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Abstract

Background: With the advent of high-throughput sequencing, microbiology is becoming increasingly data-intensive.
Because of its low cost, robust databases, and established bioinformatic workflows, sequencing of 16S/18S/ITS ribosomal
RNA (rRNA) gene amplicons, which provides a marker of choice for phylogenetic studies, has become ubiquitous. Many
established end-to-end bioinformatic pipelines are available to perform short amplicon sequence data analysis. These
pipelines suit a general audience, but few options exist for more specialized users who are experienced in code scripting,
Linux-based systems, and high-performance computing (HPC) environments. For such an audience, existing pipelines can
be limiting to fully leverage modern HPC capabilities and perform tweaking and optimization operations. Moreover, a
wealth of stand-alone software packages that perform specific targeted bioinformatic tasks are increasingly accessible, and
finding a way to easily integrate these applications in a pipeline is critical to the evolution of bioinformatic methodologies.
Results: Here we describe AmpliconTagger, a short rRNA marker gene amplicon pipeline coded in a Python framework that
enables fine tuning and integration of virtually any potential rRNA gene amplicon bioinformatic procedure. It is designed to
work within an HPC environment, supporting a complex network of job dependencies with a smart-restart mechanism in
case of job failure or parameter modifications. As proof of concept, we present end results obtained with AmpliconTagger
using 16S, 18S, ITS rRNA short gene amplicons and Pacific Biosciences long-read amplicon data types as input.
Conclusions: Using a selection of published algorithms for generating operational taxonomic units and amplicon sequence
variants and for computing downstream taxonomic summaries and diversity metrics, we demonstrate the performance
and versatility of our pipeline for systematic analyses of amplicon sequence data.
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Background

High-throughput sequencing of amplicons of fragments of the
16S, 18S, and ITS ribosomal RNA (rRNA) marker genes has
grown into a cornerstone of microbial ecology research activ-
ities. Amplicon sequencing is now massively widespread and
has been used in large research initiatives such as the NIH-
funded Human Microbiome Project [1–3] and Earth Microbiome
Project [4].

Despite this, it is still objectively difficult to adequately anal-
yse data [5,6]. Initiatives to provide GUI-based applications have
been reported [7–9]. These types of interfaces, by their funda-
mental nature, are not prone to systematic analysis in a pro-
duction context involving the processing of high data loads of
multiple projects simultaneously.

Efforts to integrate bioinformatic pipelines as a standard
tool to establish microbiome profiles in food safety and energy
settings are increasingly being reported [10,11] and 16S rRNA
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marker gene studies are increasingly being reported to be rel-
evant to complement traditional methods in a clinical context
[12–16].

The bioinformatic landscape for processing short marker
gene amplicon sequencing data contains a wide array of solu-
tions and is dominated by a few open source popular pipelines
such as QIIME [17] and Mothur [18]. In order to execute, these
pipelines usually require users to use streamlined or pre-defined
steps with limited ability for advanced customization or pos-
sibility to use specific unsupported third-party software pack-
ages. For instance, DADA2 [19], a package for amplicon sequence
variant (ASV) generation, is not available in Mothur but is im-
plemented in QIIME2 [20] with only a subset of input param-
eters accessible to the user compared to much more from the
DADA2 original R package. These efforts were and are continu-
ing to be immensely important in democratizing rRNA ampli-
con data processing, making it possible for uninitiated Linux
users to be able to perform their own data analysis. As such,
these pipelines are arguably targeting investigators unfamiliar
with computer coding and command line execution. This kind
of enclosed setting, however, can become a limiting factor for the
types of users who are both proficient at code scripting and com-
fortable in a Linux/command line environment. Moreover, bioin-
formatic methods are constantly evolving so production bioin-
formatic pipelines need to be adapted and modified on a regular
basis to properly integrate newly published bioinformatic pack-
ages.

Bioinformatic pipelines are intrinsically complex, with up
to hundreds of steps depending on the input sequencing data
type, with some of these steps needing large compute resources
to properly execute. It is critical to introduce robust and flexi-
ble ways of systematically processing metagenomic sequencing
data types (i.e., mainly amplicons and shotgun) in order to in-
crease their adoption in the aforementioned settings. The Gen-
Pipes workflow management system, including an implementa-
tion of a QIIME-based 16S rRNA amplicon pipeline, was recently
published [21]. Here, as a proof of concept, we leveraged Gen-
Pipes’s capabilities to build AmpliconTagger, a versatile bioin-
formatic pipeline managing job generation, submission, depen-
dency, and smart restart that can process any type of gene am-
plicon sequencing data (16S, 18S, ITS rRNA genes and other cus-
tom marker or functional genes) of various sequencing config-
urations integrating multiple bioinformatic packages. We val-
idated our pipeline with 3 QIIME2 workflows (VSEARCH, De-
blur, and DADA2) using 2 mock communities datasets for which
we know the exact community composition. We then present
microbiome profiling results from published short (MiSeq) and
long (Pacific Biosciences [PacBio]) amplicon sequencing datasets
using 2 operational taxonomic units (OTUs) and 2 ASV algo-
rithms. We also present detailed information on our method-
ology so that it can be promptly used, adapted, and improved by
others.

Data Description

To document various aspects of AmpliconTagger, we processed
7 published and publicly available datasets of rRNA amplicon
sequencing data of various sequencing configuration, targeting
various marker genes and regions (Table 1). We aimed to include
datasets from a variety of ecosystems: indoor, human gut and
oral cavity, soil and water. We also included a novel dataset con-
sisting of a commercial mock community.
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Analyses
Experimental design

Each of the datasets described in Table 1 was processed into the
AmpliconTagger pipeline, which contains from 91 to 94 jobs de-
pending on the OTU/ASV generation algorithm used and on se-
quencing configuration (paired vs single-end sequencing data).
All datasets were processed following a common core of quality-
filtering procedures, but submitted to 2 different methods of
OTU generation (Fig. S1) (VSEARCH [29] and DNAclust [30]) and
2 ASV methods (Deblur [31] and DADA2). In addition, short am-
plicon mock community datasets were also entirely processed
in QIIME2 using a VSEARCH, Deblur, and DADA2 workflow to
compare our pipeline against a third-party reference method.
We also present and discuss community profiling results of long
PacBio amplicons using a mock community and a published
oral microbiome sequencing dataset (Table 1). More in-depth
analyses of common microbial ecology metrics were assessed
for each project for each OTU/ASV generation method and are
available in Additional File 1 (Fig. S2 to S7). Although we do
present some high-level analysis of ASV vs OTU end results,
the present study primarily aims at demonstrating the modu-
larity and methodology implemented in AmpliconTagger and
less at performing an exhaustive comparison of the OTU/ASV-
generating packages that we used. The complete data process-
ing description of AmpliconTagger is described in the Methods
section, and the complete set of commands of each job for each
data analysis run is available in Additional Files 2 (AmpliconTag-
ger command traces) and 3 (QIIME2 command traces for the 16S
V4 region mock community). An exhaustive user guide is avail-
able in Additional File 4.

Validation with mock communities and comparison
with third-party reference pipeline

To validate AmpliconTagger, we processed 2 defined mock com-
munities, 1 with even concentrations of 20 bacterial strains (Ta-
ble S1) and 1 with staggered concentrations of 9 genomes (Ta-
ble S2). We obtained community profiling results of each mock
sample using AmpliconTagger (VSEARCH, DNACLUST, Deblur,
and DADA2) and compared them with the end results of the
same sequencing libraries, but entirely processed with QIIME2
using VSEARCH, Deblur, and DADA2 workflows (DNACLUST is
not implemented in QIIME2). Taxonomic profiles are highly sim-
ilar across all tested methods (Fig. 1a and b), and minor differ-
ences are probably caused by the 2 different Silva R128 training
sets used by AmpliconTagger (100% identity sequences) vs QI-
IME2 (database, clustered at 99% identity). Notably, QIIME2 work-
flows identified 2 major taxonomic lineages as being assigned
to Clostridiales; Other and Enterobacteriales; Others while Ampli-
conTagger classified them instead as Lachnoclostridium and Pan-
toea (Fig. 1b). Regardless of the methods used, all samples clus-
tered similarly in β-diversity ordinations (Fig. 1c) and show rel-
atively similar α-diversity (Observed OTUs/ASVs index) values
(Fig. 1d). We computed the Mantel r statistic to assess for corre-
lation between weighted UniFrac and Bray-Curtis distance ma-
trices among all 7 tested methods (Table S3), which generally
shows high correlation (>0.8) for most comparisons except for
the ones where the QIIME2-DADA2 data were involved.

Performance

We compiled compute resources consumed for each of the
datasets considered for this study (Fig. 2). The common core of
AmpliconTagger consists of steps 1–6 as detailed below in the

Methods section. The indoor microbiome, Lake Michigan, and
antibiotic-associated diarrhea (AAD) studies consumed similar
amounts of core hours (22.7, 20.2, and 26.6 core hours, respec-
tively), while the mock community, oral microbiome, and rhi-
zosphere microbiome transplant studies took significantly less
resources, with respective values of 0.53, 2.2, and 5.2 core hours.
OTU/ASV generation jobs consumed the most resources for the
oral microbiome (PacBio long reads) project followed by the in-
door microbiome data, which again is the dataset containing
both the highest number of (short) reads and base pairs. For the
oral microbiome data, which had a low data input, but long read
lengths, DADA2 took the longest time to generate ASVs, with
downstream steps completing quickly because of the low num-
ber of ASVs generated compared to other OTU or ASV genera-
tion methods (Table 2). Generally, OTU/ASV generation and their
downstream steps consumed more resources than the common
core steps.

Microbial ecology metrics obtained for each dataset

Globally, ecological patterns were similar for the 4 tested meth-
ods for all projects (Table 3 and Additional File 1), except for
the 2 16S PacBio data types (oral microbiome and PacBio mock
data). The numbers of ASVs and OTUs obtained for a given
project were fairly similar for short amplicon data types, except
for the indoor microbiome data, which yielded 27,391 Deblur
ASVs, 32,647 DADA2 ASVs, 18,340 DNACLUST OTUs, and 14,341
VSEARCH OTUs (Table 2). In contrast, the number of ASVs and
OTUs obtained with the oral microbiome data with the same
4 methods was more variable with 199,780, 6,535, 77,305, and
69,578, respectively. The total number of reads included in these
OTUs/ASVs was 219,423, 6,535, 77,305, and 523,444, respectively.
In general the amounts of generated ASVs/OTUs were similar,
but ASVs represented fewer total reads.

To highlight differences amoung the 4 tested OTU/ASV
generation methods, we compared their taxonomic summaries
and α- and β- diversities. These results are included in Figures
S2–S7, and for clarity and practicality purposes, we narrowed
sample selection for each project to a subset of experimental
variables. We also computed the Mantel r statistic to assess for
correlation between weighted UniFrac and Bray-Curtis distance
matrices among all 4 tested methods (Table 3). Overall, and con-
sistent with results reported in Figures S2-S7, these results show
that weighted UniFrac and Bray-Curtis distances/dissimilarities
obtained with all 4 tested methods are quite similar, with r
statistic values >0.9 for the indoor microbiome, AAD, and Lake
Michigan data types. The ITS data (rhizosphere transplant)
showed low r statistics in the range of 0.4–0.6 between the
weighted UniFrac matrices. However, Mantel tests between
Bray-Curtis dissimilarity matrices of all 4 OTU/ASV ITS data
types gave r statistics >0.9 for all comparisons. For the mock
community, weighted UniFrac distances of all 4 methods were
similar with r statistics values >0.9. However, Bray-Curtis dis-
similarity matrices were more divergent, with r statistics values
of 0.580 (Deblur vs VSEARCH), 0.580 (VSEARCH vs DADA2), and
0.724 (DNACLUST vs VSEARCH). Overall, this indicates that the
type of distance metric used had a considerable effect on the
microbial population structure assessment.

Validation of procedures with long PacBio reads
datatype

Using PacBio full-length amplicon sequencing for microbial
community profiling is increasingly making inroads to comple-
ment population characterization based on short amplicon se-
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Figure 1: Comparison between Deblur, DADA2, DNACLUST, and VSEARCH as implemented in AmpliconTagger and QIIME2-VSEARCH, QIIME2-DADA2, and QIIME2-
Deblur for the taxonomic profiles of (a) even and (b) staggered mock community and (c) β-diversity (weighted UniFrac) and (d) α-diversity of mock community samples
(16S V4 region; 2 × 250 bp) where each point represents the Observed OTUs or ASVs indexes of a given sample. Results labelled with the QIIME2- prefix were entirely
processed with QIIME2 using either VSEARCH, Deblur, or DADA2 as OTU or ASV generation method. PCo: principal coordinate.
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Figure 2: Resource consumption for investigated datasets and each OTU/ASV generation method. There are no common core steps for QIIME2-DADA2 workflow because
raw reads were submitted to DADA2 directly.

quencing, but bioinformatics procedures are objectively recent
and not as mainstream as they are with short-length amplicon
sequencing data. We therefore validated our long 16S reads pro-
cessing methodology with a PacBio mock community library [32]
(Table S1). Taxonomic profiles of all 4 tested methods (VSEARCH,
DNACLUST, DADA2, and Deblur) are generally similar with some
minor differences in low-abundance taxa (Fig. S6a). However,
more important discrepancies are actually observed between
expected taxa and what was obtained with the actual sequenc-
ing libraries (Fig. S6b). The α-diversity metrics were computed,
and observed ASVs ranked near the expected number of 23
ASVs whereas observed OTUs were higher than the expected
value: 60.6 ± 5.9 for DNACLUST and 172.4 ± 16.2 for VSEARCH.
Mantel r statistics between DNACLUST and VSEARCH were rel-
atively high (0.851 weighted UniFrac and 0.844 for Bray-Curtis)
but weak for the comparisons involving ASV data. For the PacBio
oral microbiome data, Mantel r statistics computed between the
weighted UniFrac distance matrices of all 4 data types (Table 3)
showed strong values >0.9 for DNACLUST vs VSEARCH, DNA-
CLUST vs DADA2, and VSEARCH vs DADA2, indicating relatively
strong similarity between all ASV and OTU distance matrices
when phylogenetic distance is factored into the distance com-
putation. Bray-Curtis matrices, however, showed lower correla-
tions comparing DNACLUST vs DADA2 (0.415) and VSEARCH vs
DADA2 (0.436), while DNACLUST vs VSEARCH (0.928) distances
were highly correlated. Comparisons involving Deblur data re-
turned low or negative values.

Discussion
Backbone for rRNA sequence processing methodology

The primary objective of this report was to showcase Amplicon-
Tagger, a highly modular HPC-oriented pipeline geared for per-
forming bioinformatic analyses of rRNA amplicon data. To fa-
cilitate implementation and testing, we shared a Docker reposi-
tory of a CentOS-7 image with a fully working implementation of

AmpliconTagger, which includes data of 20 sequencing libraries
from the AAD study, all the databases, training sets, and fully de-
tailed commands of each job for each step of our pipeline. Our
workflow also relies on a set of perl scripts and libraries labeled
nrc tools for which the complete code is also available in a code
repository. We wish to emphasize that we do not present our
methodology as a gold standard but rather as a blueprint of an
end-to-end open source working modular pipeline that is able
to incorporate virtually any in-house scripts or third-party pack-
ages (see Additional File 4 for more details). We also recognize
that some steps in our workflow could be improved and even be
replaced by other potentially more efficient software or meth-
ods, which is highly facilitated by the open modular nature of
the pipeline.

Resources and time consumption

With bioinformatics entering many spheres of research and
service fields, there is a need for flexible, scalable, and robust
methods to systematically analyse high-throughput nucleic acid
sequencing data of all types. Here we present in detail our
gene amplicon production workflow with performance metrics
and actual results from published rRNA marker gene datasets.
We executed our workflow using 2 OTU generation methods,
VSEARCH and DNACLUST; and 2 ASV generation methods, De-
blur and DADA2. We included VSEARCH because it represents
the open source version of the popular USEARCH closed source
software. As such, VSEARCH is increasingly being used by the re-
search community as a suitable replacement for USEARCH. Our
group started to use DNACLUST as a suitable open source alter-
native to replace USEARCH some years ago, and since then, we
have processed many rRNA marker gene sequencing datasets
using this package, which is the reason for its inclusion in this
study. The goal of the present study was not necessarily to
benchmark these 4 OTU/ASV generation methods but rather to
show the modular nature of the pipeline and offer useful metrics
of what microbiome profiling results and resource consumption
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Table 3: Mantel r statistics comparing distance matrices of each ASV/OTU generation method for each project

Beta-diversity metric
Deblur vs

DNACLUST
Deblur vs
VSEARCH

Deblur vs
DADA2

DNACLUST vs
VSEARCH

DNACLUST vs
DADA2

VSEARCH vs
DADA2

Weighted UniFrac
Mock community (V4 16S; paired-end) 0.984 0.999 0.999 0.983 0.986 0.999
Indoor microbiome (V4 16S; single-end) 0.940 0.900 0.905 0.934 0.955 0.956
Lake Michigan (1181F-1624R 18S;
paired-end)

0.952 0.956 0.949 0.986 0.977 0.978

AAD (V4 16S; paired-end) 0.943 0.943 0.942 0.968 0.970 0.958
Plant microbiome transplant (ITS1 ITS;
paired-end)

0.403 0.508 0.542 0.403 0.465 0.617

Mock community (full-length 16S;
single-end)

0.359 0.225 0.461 0.988 − 0.078 − 0.080

Oral microbiome (full-length 16S;
single-end)

− 0.097 − 0.100 − 0.093 0.987 0.958 0.953

Bray-Curtis
Mock community (V4 16S; paired-end) 0.864 0.580 0.999 0.724 0.865 0.580
Indoor microbiome (V4 16S; single-end) 0.991 0.967 0.996 0.980 0.993 0.972
Lake Michigan (1181F-1624R 18S;
paired-end)

0.994 0.996 0.993 0.997 0.993 0.991

AAD (V4 16S; paired-end) 0.960 0.941 0.993 0.980 0.967 0.949
Plant microbiome transplant (ITS1 ITS;
paired-end)

0.821 0.812 0.792 0.979 0.935 0.914

Mock community (full length 16S;
single-end)

− 0.331 − 0.241 − 0.119 0.901 0.023 0.194

Oral microbiome (full length 16S;
single-end)

0.046 0.040 − 0.026 0.933 0.415 0.436

Each r statistic had a P-value < 0.001.

can be expected from using these software packages in the con-
text of our whole workflow methodology.

While short amplicon sequence data processing is not that
demanding from a computational resource point of view, a com-
plete working pipeline requires many steps to get from the
raw data to key end results. Here we show that quality control
(QC) and fastq preprocessing steps of sequencing data prior to
OTU/ASV generation consumed the most core hours for datasets
that had an appreciable number of reads (indoor microbiome,
Lake Michigan, and AAD). The rhizosphere transplant project
had a comparable number of reads, but possibly because of
short ITS read length (once paired-end assembled), jobs rely-
ing on Qscore metrics such as quality filtering and quality score
profile compilation quickly completed (Fig. 2). For downstream
steps, which correspond to the OTU/ASV generation step to the
pipeline completion, the indoor microbiome (single-end 150-bp
reads) and oral microbiome (single-end ∼1,470-bp reads) con-
sumed the most resources, the former because of the high
raw data load (16.8 Gb) and the latter because of its long read
lengths. In terms of memory consumption, the indoor micro-
biome project, again because of its high amount of raw base
pairs, consumed significantly more RAM than the other projects.

Validation with mock communities

Comparisons of mock community profiling results obtained by
our pipeline with the ones obtained with a QIIME2-VSEARCH, -
Deblur, or -DADA2 workflow were highly concordant (Fig. 1). All
results deriving from either AmpliconTagger or QIIME2 were es-
sentially similar and consistent with the expected taxonomy.
The staggered community (Fig. 1b) gave almost identical com-
munity structure patterns, but slight differences in taxonomic
assignments were observed for the most abundant taxon, which
was supposed to be a Lachnoclostridium (Fig. 1b—expected panel)

but ended up being classified as a Lachnocolstridium 10 by Am-
pliconTagger (DNACLUST, VSEARCH, DADA2, and Deblur) and
an undefined genus belonging to the Clostridiales order for the
QIIME2-based workflows. A similar situation is observed with
QIIME2 assigning a major taxon to an undefined genus belong-
ing to the Enterobacteriales order, while AmpliconTagger assigned
it to the Escherichia-Shigella genus (Fig. 2b). Even though the 2
training sets used to classify OTUs/ASVs are built from the Silva
128 release, the QIIME2 training set was trained on a 99% iden-
tity clustered database and the AmpliconTagger training set was
trained on a 100% identity (i.e., unclustered) fasta database,
which probably explains the differences observed in taxonomy,
which, all things considered, are quite minimal.

Robustness of ecological patterns between OTU- and
ASV-based results

One of the key advantages of the pipeline introduced here is that
it is modular and can be customized to fit the research needs of
the user. For instance, we have shown here that both ASV and
OTU generation methods can be used interchangeably, making
the AmpliconTagger pipeline agnostic to the current heated de-
bate about ASV vs OTU. ASV generation is a method that has re-
cently gained traction [33] and is increasingly being adopted as
an alternative to OTU-based analyses. Here we processed 7 types
of datasets and compared end results of OTU clustering pro-
cedures done with DNACLUST and VSEARCH and 2 ASV-based
methods (Deblur and DADA2). In most cases in which short reads
are being analysed, results given by Deblur and DADA2 are es-
sentially identical to what is obtained by VSEARCH and DNA-
CLUST. One notable exception is for the ITS data type, where the
weighted UniFrac Mantel correlations among the 4 methods are
significantly lower than what is observed for short 16S and 18S
amplicon data types. This discrepancy might be due to the fact



8 Systematic processing of ribosomal RNA gene amplicon sequencing data

that ITS amplicon sequence lengths are quite variable as shown
in Fig. S8, with significant amounts of reads dispersed from 200
to 350 bp. During the clustering process, many of the shorter
reads are “absorbed” by the larger reads. For ASVs, all these reads
of various lengths eventually form a distinct ASV and in conse-
quence many ASVs do not reach the cut-off of ≥25 reads per
ASV. This holds true for all projects, where the number of ASV
reads is often lower than the number of OTU reads (Table 2), but
is probably exacerbated in the ITS data where many of the am-
plicon sequences are of different lengths (Fig. S8). That said, one
would still have expected the weighted UniFrac mantel correla-
tion to be higher between DNACLUST and VSEARCH OTUs—as
observed in other data types—which was not the case. On the
other hand, Bray-Curtis dissimilarity matrices were highly con-
cordant between Deblur, DADA2, VSEARCH, and DNACLUST for
the ITS data type. This implies that global alignments, inherent
to generating the Unifrac distance matrix, may be impractical
because of the high variability in sequence and length of ITS am-
plicons, as previously suggested [34].

PacBio long reads

PacBio taxonomic profiles of the mock community generated
by AmpliconTagger were consistent with what was expected
(Fig. S6a). While taxonomic profiles obtained with ASVs for the
PacBio mock community are generally consistent with what
is obtained with OTUs (Fig. S6a), there seems to be a low but
consistent proportion of OTUs that are assigned closely related
species in addition to the expected targets. For instance, the
mock community contained 2 species belonging to the Staphy-
lococcus genus (Fig. S6a): Staphylococcus aureus and Staphylococ-
cus epidermidis. These 2 species have been identified in the OTU
and ASV data, but the OTUs were assigned more closely re-
lated species such as Staphylococcus saccharolyticus, an uncul-
tured Staphylococcus, and undefined Staphylococcus species (i.e.,
Other). Regardless of the nature of the data (ASVs or OTUs), tax-
onomic assignment of PacBio CCS was accurate for the major-
ity of the species of the mock community (Fig. S6a—Actinomyces,
Bacteroides, Clostridium, Deinococcus, Enterococcus, Helicobacter, Lis-
teria, Neisseria, Propionibacterium, Pseudomonas, and Streptococcus
panels) but seemed to be more challenging for Escherichia coli,
Bacillus cereus, and S. epidermidis. For instance, we expected to
identify the B. cereus species but instead observed the Bacillus an-
thracis(VSEARCH, Deblur, and DADA2) and an undefined bacillus
(Other) (DNACLUST).

The taxonomic profiles of the more complex oral micro-
biome samples were overall highly similar to up to the species
level with the majority of ASVs/OTUs pointing toward Streptococ-
cus pseudopneumoniae and Streptococcus salivarius related species.
Some differences were also observed in less abundant species:
Deblur was enriched in Streptococcus vestibularis while DADA2
contained Streptococcus mitis and Streptococcus sanguinis.

Our results highlight the challenge of properly assigning
species taxa to long 16S reads using general databases, in our
case the Silva DB. This suggests that in some instances, PacBio
CCS reads contain at least enough errors to cause misclassifica-
tion at the species level when processed as ASVs and that clus-
tering reads (OTU methods) in the objective of correcting these
errors also results in misclassification.

Deblur ASVs in the mock community gave poor Mantel r cor-
relation with other methods because although it held a total of
6,535 reads, 4 samples did not meet the cut-off of 1,000 reads
required in the rarefaction procedure to normalize ASV tables,
hence resulting in the rejection of 4 samples and lowering Man-

tel r-correlations involving Deblur. To the best of our knowledge,
Deblur was not optimized for the processing of long reads, but
we wished to investigate whether, along with DADA2, the ASV
paradigm could be applied to this type of data. In that regard
the recent implementation of DADA2 geared for PacBio Circu-
lar Consensus Sequence (CCS) reads [35] effectively managed
to integrate more reads into ASVs in comparison with Deblur.
However, Mantel correlations of both ASV methods (Deblur and
DADA2) with OTUs (VSEARCH and DNACLUST) were fairly low
for long 16S reads for the mock community. For the oral micro-
biome samples, OTU-based (VSEARCH and DNACLUST) commu-
nities were highly similar to DADA2’s ASVs but different from
Deblur’s ASVs (Table 3; weighted UniFrac). However, when com-
paring Bray-Curtis dissimilarity indexes, not factoring in phy-
logeny, microbial communities generated with OTUs were ar-
guably different from the ones obtained by ASV methods (Ta-
ble 3).

Compared to short reads, long PacBio amplicon data showed
lower Mantel correlations among the 4 tested methods (Table 3).
PacBio CCS reads have an accuracy of 99.999% according to the
manufacturer’s specifications. However, with long amplicons of
around 1,400 bp, even such a high percentage of accuracy will
eventually translate into actual errors, inevitably reflecting a
high proportion of low-abundance sequences in OTU/ASV ta-
bles. This problematics is partially compensated for with clus-
tering methods because reads having ≥97% identity will be
merged in the same OTU. With the ASV paradigm, reads show-
ing differences in a single base will form distinct ASVs, resulting
in a more scattered abundance table, which inevitably affects in-
dexes based on abundance such as the Bray-Curtis dissimilarity
index.

Overall, the choice of distance/dissimilarity metric (weighted
UniFrac or Bray-Curtis) had a remarkable impact on our most
“distinctive” datasets: (i) highly diverse amplicon lengths for the
ITS datasets, (ii) long sequences for the PacBio data, and (iii) sim-
ple bacterial population for the mock community data.

OTUs and ASVs

OTU generation methods can be divided into 2 broad categories
referred to as close-reference and de novo methods. Compari-
son between the 2 paradigms has been the subject of recent
debates [36, 37], and we have focused our attention here on de
novo methods for OTU generation (DNACLUST and VSEARCH).
More recently, the adoption of ASVs as an alternative to OTUs
has gained traction in the microbial ecology community, mainly
to avoid the arbitrary dissimilarity clustering threshold inher-
ent to de novo OTU generation methods. One reported advan-
tage of ASV is the higher resolution that they provide compared
to OTUs—because no signal is lost during the sequence cluster-
ing process. ASVs have been reportedly used to distinguish be-
tween bacteria at the species level, but such a practice of iden-
tifying short amplicons at the species and strain level is contro-
versial because there is no uniformly accepted definition of bac-
terial species [38,39] or strain [38]. Moreover, even with PacBio
long amplicon rRNA data (approximately 1,400 bp reads) we of-
ten cannot confidently assign taxonomy at the species level (per-
sonal observations and Fig. S6a). Therefore, inferring classifica-
tion of short amplicons of a few hundred bases’ data to up to
the species level should be considered with extreme caution.
Besides, our data show that, except for ITS and long PacBio (for
the reasons explained above) 16S amplicons, ecological patterns
(taxonomy, β- and α-diversity) were very similar between ASVs
and OTUs in the 16S- and 18S-based studies we analysed, which
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is consistent with recent studies comparing ASVs and OTUs [
40,41]. Another argument in favor of adopting ASVs is that they
should allow different studies to be compared without the need
to recompute OTUs [33]. However, re-usability across studies as-
sumes that DNA of these different studies have been extracted
using the same method [42,43] and DNA amplified using the
same primer sequences. If sequencing libraries to be analysed
meet these criteria, in practice, it is probably more opportune
to pool all libraries together and re-initiate ASV generation to
make sure that samples have been processed the same way (e.g.,
exact same parameters) in upstream steps of ASV/OTU gener-
ation. Given the constant improvement of compute hardware
and efficiency of OTU clustering methods, re-generating OTUs
or ASVs as new datasets for a given project become available
can be considered a viable option: our results (Fig. 1—right pan-
els) show that VSEARCH completed in ∼4.5 hours compared to
5.2 hours for Deblur for the indoor microbiome project data, but
that VSEARCH significantly outperformed Deblur for the other
datasets. Another aspect that we observed from our ASV tables
is the “staircase” pattern typically observed in lower-abundance
ASV, which is illustrated using the ASV table from the AAD
project with 6 samples as an example (Table S4). From this ta-
ble, we see that because ASVs are discerned at a single-base res-
olution, multiple ASVs pointing to the same taxonomic groups
are generated. Probably because the sequencing errors are “cor-
rected” or “absorbed” by large clusters during the clustering pro-
cess, this staircase pattern is absent in OTU tables. There are
situations where ASVs can be useful to achieve correlation be-
tween an amplicon sequence and its associated genome. In such
a situation, an alignment of 100% identity between an ASV and
a reference sequenced genome may be necessary to make such
a correlation; because of its inherent nature, an OTU represen-
tative sequence would probably rarely achieve a perfect align-
ment against its associated reference genome. Regardless of the
ASV or OTU generation method used, the use of short amplicon
sequencing should mainly aim at offering a broad snapshot of
the microbial communities at stake in a biological system. In all
cases, the AmpliconTagger pipeline can be customized and ac-
commodate any OTU or ASV generation method, being agnostic
to the current debate.

In conclusion, microbial ecology is more than ever rely-
ing on high-throughput sequencing technologies. Bioinformatic
pipelines used for analysing these data loads are increasing in
complexity and there is a need for increased flexibility in the
systematic analysis of short rRNA amplicon data. End-to-end
pipelines do exist, but these solutions are not necessarily con-
ducive to an easy integration of third-party packages or in-house
software. Moreover, these pipelines, as they are provided, are
mostly geared toward interactive or single-batch job process-
ing and can generate inessential intermediate files, which can
be constraining in a production context. AmpliconTagger is in-
tended to provide a backbone for automated short amplicon
data processing with an easy way for literate Python coders to
add or remove jobs and steps and thus customize the pipeline
to their specific needs or preferences.

Potential Implications

High-throughput nucleic acid sequencing is entering public life
and is becoming increasingly democratized. However, the bioin-
formatics analysis dimension that comes with nucleic acid se-
quencing projects is still often underestimated or poorly con-
sidered in the overall planning of sequencing data processing.

Bioinformatic pipelines are complex with many different fine-
tuned steps, and there is a need for flexibility for parametriza-
tion and customization. The objective of the present study was
to provide an example of a fully functional automated pipeline
to process a variety of rRNA amplicon sequencing data types.
Short amplicon data size is inherently small compared to other
high-throughput sequencing fields such as shotgun metage-
nomics or large eukaryote genome sequencing. This small data
type was chosen specifically to illustrate the proof of concept
of creating a highly customized marker gene pipeline offering
bioinformaticians who operate them a suitable alternative to
existing widespread solutions such as QIIME and Mothur. Am-
pliconTagger is integrated into the GenPipes workflow manage-
ment system [21], and as such, it is easily customizable to adapt
for specific needs and is practical for the integration of external
bioinformatic packages. It allows the leveraging of compute job
schedulers that are part of modern HPC environments and op-
tions tweaking and optimization. For instance, a clinical labora-
tory performing the monitoring of microbial communities could
effectively add a step that computes source tracking [44]—to pre-
dict the source of microbial communities in a set of samples—for
each pipeline run. A laboratory with research interests in non-
conventional marker genes (e.g., cpn60 and rpoB) or functional
genes such as phoD and pmoA could also build their own refer-
ence database and training sets and promptly integrate them
into the workflow.

Methods
Structure of the AmpliconTagger workflow

This is the main structure of the AmpliconTagger workflow. Spe-
cific parameters mentioned in this section reflect the ones that
were used in this study but can be customized in accordance
with the user’s needs as described in the user guide (Additional
File 4).

1. Reads are first scanned for contaminants (e.g., Illumina, 454,
or PacBio adapter sequences) and PhiX reads using a Decon-
tamination Using Kmers approach (bbduk, part of the bbmap
software [45]). Usually, a small proportion of reads are con-
taminants and accordingly, 0–25% are PhiX reads.

2. Removal of unpaired reads. From Step 1, paired-end reads
may be disrupted. This means that 1 of the read pairs might
be lost owing to the screening in Step 1. All of these unpaired
reads are discarded. This is usually a fairly small proportion
of all reads. This step is not performed if reads are single
ended (MiSeq single ended, PacBio, IonTorrent, or 454).

3. If reads are of single-end configuration (i.e., 454, IonTorrent,
or PacBio data types), they are trimmed to a fixed length that
is variable depending on the quality of sequencing run and
amplicon length. If reads are paired end (Illumina), trimming
can be optional and should be performed in such a way that
enough bases are left on the 3′ end of each read pair to allow
assembly using forward (read 1) and reverse (read 2) com-
mon overlapping parts during merging of read pairs in the
next step. Nevertheless, in the case of paired-end reads, it is
arguably preferable to trim the 3′ portion of reads that shows
low quality before reads performing the overlapping paired
assembly.

4. If paired-end reads: reads are assembled (overlapping paired
assembly) using FLASH software (FLASH, RRID:SCR 005531)
[46].

5. Primer sequences may or may not be removed from the
assembled/single-end reads. Primer sequences should be re-

https://scicrunch.org/resolver/RRID:SCR_005531
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moved when possible/applicable because the primer anneal-
ing regions of amplified DNA may be overrepresented in se-
quencing errors (personal observations). In the case of long
PacBio reads, it has been observed that CCS reads can be gen-
erated in both forward and reverse orientation. In that case,
reverse reads should be correctly oriented using primer se-
quence information.

6. The trimmed assembled/single-end reads from steps 4 and
5 are filtered for quality. All reads having an average quality
score <27–33 or >0 or 1 N (undefined base) and 5 nucleotides
below quality 15 are discarded. The remaining reads will be
referred to as filtered reads from now on. Filtering parame-
ters are customizable and should be adapted to the quality
profile of each dataset.

7. Filtered reads are then clustered with our in-house clus-
tering workflow. Briefly, reads are clustered at 100% iden-
tity and then clustered/denoised at 99% identity (VSEARCH,
DNACLUST [29,30]) (DNACLUST, RRID:SCR 001771). Clusters
having abundances <25 are discarded. The remaining clus-
ters are then scanned for chimeras with VSEARCH’s ver-
sion of UCHIME denovo and UCHIME reference [29,47]
(UCHIME, RRID:SCR 008057) and clustered at 97% (DNA-
CLUST or VSEARCH) to form the final clusters/OTUs. In the
case of Deblur and DADA2, ASVs having abundance <25 are
discarded. For PacBio long amplicons, filtered reads are clus-
tered at 97% identity and clusters having <2 reads (i.e., cus-
tomizable parameter) are discarded. The remaining reads are
scanned for chimeras using UCHIME reference. If Deblur or
DADA2 are used, filtered reads are used as input for Deblur
or DADA2 [31]. In the case of DADA2, input paired-end reads
are provided as forward and reverse reads separately (not
paired-end assembled). The resulting Deblur ASVs are then
scanned for chimeras with VSEARCH’s version of UCHIME
denovo and UCHIME reference [29,47]. DADA2’s ASVs are fil-
tered for chimeras using the package’s internal algorithm (re-
moveBimeraDenovo) followed by VSEARCH’s UCHIME refer-
ence.

8. OTUs/ASVs are then assigned a taxonomic lineage with the
RDP classifier [48] using an in-house training set containing
the complete Silva release 128 database [49] supplemented
with eukaryotic sequences from the Silva databases and a
customized set of mitochondria, plastid, and bacterial 16S
sequences. The ITS2 database consists of the UNITE ITS
database (ITS1-ITS2) region. The 18S training set was built
with the Silva eukaryote release 128 database. The RDP clas-
sifier gives a score (0–1) to each taxonomic depth of each OTU.
Each taxonomic depth having a score ≥0.5 is kept to recon-
struct the final lineage. OTUs/ASVs are also blasted against
the most recent NCBI nt database for complementary infor-
mation.

9. Using taxonomic lineages obtained from Step 8 combined
with cluster abundance from Step 7, a raw OTU/ASV table
is generated. From that raw OTU/ASV table, an OTU/ASV
table containing both bacterial and archeal organisms is
generated. From this latter OTU/ASV table, a normalized
(edgeR, RRID:SCR 012802 [50,51]) and consensus-rarefied (as
described in more detail below) OTU/ASV table is gener-
ated. If data consist of ITS amplicons, the same proce-
dures are applied, but the raw OTU/ASV table is filtered
to keep fungal organisms only. If the data are derived
from 18S amplicons, the OTU/ASV table is filtered to keep
eukaryotic organisms only. From this point on, the rar-
efied consensus OTU/ASV table is used for downstream
analyses.

10. A summary of read counts throughout the different steps
of the pipeline is generated. This is useful to get a global
outlook on the sequencing run: how many reads were se-
quenced, how many reads were filtered out after QC, how
many OTUs/ASVs were generated, etc.

11. From these classified OTUs/ASVs, a multiple sequence align-
ment is then obtained by aligning OTU/ASV sequences on a
Greengenes core reference alignment [52] using the PyNAST
aligner [17]. If data type is ITS or 18S, OTU/ASV sequences are
aligned against a Unite or Silva eukaryote core alignment, re-
spectively. For short amplicon data, alignments are filtered to
keep only the hypervariable region of the alignment. For long
PacBio reads, the whole alignment is kept.

12. A phylogenetic tree is then built from that alignment (from
Step 11) with FastTree (FastTree, RRID:SCR 015501) [53]. The α

(observed species) and β (weighted and unweighted UniFrac
and Bray-Curtis distances) diversity metrics and taxonomic
summaries are then computed using the QIIME 1 soft-
ware suite (QIIME, RRID:SCR 008249) [17, 54]. Along with the
OTU/ASV tables, these last tables represent end results from
the pipeline and can then be used to generate various types
of plots and statistics computation.

Read clustering and ASV methodology

Our OTU generation procedure was implemented on the basis
of a procedure previously described (Lundberg et al. 2012 [55])
and uses either DNACLUST or VSEARCH for the read cluster-
ing step. Briefly, quality controlled reads/sequences are derepli-
cated at 100% identity. The dereplication step is necessary to
lower data load for the clustering software because only 1 repre-
sentative of many thousands of identical sequences is kept for
clustering. Counts of each unique sequence representative are
kept in sequence headers after the dereplication process. For
instance for the AAD study, the fastq file holding quality con-
trolled paired-end assembled reads holds 9,209,510 sequences.
Once dereplicated, these sequences are actually regrouped into
831,570 sequences, which represent a 11.1-fold data reduction.
These dereplicated sequences are then clustered at 99% identity
(DNACLUST or VSEARCH). Clusters having an abundance of <25
reads (e.g., customizable parameter) are then discarded and the
remaining clusters are then scanned for chimeras with UCHIME
denovo and UCHIME reference [47] and clustered again at 97%
identity (DNACLUST or VSEARCH) to form the final clusters.

RDP classifier training sets

The RDP classifier is a Bayesian classifier whose purpose is to
classify sequences against a training set. Existing training sets
are based on 99% identity clustered versions of either Green-
genes or Silva databases. The RDP database (not to be con-
fused with the RDP classifier software) was also built in a sim-
ilar manner. To improve resolution of classification, we built
our own custom training sets using the whole Silva SSU (re-
lease 128) database. We had to semi-automatically and man-
ually alter the classification of certain taxa in order to make
the lineages unique and non-conflicting. At the time of writ-
ing, we are using a training set based on the Silva 128 release.
We also built our own training sets for 18S and ITS sequences.
The taxonomic classification system for eukaryotic organisms is
far more complex than that for the simpler bacterial kingdom.
As such, additionally to the common kingdom, phylum, class,
order, family, and genus fields found in prokaryotic taxonomy,

https://scicrunch.org/resolver/RRID:SCR_001771
https://scicrunch.org/resolver/RRID:SCR_008057
https://scicrunch.org/resolver/RRID:SCR_012802
https://scicrunch.org/resolver/RRID:SCR_015501
https://scicrunch.org/resolver/RRID:SCR_008249
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eukaryotic taxonomy includes ranks such as subphylum, sub-
division, subclass, superorder, suborder, and subfamily, which
makes the task of generating consistent values for each rank
challenging. Importantly, in order to obtain more resolution
from taxonomic classifications, our training sets were generated
using the entirety of the Silva and Unite databases and not the
clustered or “OTU” versions (i.e., clustered at various identity
thresholds ranging from 95 to 99%) of these databases. Perl code
used to generate training sets and training sets themselves are
available in the following repository: https://github.com/jtrembl
ay/RDP-training-sets.

Normalizing OTU/ASV tables with a multi-rarefaction
procedure

Normalization of ASVs or OTUs is a controversial topic [50,56].
Until a durable solution gets accepted by the microbial ecology
research community, we favor a multi-rarefaction approach as a
means to generate a normalized OTU/ASV table. Briefly, the raw
OTU table is first filtered for targeted microorganisms—if 16S
primers were used, only OTUs/ASVs matching to Bacteria at the
kingdom level will be kept for downstream steps. This filtered
OTU/ASV table is then rarefied 500 times and the mean of each
OTU/ASV of each sample is then computed so that a consensus
rarefied table is obtained. Proceeding this way avoids the bias in-
troduced by performing a single random rarefaction, which in-
evitably leaves out low-abundance micro-organisms. This con-
sensus rarefied table is then used for downstream analyses (e.g.,
α-, β-diversity, taxonomic summaries).

Smart restart mechanism using a workflow
management system

Bioinformatics pipelines are intrinsically complex with many
steps that need to be executed in a specific order. To improve
productivity, pipelines should be executed on a compute cluster
using a compute job scheduler (e.g., Torque, SLURM) support-
ing job dependencies. This way, the jobs of a complex pipeline
can be submitted all at once to the job scheduler so that each
job can be available for execution only when its depending job
has successfully completed. For example, in a typical rRNA gene
amplicon pipeline, the OTU/ASV generation job(s) can enter the
waiting queue only when the QC job it depends on have all
been successfully completed. Only then, the OTU/ASV genera-
tion job will enter the queue for execution. Many pipeline mod-
ules (software that generates scripts of job submissions) have
been written and published [57]. A good pipeline framework
should generate jobs, manage their dependencies, and have a
smart restart mechanism in case of job failure. In the context
of a complex pipeline with hundreds to thousands of jobs, a
smart restart mechanism is indispensable to gain productiv-
ity and save time determining which job failed. The GenPipes
core modules fill these requirements and is the reason for their
adoption [21]. For instance if the execution of AmpliconTagger
gets interrupted because of a job failure, it should be straight-
forward to identify exactly which job failed to properly execute.
With a smart restart mechanism implementation, the pipeline
framework should find, upon re-execution, which job actually
failed to successfully complete and effectively rewrite it for re-
submission. Bioinformatics pipeline frameworks are also critical
in that they allow sequencing data to be systematically analysed
in reproducible ways and that each step or job generated is pa-
rameterizable. For instance when analysing quality controlled
read data results, one can realize that the quality-filtering pa-

rameters were too stringent given the quality score profiles of
the input sequencing data. By slightly decreasing the quality-
filtering parameters and re-running the pipeline framework, all
the downstream jobs affected by this modified parameter will
be re-generated and re-submitted to the job scheduler. Proceed-
ing with a pipeline framework also leaves traces of parameters
used in all jobs should the data and analyses be revisited in the
future.

Sequencing library preparation for mock community
DNA

Mock communities purified DNA was purchased from BEI re-
sources (Manassas, VA, USA) as HM-782D (even spike-in of total
mock community). 16S rRNA gene amplicon libraries were pre-
pared as described [58].

Availability of Source Code and Requirements

Project Name: AmpliconTagger
Project Home Page: http://jtremblay.github.io/amplicontagger.h
tml
Operating System: CentOS 7
Programming Languages: Python, Perl, R
Other requirements: pynast/1.2.2; perl/5.26.0; rdp classifier/2.5;
fasttree/2.1.10; FLASH/1.2.11; qiime/1.9.1; duk/1.051;
DNACLUST/3; fastx/0.0.13.2; python/2.7.5; python/3.6.5;
java/jdk1.8.0 144; blast/2.6.0+; Deblur/1.0.4; VSEARCH/2.7.1;
R/3.6.0, DADA2/1.12.1
License: GNU GPL
The AmpliconTagger pipeline wrapper code and Python, Perl,
and R scripts that are being called by AmpliconTagger are avail-
able here:
https://bitbucket.org/jtremblay514/nrc pipeline public/src/1.1/
https://bitbucket.org/jtremblay514/nrc tools public/src/1.1/
External software packages module install scripts are available
here:
https://bitbucket.org/jtremblay514/nrc resources public/src/1.
1/
A Docker image built on the CentOS 7 operational system that
contains all necessary modules for full pipeline functionality
is available for testing/evaluation purposes and running small
datasets (https://cloud.docker.com/u/julio514/repository/docke
r/julio514/centos). Scripts used to generate RDP training sets are
available here: https://github.com/jtremblay/RDP-training-sets,
and the training set files are available on the Docker image. The
PipelineViewer web page is located here: http://jtremblay.github
.io/PipelineViewer/amplicontagger.html and its source code is
available here: https://github.com/jtremblay/PipelineViewer.

Availability of Supporting Data and Materials

Sequencing for the indoor microbiome project is available
through the ENA portal under accession number ERP005806. 16S
rRNA amplicon sequence data for the AAD study are available
in the NCBI’s SRA portal under accession number SRP120170.
PacBio full-length 16S rRNA amplicons for the oral micro-
biome project are available under SRR56217[29–69]. ITS am-
plicons from the plant root microbiome transplant study are
available under PRJNA301462. 18S rRNA gene amplicon data
from the Chicago Lake Michigan study are available under PR-
JNA294919/SRP063479. The even mock community reads are
available under PRJNA510326. The staggered mock community
is available under SRR2082918–20 and the PacBio mock libraries

https://github.com/jtremblay/RDP-training-sets
http://jtremblay.github.io/amplicontagger.html
https://bitbucket.org/jtremblay514/nrc_pipeline_public/src/1.1/
https://bitbucket.org/jtremblay514/nrc_tools_public/src/1.1/
https://bitbucket.org/jtremblay514/nrc_resources_public/src/1.1/
https://cloud.docker.com/u/julio514/repository/docker/julio514/centos
https://github.com/jtremblay/RDP-training-sets
http://jtremblay.github.io/PipelineViewer/amplicontagger.html
https://github.com/jtremblay/PipelineViewer
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under SRR559331[4–7], SRR55933[19]-[20], and SRR559333[2]-[3].
All raw data and intermediate files used and generated for this
study are available in GigaDB [59]. All commands used to process
all of the 6 datasets are also available in GigaDB [59].

Additional Files

Additional File 1
Figure S1. Study design.
Figure S2. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles, b) beta diversity including
Mantel test results between the three tested methods and c) al-
pha diversity of selected samples from the indoor microbiome
project (16S V3-V4 region; 1x150 bp).
Figure S3. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles, b) beta diversity includ-
ing Mantel test results between the three tested methods and
c) alpha diversity of selected samples from the the antibiotic-
associated diarrhea (AAD) project (16S V4 region; 2x250 bp).
Figure S4. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles, b) beta diversity including
Mantel test results between the three tested methods and c) al-
pha diversity of selected samples from the rhizosphere trans-
plant project (ITS1-ITS2 region; 2x250 bp).
Figure S5. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles, b) beta diversity including
Mantel test results between the three tested methods and c) al-
pha diversity of selected samples from the Chicago nearshore
water profiling project (18S region amplified by the 1181F-1624R
primers; 1x151 bp).
Figure S6. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles at the species level, b) beta
diversity including Mantel test results between the three tested
methods and c) alpha diversity of selected samples from the
PacBio mock community (16S, V1-V9 region; PacBio 1x∼1470 bp
CCS reads).
Figure S7. Comparison between Deblur, DADA2, DNAclust and
VSEARCH for a) taxonomic profiles at the species level, b) beta
diversity including Mantel test results between the three tested
methods and c) alpha diversity of selected samples from the oral
microbiome project (16S, V1-V9 region; PacBio 1x∼1473 bp CCS
reads).
Figure S8. Read length frequency distribution for ITS, 16S and

18S short reads data types.
Additional File 2. Complete commands traces of each job of each
data analysis run.
Additional File 3. QIIME2 command traces for the 16S V4 region
mock community.
Additional File 4. AmpliconTagger user guide.
Table S1. MiSeq V4 and PacBio even microbial mock commu-
nity strains and their genome properties. Concentration values
taken from the manufacturer. Microorganism Expected Normal-
ized distribution (MEND) was computing following procedure
described in Tremblay et al., 2015 (Front. Microbiol.).
Table S2. MiSeq V4 staggered microbial mock community strains
and their genome properties. Taken from Tremblay et al., 2015
(Front. Microbiol.). MEND=Microorganism Expected Normalized
distribution.
Table S3. Mantel r statistics comparing distance matrices of each
ASVs/OTUs generation method for each project. Each r statistic
had a p value < 0.001.
Table S4. Staircase pattern observed for six samples selected
from the AAD ASV table.
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