 chr3:170,908,539- TNIK Body OpenSea
cg20407747 −2708.45 1.29E-06 1.55E-05 chr8:59,941,881- TOX Body OpenSea
cg21180953 −2464.28 1.36E-06 1.77E-05 chr18:42,489,607- SETBP1 Body OpenSea
cg10777338 −1995.49 1.45E-06 2.03E-05 chr7:20,936,700+ LINC01162 Body OpenSea
cg12732215 −2381.16 1.52E-06 2.28E-05 chr3:37,795,217- ITGA9-AS1/ITGA9 Body OpenSea
cg00506306 −1809.93 1.99E-06 3.32E-05 chr7:51,207,974- COBL Body OpenSea
cg13492133 1841.23 1.99E-06 3.37E-05 chr1:183,516,266+ SMG7 Body OpenSea
cg25953130 −1468.10 2.08E-06 3.75E-05 chr10:63,753,550+ ARID5B Body OpenSea
cg24942683 −2207.16 2.12E-06 4.02E-05 chr13:77,518,644- OpenSea
cg17380474 −3704.65 2.39E-06 5.04E-05 chr22:30,609,292- OpenSea
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birthweight (FDR<0.05, Table S4), of which 247 
remained after the more stringent Bonferroni cor
rection for multiple comparisons, with a 51.42% 
overlap between the Bonferroni adjusted dmCpGs 
and a 92.20% overlap amongst the FDR<0.05 
dmCpGs; there was also a strong correlation between 
the effect estimates of the birthweight associated 
CpGs with a FDR<0.05 (Pearson correlation coeffi
cient = 0.999, ICC = 0.999, p < 2.2 x 10−16, fig
ure S2c).

When restricting the analysis to participants 
of European descent, the findings were consis
tent with the main analysis; 73.6% of the CpGs 
with an FDR<0.05 in the restricted analysis on 
participants of European descent were found to 
be associated with the birthweight dmCpGs in 
the main analysis on all participants, with 
a strong correlation between the effect estimates 
of the birthweight-associated CpGs of the two 
analyses (Pearson correlation coefficient = 0.996, 
ICC = 0.991, p < 2.2 x 10−16, figure S2d, Table 
S5). Similarly, when restricting the correlation to 
the 236 CpGs from the main analysis that sur
vive Bonferroni correction, there was a strong 
correlation between the effect estimates between 
the main analysis and the restricted analysis on 
participants of European descent (Pearson cor
relation coefficient = 0.998). Due to the low 
number of African and Asian participants in 
this data set (UPBEAT n = 90 and SWS 
n = 25), it was not possible to repeat the analysis 
restricted to these populations. The findings 
were also consistent when neonates who were 
born preterm were included, with 99% of the 
original birthweight associated dmCpGs (at 
both FDR and Bonferroni <0.05, Figure S2b+d, 
Table S6) also being associated with birthweight 
when preterm infants were included. There was 
also a strong correlation between the effect esti
mates of the birthweight associated CpGs 
(Pearson correlation coefficient = 0.992, 
ICC = 0.98, p = p < 2.2 x 10−16, figure S2e).

Overlap between the birthweight-associated 
dmCpGs in the UPBEAT and SWS cohorts

As the main analysis was based on combining 
data from the SWS and UPBEAT cohorts, we 
also analysed the two cohorts separately. In the 

SWS only analysis, there were 1238 birth
weight-associated dmCpGs (FDR<0.05), of 
which 76.2% overlapped with the main analysis, 
while in the UPBEAT only analysis, of the 928 
birthweight-associated dmCpGs (FDR<0.05), 
52.0% overlapped with the main analysis 
(Figure 2, Table 3). Comparison of the overlap 
between the single cohort analyses revealed 
33.1% of the dmCpGs in the UPBEAT single 
cohort analysis were also differentially methy
lated in the SWS single cohort analysis, of 
which 97.4% were significantly associated with 
birthweight in the main analysis (Figure 2c).

Differentially methylated regions in the infants’ 
methylome are associated with birthweight

Regional analysis of differential methylation 
associated with birthweight identified 1250 
DMRs with a Stouffer<0.05 (Table 4 and S7). 
The DMRs were spread throughout the gen
ome, and not localized to a particular region, 
with 41.8% of the significant DMRs showing 
greater methylation with increased birthweight. 
The top DMR was located in the promoter 
region of the corticotropin-releasing hormone- 
binding protein (CRHBP), consisting of 11 
CpGs spanning a region of 1448bp 
(Stouffer = 3.05 x 10−24). Of the 1250 birth
weight-associated DMRs, 40 contained 
a dmCpG (Bonferroni<0.05) previously 
reported by Küpers et al. [24] to be associated 
with birthweight, with a further 28 DMRs asso
ciated with the same gene for which a dmCpG 
had previously been reported [24].

Functional analysis

To determine whether there were any gene 
ontology (GO) terms enriched amongst the 
birthweight-associated 2911 dmCpGs 
(FDR<0.05), gene ontology enrichment analysis 
was carried out using the missMethyl package 
[50] in R. We found enrichment of genes asso
ciated with 3 GO terms: GO:0032501: multicel
lular organismal process (FDR = 0.032); 
GO:0051239, regulation of multicellular organis
mal process (FDR = 0.041); and GO:0048513, 
animal organ development (FDR = 0.049). 
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There were no KEGG terms enriched amongst 
the birthweight-associated dmCpGs.

To determine whether the birthweight- 
associated dmCpGs showed a functional correla
tion with gene expression, we compared our list 
of 1206 dmCpGs, the sites found on both the 
450 K and 850 K arrays (FDR<0.05), with a pub
lished list of 18,881 cis-expression quantitative 
trait methylation (cis-eQTM) [51], CpG sites 
known to correlate with gene expression from 
adult whole blood samples. Of the 1206 
dmCpGs, 93 were reported to be a cis-eQTM, 
associated with 123 genes (enrichment 
p-value = 4.439 x 10−6).

Maternal factors
A meta-analysis has been previously carried out by 
the PACE consortium to determine the effect of 
maternal factors, including smoking during preg
nancy [18], BMI [22], obesity [22], folate levels 
[52], and gestational hypertension/pre-eclampsia 
[53], on the DNA methylation of the offspring at 
birth. These analyses were carried out using the 
450 K array. Restricting the birthweight- 
associated dmCpGs (FDR<0.05) from our study 
to those CpGs present on the 450 K array (1206/ 
2911), we investigated whether the birthweight- 
associated dmCpGs in this study were enriched 
amongst the dmCpGs found to be associated with 

Figure 2. Overlap of the birthweight-associated dmCpGs (FDR<0.05) in the main combined analysis and in the (a) UPBEAT only 
analysis and (b) the SWS only analysis. (c) Three-way overlap between the dmCpGs in the combined analysis, UPBEAT only analysis 
and the SWS analysis. All show high overlap between the dmCpGs in the different analysis, with 255 dmCpGs (FDR<0.05) identified 
in the combined, UPBEAT only and SWS only analysis.
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a range of early life environmental factors by the 
PACE consortium study in their meta analysis.

There was a significant enrichment of the 
birthweight-associated dmCpGs in our study 
with the PACE study dmCpGs associated with 
gestational hypertension/pre-eclampsia (14.51%, 
p = 1.37 x 10−255), maternal smoking (7.71%, 
p = 1.50 x 10−54) and maternal plasma folate 
levels during pregnancy (0.33%, p = 0.029). 
Meta-analyses with respect to maternal BMI 
and obesity have only to date shown CpGs that 
pass Bonferroni correction; comparing these 

dmCpGs to those identified in our study we 
found no evidence of enrichment of maternal 
BMI-associated CpGs amongst the birthweight- 
associated dmCpGs. Similarly, restricting the 
analysis to only the birthweight-associated 
dmCpGs that remain after Bonferroni correc
tion, we found a significant enrichment of 
CpGs associated with gestational hypertension/ 
pre-eclampsia (13.33%, p = 1.25 x 10−34) and 
maternal smoking (7.78%, p = 1.44 x 10−10), 
but not with maternal BMI or plasma folate 
levels during pregnancy, BMI, or obesity.

Table 3. Top 10 birthweight-associated dmCpGs in the separate SWS and UPBEAT analyses.
CpG Estimate FDR hg19 coordinates Gene

SWS only
cg15908709 5209.34 1.37E-06 chr17:46,676,215- LOC404266/HOXB6
cg16964184 −2884.79 2.84E-06 chr10:91,411,848-
cg13245626 −2259.42 3.22E-06 chr4:75,558,301+
cg16058496 5535.96 3.22E-06 chr11:64,527,499+ PYGM
cg25017876 −2726.07 2.11E-05 chr10:98,066,585- DNTT
cg07624582 −2946.44 2.11E-05 chr9:14,271,314+ NFIB
cg17254383 −5326.22 2.11E-05 chr17:53,363,128- HLF
cg26240885 −2500.99 2.11E-05 chr12:15,055,618+
cg24020157 −3782.24 2.11E-05 chr10:43,697,521+ RASGEF1A
UPBEAT only
cg23638139 2843.94 4.73E-08 chr11:73,104,087+ RELT
cg17264028 2554.18 2.34E-04 chr2:73,487,972- FBXO41
cg18402166 830.03 2.34E-04 chr17:62,778,279- LOC146880
cg07703979 2017.70 3.74E-04 chr1:53,579,547+ SLC1A7
cg07977153 3049.19 3.74E-04 chr11:1,967,958+ MRPL23
cg25124943 −1585.49 3.74E-04 chr10:4,117,248+
cg16708012 1696.31 3.82E-04 chr12:108,992,114+ TMEM119
cg24276069 2278.11 5.10E-04 chr1:45,243,927+ RPS8/SNORD38B
cg10163377 1645.26 5.18E-04 chr10:99,478,368- LOC100270710
cg13638867 1071.26 5.69E-04 chr11:2,241,568-

Table 4. Top 20 birthweight-associated DMRs identified by DMRcate.
Chr Start End Width No. CpGs Stouffer Overlapping promoters

chr5 76,247,647 76,249,094 1448 11 3.05E-24 CRHBP
chr11 2,011,216 2,011,346 131 6 1.62E-21 AC051649.6/MRPL23-AS1
chr19 940,724 941,571 848 5 4.90E-21
chr13 51,417,469 51,418,614 1146 12 4.12E-18 DLEU7
chr3 155,421,735 155,422,457 723 8 1.57E-16 PLCH1
chr17 75,537,017 75,537,444 428 3 4.86E-15
chr15 74,494,515 74,496,040 1526 16 2.37E-14 STRA6/RP11-60L3.1
chr16 68,321,421 68,321,730 310 6 4.27E-14 SLC7A6
chr19 1,074,425 1,075,104 680 4 6.38E-14 HMHA1
chr17 907,643 907,886 244 4 7.83E-14
chr17 47,076,904 47,077,165 262 2 2.23E-13 IGF2BP1
chr14 22,902,226 22,902,405 180 3 4.25E-13 AE000661.37
chr20 36,024,542 36,024,669 128 5 4.45E-13 SRC
chr6 139,454,751 139,454,928 178 3 1.21E-12 HECA
chr16 89,734,986 89,735,184 199 2 3.16E-12
chr11 64,527,240 64,527,846 607 8 4.11E-12 PYGM
chr11 44,642,868 44,642,932 65 3 5.61E-12
chr20 62,687,969 62,688,896 928 12 6.42E-12 TCEA2/RP13-152O15.5
chr21 46,330,726 46,331,472 747 6 9.82E-12 ITGB2
chr9 18,260,702 18,260,848 147 2 1.93E-11
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Metastable epialleles

We next tested the birthweight-associated 
dmCpGs for enrichment of metastable epialleles 
[54,55]. We found no evidence of enrichment of 
the birthweight-associated dmCpGs for metastable 
epialleles, with only 10/3840 reported metastable 
epialleles overlapping one of the 2911 birthweight- 
associated dmCpGs (p = 0.91).

Influence of genetic variation on the 
birthweight-associated dmCpGs

As DNA methylation can be driven by genotype 
and act as an integrator of the individual’s geno
type and environmental exposure, we investigated 
the potential effect of genotype on the birthweight- 
associated dmCpGs (Bonferroni<0.05) and any 
interaction between genetic variation and birth
weight, by carrying out a genome-wide mQTL 
screen using the GEM package. 9109 significant 
mQTLs (FDR<0.05, table S8) were identified, with 
224 of the birthweight-associated dmCpGs signifi
cantly associated with the genotype at one of 8506 
unique SNPs. 1153 of the mQTLs identified were 
cis-mQTLs, while 7956 were trans-mQTLs. Of 
these mQTLs, 95 have been previously reported 
in the ARIES mQTL dataset [56] in cord blood 
at birth.

The top mQTL identified was rs4484654, with 
each copy of the alternative C allele at this position 
being associated with an increase in methylation 
level at cg14908202, located in the body of the 

ADAM5 gene (Figure 3a). Despite rs4484654 
affecting DNA methylation levels at cg14908202, 
the association between DNA methylation at 
cg14908202 and birthweight remained significant 
after stratification by genotype at rs4484654 
(Figure 3b), or when genotype was included as 
a covariate in the regression model (p = 8.09 x 10
−11). Similarly, the association between the remain
ing 221 dmCpGs, for which genotype was shown 
to influence DNA methylation, and birthweight 
remained after the inclusion of the relevant 
mQTLs as a covariate in the regression models.

Discussion

In this epigenome-wide study, using the Human 
MethylationEPIC array, we report novel neonatal 
DNA methylation signatures associated with birth
weight. Moreover, the birthweight-associated 
dmCpGs were enriched amongst previously pub
lished cis-eQTMs, CpG loci known to correlate 
with gene expression, as well as amongst genes 
associated with developmental pathways, poten
tially suggesting a functional role for these 
dmCpGs in the offspring. The birthweight-related 
dmCpGs were also enriched for CpGs sites pre
viously linked to maternal smoking during preg
nancy, hypertension/pre-eclampsia, and maternal 
folate levels, suggesting that early life environmen
tal factors and stressors during pregnancy may be 
important determinants of neonatal DNA methy
lation and potentially contribute to variations in 
birthweight. The identification of birthweight- 

Figure 3. (a) The top mQTL identified was with cg14908202, located in body of the ADAM5 gene and rs4484654. There was an 
increase in methylation level at the CpG with each extra copy of the alternative (‘C’) allele at this position. (b) Despite rs4484654 
affecting methylation levels at cg14908202, the association between this CpG and birthweight remain significant regardless of 
genotype at this SNP.
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associated methylation markers, particularly those 
connected to specific pregnancy complications and 
exposures, may provide valuable insights into the 
developmental pathways that affect birthweight 
and allow the identification of methylation signa
tures associated with adverse prenatal exposures to 
stratify individuals at risk of later NCDs.

Birthweight was associated with changes in neo
natal DNA methylation at both the CpG and 
regional level, with dmCpGs being enriched 
amongst open seas and, when associated with 
a gene, under-represented within the transcrip
tional start site (TSS), suggesting enrichment of 
dmCpGs within enhancer or long range regulatory 
regions. Moreover, 93 of the 1206 dmCpGs (these 
were the birthweight-associated dmCpGs covered 
on both the 450 K and 850 K arrays) were reported 
to be a cis-eQTM, and associated with 123 genes, 
suggesting that differential methylation at these 
sites may be associated with functional changes 
in gene expression. In this study, we only investi
gated the overlap between the birthweight- 
associated dmCpGs and reported cis-eQTMs. 
Although the majority of our dmCpGs were not 
reported to be cis-eQTMs, a large proportion of 
the dmCpGs were found to be associated with 
trans-mQTLs. Bonder at al. [51] reported that 
trans-mQTL CpGs are enriched around TSSs and 
within Hi-C interchromosomal contacts, overlap
ping the binding sites of transcription factors that 
regulate chromatin architecture (e.g., CTCF, 
RAD21). This suggests that although the majority 
of the dmCpGs are not direct eQTMs, they may 
play a role in regulating chromatin architecture, 
which in turn regulates transcription and gene 
expression.

A number of previous studies, including the meta- 
analysis by the PACE consortium [24], have reported 
changes in neonatal DNA methylation signatures 
with respect to birthweight using the 450 K array. 
Of the 1206 birthweight associated dmCpGs identi
fied in this study that were also present on the 450 K 
array, 415 (34.41%) were sites identified previously 
by Küpers et al. to be associated with birthweight, 
suggesting that there are methylation signatures 
associated with birthweight that are robustly repli
cated across cohorts. However, 58% of the 2911 
birthweight-associated dmCpGs (FDR<0.05) identi
fied in this present study were unique to the 850 K 

array, consistent with the enrichment of the birth
weight associated dmCpGs to regulatory or enhancer 
regions, regions with enhanced coverage on the 
850 K array. The top dmCpG associated with birth
weight in this study was HMBOX1. This CpG is not 
present on the HumanMethylation 450 K array. 
HMBOX1 encodes a transcriptional repressor [57], 
which has been reported to play roles in the differ
entiation of bone marrow stromal cells (BMSCs), 
and embryonic stem cells to endothelial cells 
[58,59], inhibition of apoptosis [60] and telomere 
maintenance [61]. A dmCpG within the body of 
the T Cell Immune Regulator 1, ATPase H 
+ Transporting V0 Subunit A3 (TCIRG1) gene was 
associated with the largest change in birthweight. 
This gene is a member of a family of ATP- 
dependent proton pumps that are responsible for 
the acidification of intracellular compartments 
involved in processes, such as receptor-mediated 
endocytosis [62]. TCIRG1 and HMBOX1 have not 
previously been linked to birthweight so whether 
they are functionally involved in foetal growth, or 
simply markers of altered birthweight is unknown. 
The top DMR associated with birthweight was 
located within CRHBP. Eight out of the eleven 
CpGs in the CRHBP DMR are not present on the 
450 K array. Of the three that are on the 450 K array, 
one was identified by Kupers et al [24]. CRHBP 
encodes for the corticotropin-releasing hormone- 
binding protein, which inactivates corticotropin- 
releasing hormone (CRH) and has been suggested 
to be involved in regulating foetal pituitary-adrenal 
function; in humans, placental CRH is known to play 
an important role in determining the length of gesta
tion and the timing of parturition [63] and has been 
implicated in low birthweight, with higher placental 
CRH production in mid-gestation shown to predict 
lower birthweight [63]. More recently, SNPs within 
CRHBP have been shown to be associated with var
iations in birthweight in three ethnically diverse 
populations [64]. The differential methylation of 
this gene suggests that not only genetic but also 
epigenetic regulation of this gene and hence the 
CRH pathway may be an important determinant of 
foetal growth and birthweight, via the foetal pituitary 
ACTH and adrenal cortisol secretion.

Maternal factors have been strongly linked to 
DNA methylation changes in the infant. 
Interestingly, there was no overlap amongst the 
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birthweight-associated dmCpGs with metastable 
epialleles suggesting that the factors that influence 
birthweight and associated methylation patterns 
operate throughout pregnancy, rather than in the 
very earliest stages of pregnancy. Indeed we found 
that the birthweight-associated dmCpGs were 
enriched for CpGs previously identified by the 
PACE consortium to be associated with maternal 
hypertension [53], smoking during pregnancy [18] 
and folate status [52] suggesting that a proportion 
of the dmCpGs, and birthweight itself, may be 
driven by these maternal factors. Of the dmCpGs 
enriched amongst the smoking, hypertension, or 
folate associated CpGs, the majority were only 
associated with one of these maternal factors, sug
gesting specificity of effect. There was, however, 
no enrichment amongst the birthweight-associated 
dmCpGs with CpGs associated with maternal BMI 
[22]. This may be because the analysis was 
restricted to the 450k birthweight-associated 
CpGs identified by the PACE consortium analysis, 
however, adjustment for maternal BMI in our 
analysis had minimal effect on the number or 
location of the significant dmCpGs, with over 
90% of dmCpGs in the adjusted analyses being 
present in the unadjusted analyses. Furthermore, 
comparison of the birthweight-associated dmCpGs 
in the combined cohort analysis with those asso
ciated with birthweight in the UPBEAT cohort 
alone showed a considerable overlap between the 
two analyses, even though all women in the 
UPBEAT cohort had a BMI of over 30, consistent 
with the majority of identified dmCpGs being 
largely independent of maternal BMI. It has been 
suggested that maternal BMI may programme off
spring adiposity through birthweight and changes 
in the foetal epigenome [65–67]. However, the 
finding that the birthweight associated methyla
tion changes are not related to previously reported 
methylation changes associated with maternal BMI 
suggests either the maternal BMI/birthweight/off
spring adiposity axis is unrelated to methylation, 
or birth weight per se is not the mediator. 
Consistent with this, recent mediation analyses 
have shown that most of the effect of pre- 
pregnancy obesity on childhood weight-related 
anthropometric outcomes is not mediated through 
offspring’s birthweight [68,69] .

DNA methylation can be driven by both the 
environment and genotype and, while we found 
that the methylation status of the majority of the 
birthweight associated dmCpGs were associated 
with genotype, only a minority of these showed 
a significant interaction with birthweight and gen
otype. Further large studies will be required to 
determine the precise contribution that both gen
otype and early life environmental factors make to 
these methylation changes and their impact on 
birthweight.

A strength of this study is that we analysed 
DNA methylation on the 850 K platform rather 
than the 450 K platform, giving a far greater cover
age of gene regulatory regions which may have 
functional significance. Moreover, by combining 
the analysis for birthweight across the SWS and 
UPBEAT cohorts, the analysis included infants 
born to women across a much wider range of 
body mass indices, from 17 to 59 kg/m2. The 
majority of studies to date have used cohorts con
sisting solely of normal weight individuals, exclud
ing individuals with a BMI>30 kg/m2. Importantly, 
we show that although the birthweight-related 
methylation signatures were associated with 
a number of maternal environmental factors, they 
were largely independent of maternal BMI.

There are some limitations to this study. Firstly 
we analysed DNA methylation in cord blood and 
the functional consequences of altered methylation 
at such marks are unknown. However, a number 
of the dmCpGs were eQTMs, suggesting that at 
least some of the changes in DNA methylation are 
associated with a change in gene expression. 
Secondly, although we found that many of the 
birthweight-associated dmCpGs were also asso
ciated with CpGs previously shown to be asso
ciated with specific maternal factors, whether 
these dmCpGs play a causal role in mediating the 
effect on birthweight or are simply markers of the 
change in birthweight is unknown. Even if they are 
markers of birthweight rather than mechanistically 
involved in affecting foetal growth, they may still 
be useful in identification of risk or exposures. The 
third limitation is the relatively modest sample 
size, although we did find robust associations 
with birthweight which passed a stringent 
Bonferroni correction, and there was considerable 
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overlap with the meta-analysis of birthweight- 
associated dmCpGs previously found using the 
450 K array [24].

Conclusion

Here we show that birthweight is associated with 
widespread changes in DNA methylation. These 
were for the most part independent of genotype 
and enriched for CpGs associated with a range of 
environmental exposures including maternal 
smoking during pregnancy, hypertension/pree
clampsia and folate status, supporting the con
cept that early life environment is an important 
determinant of variations in birthweight. The 
identification of birthweight-associated methyla
tion markers, particularly those associated with 
specific maternal factors, may provide valuable 
insights into the developmental pathways 
involved [70] and/or act as markers to identify 
adverse exposures and which could be used to 
stratify individuals at risk.
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