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Abstract
Studies that focus on individual covariates, while ignoring their interactions, 
may not be adequate for model-informed precision dosing (MIPD) in any given 
patient. Genetic variations that influence protein synthesis should be studied in 
conjunction with environmental covariates, such as cigarette smoking. The aim 
of this study was to build virtual twins (VTs) of real patients receiving clozapine 
with interacting covariates related to genetics and environment and to deline-
ate the impact of interacting covariates on predicted clozapine plasma concen-
trations. Clozapine-treated patients with schizophrenia (N = 42) with observed 
clozapine plasma concentrations, demographic, environmental, and genotype 
data were used to construct VTs in Simcyp. The effect of increased covariate 
virtualization was assessed by performing simulations under three condi-
tions: “low” (demographic), “medium” (demographic and environmental in-
teraction), and “high” (demographic and environmental/genotype interaction) 
covariate virtualization. Increasing covariate virtualization with interaction 
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INTRODUCTION

An individual demographic, genetic, or environmental 
covariate may not influence pharmacokinetics (PKs) sig-
nificantly when studied in isolation. But when modeled 
collectively using interaction terms, the combined effect 
of covariates may be significant.1,2 Modeling approaches 
that quantify these interactions between variables across 
a target population may be used to optimize starting and 
continued dosing, an important consideration for model-
informed precision dosing (MIPD).3 Physiologically-based 
pharmacokinetic (PBPK) modeling is well-suited for 
MIPD due to its highly mechanistic basis and the ability 
to consider concurrently the impact of patient, drug, and 
environmental variables on PKs. In recent years, validated 
PBPK platforms have been used to construct “virtual 
twins” (VTs) of real patients to predict PKs by incorporat-
ing a large number of variables, including ethnicity, sex, 
age, genotype/phenotype of drug metabolizing enzymes 
and transporters, and co-administered medications.3–6 
This approach, MIPD-VT, can rapidly delineate the 

impact on PK predictions when demographic, gene, and 
environmental covariates are considered individually or 
when they are considered together, analogous to an inter-
action term in other modeling approaches.

Clozapine is the only approved antipsychotic for 
treatment-resistant schizophrenia.7 It has a narrow ther-
apeutic index and potentially life-threatening adverse 
effects, including cardiomyopathy, agranulocytosis, and 
seizures. Precision dosing of clozapine via therapeutic 
drug monitoring (TDM) is essential to improve clozapine 
safety.8 Although TDM naturally accounts for all interac-
tions between genetic and environmental variables post-
dosing, the associated models used to analyze the TDM 
data rarely use interaction terms in modeling the influence 
of various parameters. This stems from a lack of mecha-
nistic insights into how these factors or their interaction 
influence clozapine PKs.9 The outcome from such purely 
statistical models, implemented in current TDM software, 
cannot be used as a priori information to tailor the dose be-
fore commencing drug treatment and doing TDM. These 
also lead to misunderstanding the effects of parameters, or 

improved the coefficient of variation (R2) from 0.07 in the low model to 0.391 
and 0.368 in the medium and high models, respectively. Whereas R2 was simi-
lar between the medium and high models, the high covariate virtualization 
model had improved accuracy, with systematic bias of predicted clozapine 
plasma concentration improving from −138.48 ng/ml to −74.65 ng/ml. A high 
level of covariate virtualization (demographic, environmental, and genotype) 
may be required for MIPD using VTs.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Between-patient variability in clozapine pharmacokinetics (PKs) is common in 
clinical practice. Covariates affecting this variability in PKs include demographic 
(e.g., sex and age), genetic (e.g., CYP genotypes), and environmental (e.g., smok-
ing status and drug interactions) factors.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can systematically increasing the number of covariates (“virtualization”) in 
physiologically-based pharmacokinetic (PBPK) modeling improve the prediction 
of clozapine plasma concentration using a virtual twin (VT) approach?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The study demonstrated improvement in the prediction of clozapine PK by in-
creasing the virtualization of VTs, and this serves as proof of concept that a high 
level of covariate virtualization is required for model-informed precision dosing 
(MIPD).
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Incorporating gene–environment interactions in PBPK modeling can help im-
prove the accuracy of model predictions and advance the field one step closer to 
realize the potential of MIPD in clinical practice.
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lack thereof, because such effects could be observed only 
in a certain space associated with other parameters, such 
as age or comedication-dependent effects of genetics on 
clearance10,11 or the metabolic drug-interaction which are 
dependent on renal function.12

To further understand the capacity of VTs to delin-
eate combined gene–environment effects, clozapine was 
chosen for this study because many covariates are known 
to influence its PKs.13 Indeed, clozapine is extensively 
metabolized by cytochrome P450 (CYP) 1A2 (CYP1A2), 
with CYP3A4, CYP2D6, CYP2C19, and CYP2C9 playing 
relatively minor roles.14–16 This means that genetic varia-
tion and the presence of CYP inducers and inhibitors all 
contribute to variability in the phenotype of these CYPs. 
In particular, cigarette smoking status is a clinically ac-
tionable covariate that must be considered when dosing 
clozapine, because changes in the expression of CYP1A2, 
and subsequently clozapine clearance, strongly influence 
plasma concentrations.13 Smokers carrying the inducible 
CYP1A2*1F/*1F genotype are at an increased risk of non-
response to clozapine due to reduced plasma concentra-
tion.17–19 Concomitant medications inhibiting CYP1A2 
(e.g., ciprofloxacin and fluvoxamine) or inducing CYP1A2 
(e.g., carbamazepine and phenytoin) also alter clozapine 
plasma concentrations and response, although the degree 
to which CYP1A2 genotype influences the severity of these 
drug–drug interactions (DDIs) is less well understood.

To further understand the implications of gene–
environment interactions for MIPD, the aim of this study 
was to determine whether systematically increasing the 
number of modeled covariates (“virtualization”) improves 
the prediction of clozapine plasma concentration using a 
VT approach. This work was conducted as a step forward 
for MIPD-VT. In other words, MIPD-VT could be used 
to predict optimal starting doses of clozapine, and then 
TDM used with standard dose proportional adjustments 
or Bayesian methods to nuance the dose.

METHODS

Participants

Forty-two patients with schizophrenia who were en-
rolled in a previous clinical study with clozapine were 
selected to construct VTs in Simcyp.20 The internally 
validated drug profile for clozapine in Simcyp was then 
used to predict the observed clozapine trough concen-
trations (see Table 1). Participants with known CYP1A2 
genotypes (CYP1A2*1A/*1A, *1A/*1F, or *1F/*1F) 
were selected to assess the importance of customizing 
the CYP1A2 enzyme abundance based on the induc-
ible CYP1A2*1F/*1F genotype. Participants carrying 

CYP1A2 alleles with unknown function (e.g., *1L or *1V) 
were excluded. The concomitant inhibitors and induc-
ers with potential to influence clozapine exposure were 
fluoxetine, citalopram, sertraline, clobazam, esomepra-
zole, pantoprazole, oral contraceptives, valproate, and 
cigarette smoking.1 Ethical approval for the clinical 
study with clozapine was provided by the Melbourne 
Health Human Research Ethics Committee (MHREC 
ID 2012.069 and 2012.066) and complied with the 
Declaration of Helsinki and its subsequent revisions.21

Genotype testing and phenotype  
assignment

Details of sample collection, processing, and determina-
tion of genotype were described previously.20 Briefly, 
blood samples were collected at steady-state ~12 h after 
the last clozapine dose to extract DNA for genotyping 
and measure clozapine plasma concentrations. The term 
“genotype” used in the current study refers to diplotypes 
of CYP1A2, CYP2C19, CYP2D6, CYP2C9, CYP3A4, and 
CYP3A5. These were determined using TaqMan-based 
assays by myDNA (myDNA; Life Australia Limited, 
Melbourne, Australia). Clozapine plasma concentra-
tions were measured using liquid chromatograph tandem 
mass spectrometry. Genotype to phenotype translation 
was based on definitions provided by the Pharmacogene 
Variation Consortium22 and the Clinical Pharmacogenetics 
Implementation Consortium (CPIC).23 Genotype testing 
was also performed on unlinked ancestry-informative 
markers to assign each participant to one of the following 
populations: Northern/Western European, Han Chinese, 
or Yoruba in Nigeria.

Construction of VTs

Individual VTs were constructed in Simcyp by matching 
for each participant's demographics, clozapine dose, and 
presence of inhibitors and inducers (see Table  1). The 
demographic parameters of height, weight, and sex were 
fixed in each VT by changing the coefficient of variation 
(CV) to zero. The age was fixed by making the minimum 
and maximum age of the VT equivalent to the age of the 
study participant. The CVs for system components, such 
as hematocrit, tissue composition, and enzyme and trans-
porter abundances, used the inbuilt values within Simcyp 
and were not fixed. Esomeprazole and fluoxetine were the 
only inhibitors with validated inhibitor drug profiles in 
Simcyp and were accounted for where appropriate. The 
daily dose of fluoxetine and esomeprazole was not re-
corded in the original study and therefore a dose of 40 mg 
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daily was assumed for each drug based on recommended 
dosage ranges used in clinical practice.24–26

The Simcyp population of healthy volunteers was used 
for participants with a body mass index (BMI) of less 
than 30 and assigned as having Northern and Western 
European or “other” ancestry, as per demographic data 
in Table 1. The obese population in Simcyp was used for 
participants with a BMI between 30 and 40, whereas the 
morbidly obese population was used for those with a BMI 
greater than 40, irrespective of ancestry. The Simcyp pop-
ulation of Chinese healthy volunteers was used for one 
participant who was assigned as having Asian ancestry 
with a BMI less than 30.

Cytochrome P450 phenotypes are defined by enzyme 
abundance (pmol mg−1 microsomal protein) and the 
turnover rate constant (1  h−1) in Simcyp. Smokers with 
a CYP1A2*1F/*1F genotype were assigned a CYP1A2 
enzyme abundance based on the number of cigarettes 
smoked per day, as described previously by Plowchalk 
et al.27 In short, enzyme abundance was individually 
adjusted based on the number of cigarettes smoked per 
day, using the following groupings: <10 cigarettes/day 
(conservatively used 64 pmol mg−1 protein), 11–20 cig-
arettes/day (90 pmol mg−1 protein), and >20 cigarettes/
day (94 pmol mg−1 protein). One participant consumed 
more than 30 cigarettes per day and a CYP1A2 enzyme 
abundance of 156 pmol mg−1 protein was used.28 All other 
participants were assigned a nonsmoker CYP1A2 enzyme 
abundance of 52 pmol mg−1 microsomal protein. Smokers 
with the CYP1A2*1A/*1A or CYP1A2*1A/*1F genotype 
were assumed to have minimal or no induction by ciga-
rette smoking and therefore were assigned the nonsmoker 
CYP1A2 enzyme abundance.

Simcyp provides CYP2D6, CYP2C19, and CYP2C9 
enzyme abundance data for the following phenotypes 
(CYP2D6 and CYP2C19 – poor metabolizer [PM], nor-
mal metabolizer [NM also known as EM], and ultr-
arapid metabolizer [UM]; CYP2C9 –  PM and NM). 
Intermediate metabolizer phenotypes were assigned 
enzyme abundances based on the following algorithm 
provided by the Simcyp product team (Simcyp; Certara, 
personal communication). For CYP2D6, CYP2C19, 
and CYP2C9, the NM enzyme abundance was respec-
tively multiplied by a factor of 0.362, 0.646, and 0.876. 
Participants with the CYP3A4*1/*22 genotype (N  =  3) 
were treated as NMs in Simcyp, as there is variability 
surrounding the available data for the CYP3A4*22 al-
lele and it is thought that this allele's overall activity in 
the wider population is undistinguishable from an NM. 
Carriers of the CYP3A5*1/*3 genotype were also treated 
as NMs as CYP3A5 is thought to play a minor role in the 
metabolism of clozapine and the corresponding enzyme 
abundance is not available.

Stabilization of VT estimates

All simulations were performed using Simcyp version 19 
(Certara, Princeton, NJ). To optimize the model's predic-
tion and get a stable median plasma trough clozapine con-
centration for each VT, simulations for two participants 
were run for 14 days at trials of 10, 100, 1000, and 5000 
to see which best captures the true and stable clozapine 
distribution based on the central limit theorem.

VT predictions

To assess the effect on predicting plasma clozapine trough 
concentrations by increasing covariate virtualization, sim-
ulations were performed under the following conditions:

	(i)		�  Low covariate virtualization (demographic) –  VTs 
were matched for height, weight, age, and clozapine 
dose only. Patient-specific CYP phenotypes and con-
comitant inhibitors and inducers were omitted from 
the model. The Simcyp inbuilt population data was 
used to inform CYP phenotypes and all other system 
parameters.

	(ii)		�  Medium covariate virtualization (demographic and 
environmental) –  VTs were matched for height, 
weight, age, clozapine dose, and concomitant CYP 
inducers and inhibitors. CYP1A2 enzyme abun-
dance was matched to the number of cigarettes 
smoked per day based on published figures de-
scribed above. Genotype data was omitted from the 
model and Simcyp inbuilt population phenotype 
data was used to inform CYP phenotypes and other 
system parameters.

	(iii)		� High covariate virtualization (demographic, envi-
ronmental, and genotype) – VTs were matched for 
height, weight, age, clozapine dose, inducers, inhib-
itors, and CYP genotype-predicted phenotypes for 
CYP2D6, CYP2C19, and CYP2C9. The CYP1A2 en-
zyme abundance values were matched to the num-
ber of cigarettes smoked per day for CYP1A2*1F/*1F 
carriers only. All other CYP1A2 genotypes (*1A/*1F 
and *1A/*1A) were assigned the enzyme abundance 
value for nonsmokers (52 pmol mg−1 microsomal 
protein).

Statistical analysis

GraphPad Prism (version 8.0.0 for Windows; GraphPad 
Software, San Diego, CA, www.graph​pad.com) was used 
to perform descriptive analysis and produce the Bland–
Altman plots and the simple linear regressions graphs.

http://www.graphpad.com
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RESULTS

Stabilization of VT estimates

Simulations using inputs from two study participants 
showed that 1000 trials per VT captured a stable median 
for clozapine trough concentration. Further increases in 
trial number did not yield any significant variation in the 
median concentration of clozapine, as shown in the box 
and whisker plots of Figure 1.

VT predictions

Figure  2 shows predicted versus observed trough clo-
zapine concentrations for the full cohort (N  =  42) in 
three categories with increasing covariate virtualization 
(Figure 2a–c). The corresponding Bland–Altman plots are 
provided in Figure 2d–f.

Low covariate virtualization

Figure  2a shows the observed versus predicted plasma 
clozapine plasma trough concentrations for the full co-
hort where the following data was omitted (CYP1A2, 
CYP2D6, CYP2C19, and CYP2C9 genotype predicted 
phenotypes, co-administered inhibitors, and inducers, 
including cigarette smoking). There was a relatively 
poor relationship between observed versus predicted 
plasma clozapine trough concentrations with a corre-
lation of determination (R2) value of 0.07. The corre-
sponding Bland–Altman plot (Figure  2d) demonstrates 

a systematic bias resulting in underprediction of the 
plasma trough clozapine concentration (−35 ng/ml) 
with a bias SD of 271.7 ng/ml.

Medium covariate virtualization

Figure 2b shows an improved relationship and precision 
in the prediction of plasma clozapine trough concentra-
tions (R2 of 0.391) when CYP1A2 induction by cigarette 
smoking and concomitant inhibitors were accounted 
for in the model. The corresponding Bland–Altman 
plot (Figure 2e) suggests a systematic bias resulting in 
underprediction of the plasma trough clozapine con-
centration (−138.48 ng/ml) with a reduced bias (SD of 
200.6 ng/ml).

High covariate virtualization

Figure  2c presents the VT model matching for inhibi-
tors, CYP1A2, CYP2D6, CYP2C19, and CYP2C9 genotype 
predicted phenotypes, CYP1A2 abundance based on the 
CYP1A2*1F/*1F genotype, and the number of cigarettes 
smoked per day. This model produced a similar correla-
tion to the model in Figure 2b with an R2 value of 0.368, 
however, the confidence interval of the line of best fit in-
cluded the line of unity. Furthermore, the corresponding 
Bland–Altman plot (Figure 2f) suggests an improved pre-
diction of plasma trough clozapine concentration with an 
underprediction systematic bias (−74.65 ng/ml) and a bias 
SD of 206.8 ng/ml, similar to the medium covariate virtu-
alization model (Figure 2e).

F I G U R E  1   Clozapine median concentrations of two study participants at simulations of 10, 100, 1000, and 5000 trials
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DISCUSSION

Many demographic, genetic, and environmental factors 
can impact PKs, however, when studied in isolation, in-
dividual covariates may not appear to play a major role. 
However, the combined effect of covariates may be sig-
nificant and require modeling using interaction terms or 
by including multiple essential covariates in PBPK-based 
simulations. Three PBPK models with varying degrees of 
covariate virtualization (low, medium, and high) were 
assessed to understand the impact of gene–environment 

interactions on the accuracy of VT predictions. The key 
finding was that VT predictions can be improved by in-
creasing the covariate virtualization through incorpora-
tion of demographic, genetic, and environmental data. 
The high covariate virtualization model produced the best 
prediction of plasma clozapine trough concentration com-
pared to the low and medium covariate level virtualiza-
tion models.

Three previous studies have used VTs/PBPK model-
ing to predict plasma trough clozapine concentrations. 
Ghoneim et al.29 demonstrated adequate predictions in 

F I G U R E  2   Linear regression plots showing predicted vs observed clozapine systemic median trough concentrations. (a) VTs matched 
for weight, height, age, and clozapine dose only; (b) VTs matched for weight, height, age, clozapine dose, inducers, and inhibitors. 
Phenotypes were maintained at population frequencies and CYP1A2 enzyme abundance matched to the number of cigarettes smoked per 
day irrespective of CYP1A2 genotype. (c) VTs matched for weight, height, age, clozapine dose, inducers, inhibitors, and CYP phenotypes. 
Participants with the CYP1A2*1F/*1F genotype had enzyme abundances matched to the number of cigarettes smoked per day and others 
were assigned the enzyme abundance of nonsmokers (52 pmol mg−1 microsomal protein). The corresponding Bland–Altman plots are 
shown in (d), (e), and (f). ● Nonsmokers,  smokers (CYP1A2*1A/*1A),  smokers (CYP1A2 *1A/*1F),  smokers (CYP1A2*1F/*1F), 
smoker (esomeprazole and CYP1A2*1F/*1F),  smoker (esomeprazole and CYP1A2*1A/*1F),  nonsmoker (fluoxetine),  nonsmoker 
(esomeprazole), and  nonsmoker (esomeprazole and fluoxetine). The solid line on the graphs represents the line of best fit. The dotted 
lines represent the 95% confidence interval of the slope and the dashed lines represent the line of unity. VT, virtual twin.
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a healthy adult population, although the modeling ap-
proach was not validated in patients. Lee et al.30 developed 
a clozapine PBPK model that was optimized for Korean 
patients, demonstrating that age and sex were important 
covariates for clozapine clearance. However, this model 
did not assess genetic or environmental factors known to 
alter clozapine exposure. More recently, Wills et al.31 used 
PBPK modeling to assess the contribution of physiological 
covariates to the degree of variability in clozapine expo-
sure in patients. The physiological covariates of sex and 
CYP1A2 abundance were confirmed as significantly asso-
ciated with clozapine concentrations. Modeling, however, 
underperformed compared to TDM in cases where envi-
ronmental factors, such as altered adherence and drug in-
teractions, were the main source of variability.

It has been previously suggested that dose, sex, age, 
and smoking account for ~50% of the variability in plasma 
clozapine concentration in patients, whereas the other 
50% is accounted for by genetic variations in CYP en-
zymes and drug interactions.32,33 To depict the real-world 
effects encountered in patients prescribed clozapine and 
address the perceived limitations of previous clozapine 
PBPK models, we optimized a PBPK model to account 
for genotype, concomitant drugs, sex, age, ancestry, and 
BMI to test the impact of enhanced virtualization on 
model performance. Our high covariate virtualization 
model resulted in an overall improvement in the accuracy 
of model predictions with an underprediction systematic 
bias of −74.65 ng/ml compared to −138.48 ng/ml in the 
medium covariate virtualization model. Indeed, our ap-
proach of customizing the CYP1A2, CYP2D6, CYP2C19, 
and CYP2C9 enzyme abundances based on genotype 
improved plasma clozapine trough concentration predic-
tions. Figure 2a–c allow visualization of the impact each 
added covariate has on the prediction of clozapine plasma 
concentration. Importantly, the increased virtualization 
via the addition of genotype data shown in Figure 2c pro-
duced the most improved predictions and the majority of 
smoker and nonsmoker groups (as defined in the legend 
of Figure 2) moved closer to the line of unity.

Our genotype guided approach in customizing the en-
zyme abundances for CYP1A2, CYP2D6, CYP2C19, and 
CYP2C9 in the high covariate virtualization and interaction 
model was a key differentiator in comparison to the me-
dium covariate virtualization model. The CYP1A2 enzyme 
abundance was selected as a function of genotype and the 
number of cigarettes smoked per day. This approach is sup-
ported by previous studies which demonstrated higher en-
zyme induction and lower clozapine plasma concentration 
in smokers homozygous for the CYP1A2*1F (−163 C>A 
variant) allele.19,34–37 To ensure the CYP1A2 genotype in-
duction effect was captured accurately, carriers of other 
CYP1A2 haplotypes containing the CYP1A2 variant (−163 

C>A) were excluded as their function is currently unknown 
(CYP1A2*1L and CYP1A2*1V).38 The customization of 
CYP2D6, CYP2C19, and CYP2C9 enzyme abundances was 
based on genotype and also contributed to improved model 
performance, including cases with drug interactions by flu-
oxetine and esomeprazole, further emphasizing the impor-
tance of the combined gene–environment effect. Despite 
the overall underprediction of the high covariate virtual-
ization model in subjects (smokers and nonsmokers) tak-
ing esomeprazole and fluoxetine, the model still produced 
predictions closer to the observed concentrations, as shown 
in Figure  2b,c. Model underprediction of fluoxetine DDIs 
has been reported in previous studies.11,39 Apart from its 
CYP2D6 strong inhibition, fluoxetine is also metabolized 
by CYP2D6 and variability in CYP2D6 clearance of fluox-
etine has been suggested as a possible explanation for this 
observed underprediction. We propose a similar explana-
tion can be applied to esomeprazole as it is metabolized by 
CYP2C19 which it also moderately inhibits. Our combined 
demographic, genetic, and environmental covariate inter-
action (CYP genotypes, medications, and smoking, respec-
tively) improved the overall performance of the model. A 
40 mg daily dose for esomeprazole and fluoxetine was used 
for simulations despite the actual doses not recorded in the 
clinical dataset. Because a 20 mg dose of each medication is 
also used clinically, additional simulations were performed 
at this dose but they showed no significant differences in pre-
dicted clozapine concentrations compared with the higher 
dose (data not shown).

We acknowledge there is a lack of consensus in the 
literature regarding the influence of CYP1A2*1F on the 
inducibility of the CYP1A2 enzyme in cigarette smok-
ers. Some studies have failed to show an induction effect 
from CYP1A2*1F, whereas others have demonstrated in-
creased CYP1A2 inducibility and lower clozapine plasma 
concentration specifically in homozygous CYP1A2*1F 
smokers.17,19,34 In our study, we assumed increased in-
duction only in homozygous CYP1A2*1F smokers and 
recognize this to be a potential limitation due to this lack 
of consensus in the literature. Another limitation of the 
study is that some concomitant drugs known to be CYP 
inhibitors and inducers could not be modeled because 
validated compound files were unavailable. Indeed, there 
were several weak and moderate inhibitors of clozapine 
metabolism listed by the study participants (e.g., citalo-
pram, sertraline, clobazam, pantoprazole, oral contracep-
tives, and valproate), however, simulations were limited 
to the inclusion of only fluoxetine and esomeprazole be-
cause they have validated compound files in Simcyp. As 
the compound files in PBPK M&S platforms become more 
comprehensive, the impact of all CYP inhibitors and in-
ducers can be further investigated and evaluated, thus fur-
ther increasing virtualization. Another limitation is that 
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the exact timing of blood sample collection and the last 
clozapine dose prior to blood sampling were not available. 
Based on the standard clozapine protocol it was assumed 
that blood samples taken for measurement of clozap-
ine concentration were collected 12 h after the last dose. 
Simulated plasma clozapine concentrations were taken at 
exactly 12 h after the last dose. We acknowledge that blood 
samples taken before or after 12 h from the last clozapine 
dose could be a source of inaccuracy in predictions.

Importantly, we have found that performing 1000 tri-
als per simulation produced a stable mean clozapine con-
centration. Increasing the number of trials above 1000 
was not necessary and produced a minimal change in the 
mean clozapine plasma concentration. This approach may 
be considered for simulations of other drugs using a simi-
lar MIPD-VT method.

The PBPK platforms are primarily utilized for drug de-
velopment and in the design of DDI studies. In recent years, 
PBPK models have been effective at describing drug inter-
actions with perpetrator drugs and gene-DDIs.11,39 With 
the further utilization of pharmacogenomics in clinical 
practice, there is increasing importance of recognizing and 
addressing gene-DDIs, which is also sometimes referred 
to as phenoconversion (a process where medications alter 
the genotype-predicted phenotype of a drug metabolizing 
enzyme).40,41 The future implementation of PBPK-based 
MIPD into routine clinical care is expected to help address 
the complexities of phenoconversion. Importantly, a level 
of optimization of PBPK models is necessary for the clinical 
environment. We therefore suggest that a more comprehen-
sive list of validated inhibitor and inducer compound files 
is required to cater for phenoconversion, including weak 
and moderate inhibitors and inducers. It is well-recognized 
that psychiatric patients on polypharmacy who are at risk 
of significant drug interactions are key candidates for the 
application of MIPD, especially with the projected in-
crease in pharmacogenomic testing in these patients.42 The 
present study demonstrates that by incorporating gene–
environment interactions in PBPK modeling, we advance 
one step closer to realize the potential of MIPD in clinical 
practice. As a next logical step, this approach can be ex-
panded through a time series analysis of clozapine TDM 
data points to assess model performance over time.

In conclusion, this study shows for the first time that in-
creasing the virtualization of VTs improves the prediction 
of clozapine PKs, and supports the idea that a high level 
of covariate virtualization may be required for MIPD-VT.
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