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ABSTRACT

Background. Further investigation is needed to determine the causal effects of serum bilirubin on the risk of chronic
kidney disease (CKD).
Methods. This study is a Mendelian randomization (MR) analysis. Among the well-known single-nucleotide
polymorphisms (SNPs) related to serum bilirubin levels, rs4149056 in the SLCO1B1 gene was selected as the genetic
instrument for single-variant MR analysis, as it was found to be less related to possible confounders than other SNPs.
The association between genetic predisposition for bilirubin levels and estimated glomerular filtration rate (eGFR) or
CKD was assessed in 337 129 individuals of white British ancestry from the UK Biobank cohort. Two-sample MR based on
summary-level data was also performed. SNPs related to total or direct bilirubin levels were collected from a previous
genome-wide association study and confounder-associated SNPs were discarded. The independent CKDGen
meta-analysis data for CKD were employed as the outcome summary statistics.
Results. The alleles of rs4149056 associated with higher bilirubin levels were associated with better kidney function in
the UK Biobank data. In the summary-level MR, both of the genetically predicted total bilirubin {per 5 μmol/L increase;
odds ratio [OR] 0.931 [95% confidence interval (CI) 0.871–0.995]} and direct bilirubin [per 1 μmol/L increase; OR 0.910 (95%
CI 0.834–0.993)] levels were significantly associated with a lower risk of CKD, supported by the causal estimates from
various MR sensitivity analyses.
Conclusion. Genetic predisposition for higher serum bilirubin levels is associated with better kidney function. This
result suggests that higher serum bilirubin levels may have causal protective effects against kidney function impairment.
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INTRODUCTION

Chronic kidney disease (CKD) is a major comorbidity in modern
medicine and is increasing in prevalence [1]. As kidney function
is a pivotal factor that relates to various health outcomes, and
because the socioeconomic burden of CKD itself is considerable,
identifying factors that causally affect kidney function is an im-
portant health issue.

Bilirubin has been reported to be protective against kidney
function impairment. Epidemiologic studies suggest that higher
serum bilirubin levels, within physiologic ranges, are associated
with better kidney prognosis [2–6] and similar findings have
been reported for cardiovascular outcomes [7–12]. However, al-
though previous studies have suggested these possibilities, it
remains unclear whether bilirubin can serve as a therapeutic
target for modulating kidney function [13–15]. This is mainly
because no clinical trial modifying bilirubin is currently avail-
able and observational findings are inevitably affected by con-
founders and reverse causality.

Mendelian randomization (MR) is an approach that has been
recently introduced in the medical field and has been used to
identify important causal effects of various environmental and
medical factors in complex diseases [16]. MR utilizes a genetic
instrument that is minimally affected by confounders or reverse
causation because the genotype is determined at birth. MR tests
the association between genetic predisposition for exposure and
health outcomes and since the randomization for the genotype
is performed before birth, MR can provide causal estimates be-

tween complex exposures and outcomes [17]. In recent studies,
MR has been introduced to reveal the causal factors related to
kidney function traits [18–20].

In this studywe aimed to reveal the causal effects of bilirubin
on kidney function by performing MR in two population-scale
databases. We hypothesized that higher genetically predicted
bilirubin levels would be associated with better kidney function,
suggesting the causal protective effect of serum bilirubin on the
kidney.

MATERIALS AND METHODS

Ethical considerations

The study was performed in accordance with the Declara-
tion of Helsinki. The study was approved by the institutional
review boards of Seoul National University Hospital (no. E-
1910-044-1067) and the UK Biobank consortium (application no.
53799). Since the study investigated materials from anonymous
databases or summary-level data, the requirement for informed
consent was waived by the institutional review boards.

Study setting

This study was an MR analysis in two population-scale
databases (Figure 1). The study first used UK Biobank data
to test the association between kidney function and genetic
predisposition for elevated bilirubin via a single-nucleotide poly-
morphism (SNP) that is strongly associated with serum bilirubin
levels. Replication was performed by a summary-level two-
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FIGURE 1: Study flow diagram. The study consisted of two parts: a single-variant MR analysis based on the individual-level data of the UK Biobank and a two-sample

summary-level MR with the summary statistics from the CKDGen GWAS meta-analysis. As the UK Biobank and the CKDGen GWAS are independent, the two analyses
were performed for the purpose of replication.

sample MR that implemented a set of SNPs previously reported
from the UK Biobank data as the genetic instrument for MR of
bilirubin levels by introducing independent outcome summary
statistics.

UK Biobank database

The UK Biobank is a prospective population-based cohort of
>500 000 individuals 40–69 years of age gathered from 2006 to
2010 in the UK. We used the information to test the association
between genetic variance in serum bilirubin level and kidney
function, identify genetic variants associated with possible con-
founders and construct a genetic instrument consisting of a set
of SNPs for summary-level MR. The details of the database have
been published previously [21–23].

In the analysis, we included unrelated individuals of white
British ancestry from the UK Biobank data with data passing the
basic quality control filter. Those who were outliers in terms of
heterozygosity or missing rate and those with sex chromosome
aneuploidy were excluded. A total of 337 129 individuals were
ultimately included in the genetic analysis. The details of the
clinical information collection in the population are described
in the Supplementary data, Methods.

Genetic instrument for the single-variant MR

We first tested the association between kidney function and
a genetic variant that plays a decisive role in serum biliru-
bin level. Previous genome-wide association studies (GWASs)
have consistently reported that two loci, uridine diphosphate-
glucuronosyltransferase 1–1 (UGT1A1) [24–26] and solute carrier
organic anion transporter family member 1B1 (SLCO1B1) [25, 27],
are strongly associated with serum bilirubin levels. Among the
SNPs in these genes, we selected rs887829 and rs4149056 as po-
tential genetic instruments for serum bilirubin level, as in an-
other recent MR study [28]. The variant rs887829 in the UGT1A1
gene has been reported to explain ˃30% of the variance in serum
bilirubin level and is in nearly complete linkage disequilibrium
with the genetic polymorphisms underlying Gilbert’s syndrome.
The SNP rs4149056 is in the SLCO1B1 gene that encodes the pro-

tein that transports bilirubin from the blood into the liver; this
allele also explains a proportion of the variance of serum biliru-
bin level.

As MR requires meeting the assumption of ‘independence’
[16], namely, that the genetic instrument is not associated with
any other confounder, we carefully investigated whether the
variants could be associated with major confounders for kidney
function in the UK Biobank data. The potential confounders in-
cluded hypertension; diabetes mellitus; obesity; alanine amino-
transferase level, which is known to be relatively specific for
liver injury compared with other liver enzymes [29]; and serum
albumin level. We performed logistic or linear regression with
the allele status of the genetic variant for each possible con-
founder adjusted for age, sex, the first 10 principal components
and the five possible confounders. If the significance of a re-
gression reached a two-sided P-value <.05, the exposure variant
was eliminated from consideration as a genetic instrument to be
tested for its association with kidney function in the UK Biobank
data.

In addition, as MR requires meeting the assumption of ‘rele-
vance’ [16], we tested the association between the genetic in-
strument and serum bilirubin level in the UK Biobank data,
estimating the explained variance by the multiple regression
method and calculating the F statistic, which should be >10 to
avoid weak instrument bias [30]. The genetic data analysis was
performed using PLINK 2.0 (version alpha 2.3) and R (version
4.0.2; R Foundation for Statistical Computing, Vienna, Austria)
[31].

Kidney function outcome for single-variant MR

The estimated glomerular filtration rate (eGFR) calculated by the
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
method in the UK Biobank data was used as the kidney func-
tion outcome [32, 33]. Since eGFR based on the measured cre-
atinine values may be biased by diet or body composition, we
examined the eGFR based on the serum cystatin C level.We also
considered stage 3–5 CKD as an outcome, which included those
with an eGFR <60 mL/min/1.73 m2 or a prevalent history of kid-
ney replacement therapy, identified by self-reports or electronic
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admission records. The association between the genetic variant
and eGFR or CKDwas tested by linear or logistic regression anal-
ysis adjusted for age, sex and the first 10 principal components.
In a sensitivity analysis, since eGFR values may have been al-
tered from dialysis or transplantation,we reperformed the anal-
ysis in a population after additionally excluding 646 cases with
confirmed kidney replacement therapy history.

Genetic instrument for the two-sample MR with
summary-level data

To replicate the findings with an MR analysis based on
summary-level data, we performed a two-sample MR analysis
including a set of SNPs strongly associated with serum biliru-
bin levels. The approach of combining a number of SNPs as the
genetic instrument has advantages over single-variant MR in
terms of increased statistical power and ability to test for the
presence of pleiotropy, thus the method was utilized for an in-
dependent outcome dataset for replication [34].

The genetic instrument used for the analysis was introduced
in a previous large-scale GWAS for serum biomarkers in in-
dividuals of white British ancestry in the UK Biobank (Global
Biobank Engine, https://biobankengine.stanford.edu/) [35]. The
instrument has been utilized several times to genetically predict
serum biomarkers [36–39]. The study identified genome-wide
significant (P < 5 × 10–8) SNPs without linkage disequilibrium (R2

< 0.1) associated with total bilirubin or direct bilirubin levels.
To meet the independence assumption, the associations be-

tween the selected SNPs and five possible confounders, as above,
were investigated by a GWAS with either linear or logistic re-
gression, adjusted for age, sex and the first 10 principal compo-
nents. As we aimed to robustly exclude SNPs thatmight be asso-
ciated with the confounders, we applied a more stringent cutoff
(P < .01) value to filter out confounder-associated SNPs than was
used in previous studies [40, 41]. SNPs that showed a potential
association with any of the confounders were excluded from the
genetic instrument.

To meet the relevance assumption, we calculated the allele
scores for serum bilirubin levels with the genetic variants after
excluding the confounder-associated SNPs and then tested the
significance of the association between the allele scores and the
serum bilirubin level by linear regression analysis, adjusted for
age, sex and the first 10 principal components.We also analyzed
the explained variance by the multiple regression method with
the calculation of F statistics.

In addition, we scaled the betas of the genetic instruments
for total and direct bilirubin so that a unit of allele score re-
flected a 5 μmol/L (0.292 mg/dL) increase in total bilirubin and
a 1 μmol/L (0.059 mg/dL) increase in direct bilirubin levels,
respectively.

Summary statistics for CKD in the two-sample MR

The CKDGen consortium provides the largest database of
GWAS meta-analysis results for stage 3–5 CKD (https://ckdgen.
imbi.uni-freiburg.de) [42]. In the meta-analyzed data including
480698 individuals of European ancestry, the prevalence of
stage 3–5 CKD was ∼9%. Since the genetic instrument was
developed from the individuals of white British ancestry in
the UK Biobank data, we downloaded the summary statis-
tics for CKD of the European ancestry individuals and uti-
lized the data as the outcome statistics in our two-sample MR
analysis.

Statistical method for the two-sample MR based on
summary-level data

In the summary-levelMR, any SNPs that did not overlap between
the summary statistics or that were palindromic with interme-
diate allele frequencies were discarded [43]. The main method
for the two-sample MR was the fixed-effects inverse variance
weighted method. Sensitivity analyses were performed to cal-
culate robust causal estimates independent of possible hetero-
geneity or pleiotropy. First, MR-Egger regression, which yields
pleiotropy-robust causal estimates, was performed, with boot-
strapped standard errors [44]. Second, the penalized weighted
median mode method, which derives valid causal estimates
even in conditions when invalid instruments are present, was
implemented [45]. Finally, MR-pleiotropy residual sum and out-
lier (PRESSO), which detects and corrects the effects from out-
liers, yielding causal estimates that are robust to heterogeneity,
was performed [46]. The two-sampleMR analysiswas performed
by the TwoSampleMR package in R [47].

RESULTS

Baseline characteristics of the UK Biobank participants

The baseline characteristics of the 337 129 individuals of white
British ancestry in the UK Biobank data included for the ge-
netic analysis are described in Table 1. The median age was
58 years, with a 20.9% prevalence of hypertension and a 4.8%
prevalence of diabetes mellitus. The interquartile ranges (IQRs)
for laboratory values, including aspartate aminotransferase, ala-
nine aminotransferase, albumin and direct or total bilirubin val-
ues, were all within the reference range. The prevalence of stage
3–5 CKD was 4.7%.

The genetic instrument for single-variant MR

In the analysis to test the independence assumption within the
UK Biobank data, the allele status of rs887829 on UGT1A1
showed a certain association with the presence of dia-
betes mellitus and the presence of the T allele was asso-
ciated with higher odds of diabetes (Supplementary data,
Table S1). The rs4149056 SNP in SLCO1B1 did not show any
significant association with any possible confounders. Thus
rs4149056 was used as the genetic instrument to investigate the
association between genetically predicted serum bilirubin level
and eGFR.

When we tested the relevance assumption, rs4149056 was
strongly (P < 2 × 10–16) associated with both total and direct
bilirubin levels (for direct bilirubin: 0.4% of variance explained
and F statistic 489.4; for total bilirubin: 0.5% of variance ex-
plained and F statistic 823.5). We confirmed that the C allele of
the rs4149056 SNP was related to higher direct and total serum
bilirubin levels (Supplementary data, Table S2).

Results of the single-variant MR

The presence of the C allele at the rs4149056 SNP was associ-
ated with higher eGFR values (Table 2). When we assessed stage
3–5 CKD as an outcome, the rs4149056 SNP was significantly as-
sociated with the risk of CKD, as the presence of the C allele,
which was associated with higher bilirubin levels, was signifi-
cantly associatedwith a lower risk of stage 3–5 CKD.The findings
were similarly identified even if we excluded individuals with
a history of kidney replacement therapy (Supplementary data,
Table S3).

https://biobankengine.stanford.edu/
https://ckdgen.imbi.uni-freiburg.de
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Table 1. Baseline characteristics of the UK Biobank study population used for the genetic analysis

Characteristics Total (n = 337 129) Male (n = 156 106) Female (n = 181 023)

Age (years), median (IQR) 58 (51–63) 59 (51–64) 58 (51–63)
Hypertension, n (%) 70 018 (20.9) 38 538 (24.9) 31 480 (17.5)

Systolic BP (mmHg), median (IQR) 136.5 (125.0–149.5) 139.5 (129.0–152.0) 133.5 (121.5–147.5)
Diastolic BP (mmHg), median (IQR) 82.0 (75.5–89.0) 84.0 (77.5–90.5) 80.0 (73.5–87.0)

Diabetes mellitus, n (%) 16 178 (4.8) 10 012 (6.4) 6166 (3.4)
Hemoglobin A1c (mmol/L), median (IQR) 35.1 (32.7–37.7) 35.2 (32.7–37.9) 35.1 (32.7–37.6)

Obesity (BMI ≥30 kg/m2), n (%) 81 022 (24.1) 39 328 (25.3) 41 694 (23.1)
BMI (kg/m2), median (IQR) 26.7 (24.1–29.8) 27.3 (25.0–30.0) 26.1 (23.4–29.6)

Laboratory values, median (IQR)
Aspartate aminotransferase (U/L) 20.2 (15.4–27.4) 23.8 (18.4–31.8) 17.5 (13.9–23.0)
Alanine aminotransferase (U/L) 24.4 (21.0–28.8) 26.1 (22.6–30.9) 23.0 (20.0–26.8)
Albumin (g/L) 45.2 (43.5–46.9) 45.5 (43.8–47.2) 45.0 (43.3–46.7)
Direct bilirubin (μmol/L) 1.6 (1.3–2.1) 1.8 (1.4–2.3) 1.5 (1.2–1.8)
Total bilirubin (μmol/L) 8.1 (6.4–10.4) 9.2 (7.4–11.7) 7.3 (5.9–9.2)

eGFR, cystatin C (mL/min/1.73 m2), median (IQR) 88.9 (77.1–101.3) 87.9 (76.7–99.7) 89.9 (77.5–102.6)
CKD stage 3–5, n (%) 15 004 (4.7) 7132 (4.8) 7872 (4.6)

BP, blood pressure; BMI, body mass index.

Table 2. Genotypes of rs4149056 SNP and direct bilirubin, total bilirubin and eGFR values

eGFR CKD stage 3–5

Genotype (rs4149056) eGFR (mL/min/1.73 m2), median (IQR) Adjusted β (SE) P-value Adjusted OR (95% CI) P-value

T/T 88.8 (70.0–101.2) Reference Reference
T/C 89.2 (77.3–101.5) 0.323 (0.063) 2.45 × 10–7 0.954 (0.918–0.992) .018
C/C 90.0 (78.1–102.1) 1.092 (0.183) 2.39 × 10–9 0.882 (0.785–0.992) .037

SE, standard error; OR, odds ratio; CI, confidence interval.
aAdjusted for age, sex and the first 10 principal components.

The genetic instrument for summary-level MR

In the summary-level MR, among the 307 and 233 SNPs with
dbSNP reference cluster (rs) identifiers that were related to to-
tal bilirubin and direct bilirubin levels, respectively, 212 and
126 SNPs were excluded from the genetic instrument in the
summary-level MR as being potentially associated with at least
one of the possible confounders (Supplementary data, Table
S4). After additionally excluding SNPs for lack of overlap with
the summary statistics of the CKDGen consortium and for be-
ing palindromic with intermediate allele frequencies, 79 and 66
SNPs remained eligible for inclusion in the genetic instrument
for total and direct bilirubin, respectively (Supplementary data,
Tables S5 and S6).

When we tested the relevance assumption by the allele
scores calculated from the genetic instrument, allele scores for
both total and direct bilirubin levels were strongly associated
with phenotypic total and bilirubin levels, respectively (P < 2 ×
10–16). The explained variance (total bilirubin 22.3%, direct biliru-
bin 14.3%) and F statistics (total bilirubin 9169, direct bilirubin
4564) also indicated that the genetic instruments were valid in
regards to their strength of association with the phenotypes of
interest.

Results of the summary-level MR

Genetic predispositions for both total and direct bilirubin were
significantly associatedwith a lower risk of CKD according to the
inverse variance weighted method (Figure 2 with OR and Table 3
with regressed betas and number of statistics). The MR-Egger

pleiotropy test P-values (with a genetic instrument for total
bilirubin: .175; for direct bilirubin: .358) and Cochran’s Q statis-
tics (with a genetic instrument for total bilirubin: .512; for direct
bilirubin: .963) indicated that no significant pleiotropy or hetero-
geneity was likely to have been present in the causal estimates.
Further, the causal estimates were supported by the sensitiv-
ity analysis results, as MR-Egger and penalized weighted me-
dian methods also indicated a significant association between
genetically predicted bilirubin levels and the risk of CKD. We
performed an MR-PRESSO analysis, but the global test for het-
erogeneity indicated no need to correct for heterogeneity (with
a genetic instrument for total bilirubin: P = .571; for direct biliru-
bin: P= .974), so the outlier-corrected causal estimates remained
the same as the raw results.

DISCUSSION

In this MR study, we found that a genetic predisposition for
higher serum bilirubin levels was significantly associated with
higher eGFR and a lower risk of CKD. The results were repeti-
tively identified in the individual-level data of the UK Biobank
and also in the summary-level for the CKDGen GWAS. With our
efforts to meet the necessary assumptions for an MR analysis,
the study results support that serum bilirubin may have effects
toward improved kidney function.

Beneficial effects of serum bilirubin on kidney and cardio-
vascular outcomes have been suggested by previous observa-
tional findings. The findings were first reported in individuals
with Gilbert syndrome, who have a nonpathologic elevation of
serum bilirubin and a reduced risk of adverse cardiovascular
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MR-PRESSO

Weighted median

MR-Egger

Inverse variance weighted

Total bilirubin – CKD

0.8 0.9 1.11.0 1.2

Direct bilirubin – CKD

OR (95% Cl)
0.8 0.9 1.11.0 1.2

OR (95% Cl)

FIGURE 2: Two-sample MR analysis for the causal estimates from the genetic predisposition for bilirubin on the risk in CKD. We scaled the betas of the genetic
instruments for total and direct bilirubin so that a unit of allele score reflected a 5 μmol/L (0.292 mg/dL) increase in total bilirubin and a 1 μmol/L (0.059 mg/dL) increase

in direct bilirubin levels, respectively. OR, odds ratio; CI, confidence interval.

Table 3. The summary-level MR results for the causal estimates from serum bilirubin levels on risk of CKD

Exposure trait MR method

Cochran’s Q
statistic for

heterogeneity

MR-Egger
pleiotropy
test P-value OR (95% CI) P-value

Total bilirubin Inverse variance weighted (fixed effects) 0.512 .175 0.931 (0.871–0.995) .035
MR Egger (bootstrap) 0.913 (0.849–0.982) .004
Penalized weighted median 0.919 (0.844–0.999) .048
MR-PRESSOa 0.931 (0.871–0.996) .037

Direct bilirubin Inverse variance weighted (fixed effects) 0.963 .358 0.910 (0.835–0.992) .035
MR Egger (bootstrap) 0.890 (0.809–0.980) .008
Penalized weighted median 0.894 (0.806–0.992) .033
MR-PRESSOa 0.910 (0.847–0.979) .015

OR, odds ratio; CI, confidence interval.
The exposure betas were scaled such that a unit increase in allele score for total or direct bilirubin reflects a 5 μmol/L increase in total or a 1 μmol/L increase in direct
bilirubin value.
aMR-PRESSO global test to detect heterogeneity indicated the absence of significant heterogeneity (for total bilirubin: P = .571; for direct bilirubin: P = .974), therefore

the causal estimates were the same as the raw analysis results.

outcomes relative to the general population [7, 12]. Several co-
hort studies reported that higher serum bilirubin was associ-
ated with a lower risk of kidney function impairment in a wide
range of ethnic populations [2–4, 9], which was confirmed by
a systematized meta-analysis [6]. The possible association be-
tween higher serum bilirubin and lower risk of kidney func-
tion impairment was supported by experimental findings [2,
48]. Based on the above findings, bilirubin has been consid-
ered a potential therapeutic target for kidney and cardiovascular
diseases.

However,due to the possibility of confounding or reverse cau-
sation effects, previous observational findings could not prove
the benefits of serum bilirubin on human kidney function. This
doubt was even enhanced by recent MR studies reporting the
absence of a causal effect of serum bilirubin on cardiovascu-
lar diseases [13–15]. In addition, there have been no large-scale
cohort studies assessing the causal effects of serum bilirubin
levels on kidney function to date. MR analysis is a tool to esti-
mate the causal effects of complex exposure on a health out-
come. Through this study, we found that genetic predisposition
for higher serum bilirubin is significantly associated with bet-
ter kidney function parameters. Our study has strengths in that
we performed a large-scale analysis and that the findings were
consistent in both the single-variant MR and the summary-level

MR, supporting that higher serum bilirubin may have a causal
role in better kidney function.

MR requires that three assumptions aremet in order to reveal
the causal effects between complex exposures and diseases [16].
Through careful inspection of the genetic instrument to ensure
the independence assumption was met, we excluded the SNPs
that were possibly associated with potential confounders. In ad-
dition, in the summary-level MR, statistical tests indicated that
no significant heterogeneity or pleiotropy biased the causal es-
timates. Furthermore, the relevance assumption was met and
the genetic instruments utilized in this study were strongly as-
sociated with the phenotypic bilirubin levels. Although the re-
maining exclusion-restriction assumption cannot be formally
tested, the weighted median method eases this assumption for
up to half of the instrumented weight, again yielding significant
causal estimates in the summary-level MR [45]. Thus our study
made certain efforts to attain the key assumptions of MR and
the findings suggest that serum bilirubin levels may be causally
linked to kidney function.

There are several limitations that should be consideredwhen
interpreting our study results. First, as the study was based
on a general population cohort, the study results do not indi-
cate that a pathologic increase in serum bilirubin level would
benefit kidney function. Second, currently there are few drugs
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that target human bilirubin levels, so there would be many ob-
stacles to testing the actual benefits of interventions to increase
serum bilirubin on kidney function. In addition, the MR result
has limited usefulness to prove the benefits of relevant clini-
cal intervention [49]. Third, the genetic analysis is not robust to
detect nonlinear effects or to quantitatively estimate causal ef-
fects, thus, to what extent the bilirubin level is beneficial for kid-
ney function cannot be answered by this study. Lastly, the study
cohort comprises individuals of European ancestry,which limits
the generalizability of these findings.

In conclusion, a genetic predisposition for higher serum
bilirubin is significantly associated with better kidney function
outcome. The MR findings support that higher serum bilirubin
may be a protective factor for kidney function impairment. Fur-
ther study is warranted to confirm the possible benefits of biliru-
bin modification on kidney function.

SUPPLEMENTARY DATA
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