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This study’s aim is to analyze heart rate dynamics in subjects with chronic obstructive pulmonary disease (COPD) by measures
of heart rate variability (HRV). HRV is a simple and noninvasive measure of autonomic impulses. 38 adults were divided into
two equal groups based on respiratory function: COPD and normal. HRV was monitored in the supine position for 30 minutes.
After tests of normality, Kruskal-Wallis was used for the statistical analysis, with the level of significance set at 𝑃 < 0.05. Principal
component analysis identified two components representing 99.5% of total variance. Furthermore, it is suggested that the chaos
forward parameter (CFP) which applies all three “chaotic globals” is the most influential, although others are statistically more
significant.TheCOPD subjects exhibited a decrease in the CFP. COPD can be termed a dynamical condition, decreasing the chaotic
response. The perceived benefits of such analysis include quantitative assessment and suitable pharmacological intervention in the
respiratory condition, especially of other related dynamical diseases such as cardiac failure.

1. Introduction

Cardiac interbeat intervals fluctuate in a complex manner
[1–4]. Time-series methods derived from statistical physics
have motivated researchers to study this phenomenon [5].
The RR interval of the electrocardiograph (ECG) traces
PQRST waveform is necessary for such computations. Heart
rate variability (HRV) analysis using nonlinear dynamical
techniques is becoming an important area of research. There
is evidence that mechanisms involved in cardiovascular
regulation interact with each other in a complex and a
chaotic manner. This mathematical analysis of human ill-
ness is often termed “dynamical disease study [6].” Such
algorithms are computationally processor intensive so they
cannot be employed online, and are not effective on short
time series. Compilation of data for such analysis usually
requires observation for days orweeks [7]. Usually, changes in
the HRV patterns are an indicator of health status. HighHRV
is a signal of good adaptation and characterizes a healthy
person with efficient autonomic mechanisms. Whilst lower

HRV is frequently an indicator of abnormal and insufficient
adaptation of the autonomic nervous system, causing the
subject low physiological function, this decrease is consistent
with a dysfunctional vagus.

Detrended fluctuation analysis (DFA) [8] quantifies the
presence or absence of fractal correlation properties of the
consecutive heart beats. Applied to a number of dynamic
phenomena, including HRV, fractal indices appear capable
of detecting subtle changes in the dynamics of RR intervals
better than conventional analyses.

Spectral entropy [9] and the new techniques, spectral
detrended fluctuation analysis (sDFA) and spectral multi-
taper method (sMTM), are based on “chaotic globals” [10–
12]. Briefly, spectral entropy applies the standard Shannon
entropy [13, 14] algorithm to a power spectrum, whereas
sDFA applies the DFA algorithm in the same manner to
the same power spectrum. This attempts to overcome the
disadvantage of sparse data hazard, only phase information
is lost. sMTM applies the responsive and adaptive multitaper
method (MTM) [15, 16] to the data. sMTM is the value of the
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area between theMTM spectrum and the baseline.We return
to these parameters in Sections 3.1 to 3.3.

These computations are useful in monitoring surgical
patients under anaesthesia [17, 18] or unable to communicate
distress as in sleep apnea [19] or dyspnea [20–22]. Assessment
of chaotic states in this way is both faster for diagnostic
purposes and more efficient using less physician time, which
is expensive. Here, the benefit is when assessing the risk
of cardiac failure and other dynamical diseases in subjects
with chronic obstructive pulmonary disease (COPD) [23].
The aim of the study is to develop an algorithm which
can discriminate the datasets from subjects with COPD
from those without COPD and thus provide a clinical and
diagnostic tool to clinicians in the cardiopulmonary field.

2. Experimental Protocol

A total of 38 subjects were studied; 19 suffered COPD and
19 were deemed “normal” to be used as controls in this
study. Data were collected under controlled temperature
21∘C to 24∘C and humidity 50% to 60%, and volunteers
were instructed to avoid consuming alcohol and caffeine
for 24 hours before evaluation. Data were collected between
8:00 and 11:00 to minimize the interference of circadian
rhythm. All procedures necessary for the data collection
were explained to the individuals, and the subjects were
instructed to remain at rest and to avoid talking during the
data collection.

After the initial evaluation, the heart monitor strap was
placed on each subject’s thorax over the distal third of
the sternum. The HR receiver (Polar S810i monitor, Polar
Electro OY, Kempele, Finland) was placed on the wrist.
This equipment had been previously validated for beat-by-
beat measurements and for HRV analysis. The subjects were
placed in the supine position and remained at rest with
spontaneous breathing for 30 minutes.

After the experimental procedures, spirometry was per-
formed to confirm the diagnosis of COPDapplying the forced
vital capacity test pre- to postbronchodilator [24, 25] using
a portable spirometer (MIR, Spirobank version 3.6, Italy)
coupled to a microcomputer for analysis by WinspiroPRO
1.1.6 software. The forced expiratory volume in one second
(FEV1) will be greater than or equal to 80% of the predicted
normal values with an FEV1/FVC (forced vital capacity) that
is less than 70%, which was considered as the threshold for
bronchial obstruction [25].

HRV was recorded beat by beat through the monitoring
process at a sampling rate of 1000Hz. Exactly, 1000 RR
intervals were used for analysis, following digital filtering
complemented with manual filtering for the elimination of
premature ectopic beats and artefacts. Only series with more
than 95% sinus rhythm were included in the study.

3. Chaotic Global Parameters

Since the time series are short, we must apply power spectra
to the data. Applying such algorithms to power spectra
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Figure 1: A Welch method power spectrum of a 1000 ECG RR
intervals of a COPD patient.

allows them to converge faster than computed on inter-
peak temporal separations. Precision is increased for any
fine detailed structure when we use Welch method [26]
for spectral entropy [9] or sDFA. The sMTM applies the
multitaper spectrum [15, 16]. In Sections 3.1 to 3.3, we
summarize the chaotic global parameters.

3.1. Spectral Entropy. Spectral entropy [9] is a function of
the irregularity of amplitude and frequency of the power
spectrums peaks. It is derived by applying Shannon entropy
[13, 14] to power spectra. Here, we calculate the power
spectrum by Welch’s method [26] (see Figure 1). We set
the parameters for the Welch power spectrum to sampling
frequency of 1Hz, zero overlap, a Hamming window with
FFT length of 256, and no detrending.

This output is then normalized so that the sum of the
magnitude is equal to unity, giving a normalized power spec-
trum. We then calculate an intermediate parameter which
is the median Shannon entropy of the value obtained from
three different power spectra using the Welch power spectra
under three test conditions: a perfect sine wave, uniformly
distributed random variables, and finally the experimental
oscillating signal.

These values are then again normalized mathematically
so that the sine wave gives a value of zero, uniformly random
variables give unity, and the experimental signal gives a value
between zero and unity. It is this final value that corresponds
to spectral entropy.

3.2. Spectral Detrended Fluctuation Analysis. DFA [27, 28]
can be applied to datasets where statistics such as mean,
variance, and autocorrelation vary with time. The difference
with the sDFA algorithm is that the DFA is applied to the
frequency rather than time on the horizontal axis. So, once
more, the 𝑥-axis is frequency and the 𝑦-axis is amplitude
(see Figure 1). If the scaling exponent𝛼 inDFA is not constant
for the duration of time for the dataset, such variability can
introduce further errors even over short time periods (10–15
minutes). This reduces when power spectra are analyzed by
DFA algorithm, but phase information is lost. To obtain sDFA
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Table 1: The table below shows the first (Q1) and third (Q3) quartiles of [CFPx 1–7] for the normal and COPD subjects in 1000 RR intervals.
The statistical significance Kruskal-Wallis test is applied. A nonparametric test.

[CFPx] Normal Q1 Normal Q3 COPD Q1 COPD Q3 Kruskal-Wallis
1 0.8130 0.9680 0.7060 0.9841 0.1116
2 0.5362 0.5953 0.5421 0.6530 0.3502
3 0.7427 0.8877 0.5648 0.7458 0.0005
4 0.6300 0.8769 0.5977 0.9079 0.9651
5 0.2919 0.4683 0.4034 0.6088 0.0072
6 0.5583 0.7414 0.4412 0.6735 0.0749
7 0.2721 0.4898 0.1448 0.3451 0.0066
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Figure 2: A multitaper method power spectrum of 1000 ECG RR
intervals of a COPD patient.

we calculate the spectral adaptation in exactly the same way
as for spectral entropy using a Welch power spectrum with
the same settings, but DFA rather than Shannon entropy is
the algorithm applied.

3.3. Spectral Multitaper Method. sMTM is founded on the
increased intensity of broadband noise in power spectra
generated by irregular and chaotic signals. MTM provides
estimates of both line components and the continuous
background of the spectrum. MTM exploits the property
that these adaptive orthogonally shaped windowed power
spectra are extremely accurate. These optimal tapers belong
to a family of spectral functions termed discrete prolate
spheroidal sequences (DPSS) [29]. MTM spectral estimation
reduces spectral leakage and other inaccuracies compared to
the single windowed nonadaptive techniques. sMTM is the
area between the MTM power spectrum and the baseline
(see Figure 2). We set the parameters for MTM at sampling
frequency of 1Hz, time bandwidth for the DPSS set to 3, FFT
length of 256, andThomson’s adaptive nonlinear combination
method to combine individual spectral estimates.

3.4. Chaotic Forward Parameter. The parameter [CFPx 1–7]
is referred to as chaotic forward parameter where it is applied
to normal and COPD datasets. Since sDFA responds to chaos
in the opposite way to the others, we subtract its value from

unity when applying here. All three chaotic global values have
equal weighting. [CFPx 1–7] are defined in the standard way
as in Souza and Vanderlei [11, 12]. CFP1 is a function of all
three parameters (spectral entropy, sMTM, and sDFA), CFP2
to CFP4 is a function of two (spectral entropy and sDFA:
spectral entropy and sMTM; sMTM and sDFA), respectively.
CFP5 toCFP7 is the function of a single chaotic global (sDFA;
sMTM; spectral entropy), respectively.

4. Results

4.1. Statistical Analysis. Parametric statistics generally
assume the data are normally distributed and hence the use
of the mean as a measure of central tendency. If we cannot
normalize the data, we should not comparemeans. To test our
assumptions of normality, we apply the Anderson-Darling
[30] and Ryan-Joiner [31] tests. The Anderson-Darling test
for normality applies an empirical cumulative distribution
function, whereas the Ryan-Joiner test is a correlation based
test. For both tests a normal distribution could not be
confirmed; so we apply the Kruskal-Wallis [32] test of sig-
nificance, a nonparametric test. The results illustrate that
there is a wide variation in both themean values and standard
deviation for both cohorts (Figures 3 and 4). Only [CFPx
3, 5, & 7] are statistically significant at the level (𝑃 < 0.05)
(see Table 1). However, whilst [CFPx 3 & 7] decreases
from normal to diseased subjects, [CFPx 5] increases. See
comparison between normals and COPD in Figures 3 and 4.
Variation in standard deviations is minimal for [CFPx 1, 2, &
3]. It is also apparent that the interquartile ranges (Q3–Q1)
of the COPD subjects are significantly higher than those of
the normal subjects (see Table 1).

4.2. Principal Component Analysis. Principal component
analysis (PCA) [33] can be applied here (See Table 2). We
have the values of [CFP] for seven groups for 19 subjects
who are suffering COPD; hence a grid of 7 by 19 is to
be assessed. The first principal component has a variance
(eigenvalue) of 4.1588 and accounts for 59.4% of the total
variance. The second principal component has an eigenvalue
of 2.8078 accounting for 99.5% of total variance. Therefore,
we can assume that most variance is achieved in the first two
components.

Now, only [CFPx 3, 5 & 7] are significantly different when
tested by Kruskal-Wallis. When assessing the importance
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Table 2: The table below is the principal component analysis for CFP for seven groups for 19 subjects who are suffering from COPD. PC1
represents the first principal component, PC2 the second, until the seventh component PC7.

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
CFP1 0.357 −0.409 0.105 −0.639 0.202 −0.141 −0.474
CFP2 0.045 −0.590 0.660 0.248 0.017 0.272 0.281
CFP3 0.197 −0.544 −0.501 0.496 0.002 −0.408 −0.041
CFP4 0.486 0.075 −0.028 −0.320 −0.211 −0.294 0.724
CFP5 0.448 0.239 0.312 0.282 −0.619 −0.105 −0.413
CFP6 0.489 −0.007 −0.385 0.050 0.042 0.780 0.009
CFP7 −0.394 −0.355 −0.237 −0.315 −0.727 0.186 0.017
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Figure 3: The boxplot illustrates the mean values and standard
deviation of CFP for normal subjects RR intervals. The mean value
is indicated by the (+) symbol in the boxplot.
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Figure 4: The boxplot illustrates the mean values and standard
deviation ofCFP for theRR intervals of COPD subjects.Mean values
are indicated by the (+) symbol.

of the results by PCA, [CFPx 1], which applies all three
chaotic globals techniques, is the best overall combination
with regard to influencing the correct outcome. [CFPx 7],
which is just spectral entropy, is the next best. [CFPx 3] is the
third greatest which omits the sDFA function.

Therefore, [CFPx 1 & 3] are the most suitable functions as
deduced by the three assessments (Kruskal-Wallis, standard
deviation, and principal component analysis). [CFPx 3]
would seem to outperform [CFPx 1] on the basis of this
study, but there is evidence to apply [CFPx 1] as the most
robust function, as in the paper which analyzes the “inverse
problem” posed by Garner and Ling [10]. This is in addition
to forward problems in obesity [11] and diabetes mellitus [12].

5. Discussion

The mathematical analysis is undertaken such that it is not
only appropriate for online analysis but also retrospective in
the laboratory and clinical setting. Here, the analysis is done
retrospectively for the time series for each [CFPx], applied to
normal and COPD datasets for the ECG’s RR intervals. The
algorithm computes a significant statistical result for three of
the seven combinations. These are combinations 3, 5, and 7.

Conversely, the first algorithm which applies all three
chaotic globals parameters is suggested as the most robust
algorithm. Referring to Garner and Ling [10], who use three
models, Duffing, Brusselator, and Lorenz, for the purposes of
optimization, [CTF] a variant of [CFPx] is the most reliable
objective function when tested by PCA. This is reinforced
here by PCA applied to the seven different versions of [CFP]
for subjects with COPD. Here, 99.5% of influence is achieved
by the first two principal components, with the [CFP] with
all three chaotic globals applied testing as most influential
algorithm.

Increased statistical significance is achieved by [CFPx 3],
derived from the spectral entropy and sMTMalone.However,
this combination is only the second most appropriate when
assessed by PCA. [CFPx 5] and [CFPx 7] are significant too
and the interpretation of the PCAvalues suggests they are also
high-ranking overall. In fact, [CFPx 7] is only outperformed
on PCA by [CFPx 1].

Further improvement for future study could involve
modification of the Welch power spectra for the sDFA and
spectral entropy. The sampling frequency, extent of overlap,
and detrending could be attuned. A higher spectral resolution
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technique such as the MTMmay prove beneficial. The DPSS
of the MTM could be adjusted to optimize the final level of
significance by its 𝑃 value. In addition, the weighting of the
three chaotic global parameters could be adjusted since here
they have only equal weightings of unity. It would also be
statistically favourable to have larger datasets for both normal
and COPD.

6. Conclusions

We have developed two robust functions [CFPx 1 & 3] which
can take short-times series of HRV and deduce which time
series is from a COPD patient and which time series is from
the normal subjects. There is a high level of significance
for the [CFPx 3] algorithm (𝑃 < 0.001). Nevertheless, the
algorithm which applies all three parameters [CFPx 1] is the
most influential when assessed by PCA. By applying either of
these novel functions to the shorter time series via spectrally
determined “chaotic globals,” it should be possible to deter-
mine which time series are COPD or normal, more rapidly
and efficiently with regard to time and data length. There has
been a significant decrease in chaotic response measured by
[CFPx 1 & 3] of HRV in COPD. The relationship between
COPD and complexity measures is useful as a diagnostic
tool. It identifies severity of the respiratory condition from
a cheap and reliable method of monitoring the autonomic
nervous system through ECG and RR intervals. This is
helpful in treatments, such as determination of the level of
pharmacological intervention especially in related dynamical
diseases such as cardiac failure.
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