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a b s t r a c t 

With advances in high-throughput image processing tech- 

nologies and increasing availability of medical mega-data, the 

growing field of radiomics opened the door for quantitative 

analysis of medical images for prediction of clinically rele- 

vant information. One clinical area in which radiomics have 

proven useful is stroke neuroimaging, where rapid treatment 

triage is vital for patient outcomes and automated decision 

assistance tools have potential for significant clinical impact. 

Recent research, for example, has applied radiomics features 

extracted from CT angiography (CTA) images and a machine 

learning framework to facilitate risk-stratification in acute 

stroke. We here provide methodological guidelines and ra- 

diomics data supporting the referenced article “CT angio- 

graphic radiomics signature for risk-stratification in anterior 

large vessel occlusion stroke.” The data were extracted from 

the stroke center registry at Yale New Haven Hospital be- 

tween 1/1/2014 and 10/31/2020; and Geisinger Medical Cen- 

ter between 1/1/2016 and 12/31/2019. It includes detailed ra- 

diomics features of the anterior circulation territories on ad- 

mission CTA scans in stroke patients with large vessel occlu- 

sion stroke who underwent thrombectomy. We also provide 

the methodological details of the analysis framework utilized 

for training, optimization, validation and external testing of 

the machine learning and feature selection algorithms. With 

the goal of advancing the feasibility and quality of radiomics- 

based analyses to improve patient care within and beyond 

the field of stroke, the provided data and methodological 

support can serve as a baseline for future studies applying 

radiomics algorithms to machine-learning frameworks, and 

allow for analysis and utilization of radiomics features ex- 

tracted in this study. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Medical Imaging 

Specific subject area Radiomics-based risk stratification in acute large vessel occlusion triage 

Type of data Table 

Figure 

Text 

How the data were acquired The data were acquired by retrospective electronic health record review at two 

institutions: Yale New Haven Hospital and Geisinger Medical Center. Patients 

in the Yale Stroke Center registry who presented between 

1/1/2014–10/31/2020 and patients in the Geisinger Stroke Registry who 

presented between 1/1/2016–12/31/2019 were identified and included in the 

dataset based on clinical and imaging data availability. 

Data format Raw 

Analyzed 

Description of data collection Patients were included if they: (1) suffered anterior circulation large vessel 

occlusion (LVO), (2) underwent mechanical thrombectomy, (3) had CTA source 

images with slices ≤1 mm, and (4) had modified Rankin Scale (mRS) 

( continued on next page )
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assessment of functional outcome recorded at discharge or 3-mo follow-up. 

Radiomics features were extracted from the anterior circulation territory of 

each admission CTA using FSL and pyRadiomics software. 

Data source location • Institution 1: Yale New Haven Hospital 

• City/Town/Region: New Haven, CT 

• Country: USA 

• Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: 41 °18 ′ 14.7 ′′ N 72 °56 ′ 07.0 ′′ W 

• Institution 2: Geisinger Medical Center 

• City/Town/Region: Danville, PA 

• Country: USA 

• Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: 40 °58 ′ 04.0 ′′ N 76 °36 ′ 17.7 ′′ W 

Data accessibility The referenced data is included as supplemental material in the submission, 

and is also available at our Github repository: 

https://github.com/emilywavery/Radiomics- data- sharing/tree/radiomicsdata 

Related research article Avery, E.W., Behland, J., Mak, A., Haider, S.P., Zeevi, T., Sanelli, P.C., Filippi, C.G., 

Petersen, N.H., Falcone, G.J., Sansing, L.H., Malhotra, A., Greissenauer, C.J., Zand, 

R., Hendrix, P., Abedi, V., Matouk, C.C., Sheth, K.N., Payabvash, S. CT 

angiographic radiomics signature for risk-stratification in anterior large vessel 

occlusion stroke. Neuroimage: Clinical, 2022;34:103034 [1] 

Value of the Data 

• The data included in this publication enrich the body of publicly available radiomics data, a

field of growing interest in biomedical imaging research. 

• The radiomics data included in this publication can be utilized in conjunction with the

methodological guide of the related research article to serve as a point of comparison for

researchers utilizing similar machine learning methodologies. 

• The data can benefit researchers and clinicians interested in neuroimaging, stroke, and en-

dovascular mechanical thrombectomy. It is also of use to researchers interested in radiomics,

machine-learning, and artificial intelligence. 

• Further insights and analyses that research groups may explore from our data include: sup-

port in radiomics-based analyses, comparison of radiomics features of this dataset to those

of other datasets, and assessment of clinical and radiomics variables affecting stroke patient

outcomes. 

1. Data Description 

The data files that appear in this article include: 

(1) AnalyzedData.docx: Table 1 summarizes the machine learning and feature selection meth-

ods utilized in the related research article. Table 2A and 2B describe the clinical and de-

mographic characteristics of patients from each study center. 

(2) Radiomics_ ∗.csv files: These files provide the values of all extracted radiomics features for

the Yale and Geisinger datasets described in the reference article. These radiomics features

were extracted from the bilateral middle cerebral artery (MCA) territories of each patient’s

admission CTA. A complete list of the first-order and texture features used in this study

is described in van Griethuysen et al. [2] , and exact feature definitions are described in

Pyradiomics documentation [3] . Select first-order and texture features are also described

in the related research article Supplementary Table 1 [1] . 

A separate file is provided for discharge (short-term) and 3-month (long-term) outcome

cohorts for the Yale training/cross-validation (CV) dataset, independent Yale dataset, and

external Geisinger dataset (3-month – long-term – outcome cohort only). The files are

titled accordingly and include: 

Radiomics _YaleTrainingCV_ShortTermFollowUP.csv 

https://github.com/emilywavery/Radiomics-data-sharing/tree/radiomicsdata
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Radiomics _YaleTrainingCV_LongTermFollowUP.csv 

Radiomics _YaleIndependent_ShortTermFollowUP.csv 

Radiomics _YaleIndependent_LongTermFollowUP.csv 

Radiomics _Geisinger_LongTermFollowUP.csv 

(3) ClinicalData_ ∗.csv files: These files provide the sex and age of each patient. A separate file

is provided for discharge(short-term) and 3-month (long-term) outcome cohorts for the

Yale training/CV dataset, independent Yale dataset, and external Geisinger dataset (long-

term outcome cohort only). The files are titled accordingly and include: 

ClinicalData _YaleTrainingCV_ShortTermFollowUP.csv 

ClinicalData _YaleTrainingCV_LongTermFollowUP.csv 

ClinicalData _YaleIndependent_ShortTermFollowUP.csv 

ClinicalData _YaleIndependent_LongTermFollowUP.csv 

ClinicalData _Geisinger_LongTermFollowUP.csv 

. Experimental Design, Materials and Methods 

.1. Patient Population 

The dataset consists of patients from two institutions: Yale New Haven Health (New Haven,

T, USA; n = 597) and Geisinger Health (Danville, PA, USA; n = 232). Yale subjects were identi-

ed from the Yale stroke center registry between 1/1/2014 and 10/31/2020, and Geisinger sub-

ects were identified from the Geisinger stroke center registry between 1/1/2016 and 12/31/2019.

s depicted in the related research article Supplementary Fig. 1, subjects were included if

hey (1) suffered an anterior circulation large vessel occlusion (LVO) stroke – including inter-

al carotid artery (ICA) or middle cerebral artery (MCA) M1 or M2 segments, (2) had CTA source

mages with slice thickness ≤1 mm, (3) underwent endovascular thrombectomy (ET), and (4)

ad modified Rankin Scale (mRS) assessment of functional outcome recorded at discharge or

t 3-month follow-up. Patients were excluded if they had (1) any simultaneous posterior cir-

ulation LVO, (2) poor quality CTA not amenable to analysis (due to motion, metal artifact, or

canner-based artifacts), or (3) missing admission clinical information. 

.2. Image Processing and Radiomics Feature Extraction 

We modified the brain extract tool (BET) from FSL software ( http://www.fmrib.ox.ac.uk/ ) to

erform skull-stripping of each patient’s admission CTA [4] . Next, we applied FLIRT from the FSL

oolbox to co-register each CTA to the Montreal Neurological Institute (MNI) −152 brain space.

e used the brain stroke atlas to generate bilateral MCA territory masks in MNI-152 space [5] .

hen, bilateral MCA territory masks were reverse registered to the native CTAs. 

Trilinear interpolation was used to resample all CTA images within MCA territory masks to

n isotropic 1 × 1 × 1 mm voxel spacing. This ensured rotational invariance of texture features

6–8] . All images were normalized by centering voxel values at the mean with standard devi-

tion from the image. To ensure exclusion of calcified plaques or remaining skull tissue, only

oxels within a 1–500 Hounsfield unit (HU) range were included in analysis. To compensate for

ifferences in intravenous bolus timing among different CTA scans, the voxel values in each pa-

ient was normalized to the mean attenuation of the scan during radiomics feature extraction

rocess. We applied high- and low-pass filters in each spatial direction (“coif-1 ′′ wavelet trans-

orm [3] ) and the “edge-enhancement” Laplacian of Gaussian (LoG) filter (with “sigma” settings

f 2,4,and 6 mm [3] ). We then extracted one set of 1116 “first-order” and “texture-matrix” ra-

iomics features per patient from the single volume of interest (VOI), combining right and left

CA territories [3] . We utilized a custom Pyradiomics version 2.1.2 pipeline [3] to complete the

teps of preprocessing, derivative image generation, and feature extraction. Supplementary Table

 of the related research article [1] describes the first-order and texture-based features. 

http://www.fmrib.ox.ac.uk/
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2.3. Machine Learning Framework 

Six dimensionality reduction strategies and six machine learning classifiers appropriate for

application to radiomics data are listed in the Analyzed Data file Table 1 and described in detail

in the related research article supplement [1] , along with their programming packages. Each

combination of these dimensionality reduction strategies and machine learning classifiers were

used to create 36 candidate models for prediction of LVO stroke patient outcome in the related

research article [1] . 

The dimensionality reduction methods include: hierarchical clustering, maximum relevance 

minimum redundancy filtering, no feature selection, principal component analysis, Pearson

correlation-based redundancy reduction with mutual information maximization filter, and RIDGE 

regularized logistic regression for feature selection. The machine learning classifiers include:

elastic net regularized logistic regression, Naïve Bayes, random forest, support vector machine

with radial kernel, support vector machine with sigmoid kernel, and extreme gradient boosting.

The hyperparameters, their ranges, and tuning repetition counts used for each machine learn-

ing classifier are described in the related research article Supplementary Table 2 [1] . Detailed

explanation of the machine learning training and validation methodologies can be found in the

methods section of the supplementary research article [1] . 

Ethics Statements 

Institutional Review Board approval was obtained for data collection (Yale University pro-
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