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The kuruma shrimp (Marsupenaeus japonicus) includes two cryptic species, which are
distributed mostly allopatrically but co-occur in the northern South China Sea (from Huilai
to Beihai). To obtain a better understanding of the fine-scale genetic structure and
parapatric diversification of these two varieties in the northwestern Pacific region, we
used a genotyping-by-sequencing (GBS) and comparative transcriptomics approach to
establish their phylogenetic relationships. Using the GBS technique, we genotyped 28891
SNPs in 160 individuals in the Northwest Pacific. The results supported two highly
diverged evolutionary lineages of kuruma shrimp (var. I and II). The ND and XM populations
showed complex genetic patterns, which might be affected by the complex environment
of the Taiwan Strait. In addition, the migration rates and inbreeding coefficients of XM and
BH were much lower than those of the other populations, which might be related to the
land-sea changes and complex ocean currents in the Taiwan Strait and Qiongzhou Strait.
Based on the synonymous substitution rates (ds) of 2,491 candidate orthologs, we
estimated that the divergence time between the two varieties was 0.26~0.69 Mya. Choice
and no-choice interbreeding experiments provided support for the biological species
concept, by showing the existence of reproductive isolation or incompatibility. In view of
these differences between the two Marsupenaeus species, we believe that it is essential
and urgent to establish a genetic database for each and reevaluate their ecological
suitable conditions in order to improve species-specific culturing techniques. Moreover,
this research can serve as a case study for future research on speciation
and hybridization.

Keywords: Marsupenaeus japonicus, cryptic species, genotyping-by-sequencing, comparative transcriptomics,
interbreeding experiments, reproductive isolation
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INTRODUCTION

The northwestern (NW) Pacific marginal seas comprise
approximately 75% of the world’s marginal seas (Tamaki,
1991). Due to climatic fluctuations associated with Pleistocene
glaciation-interglaciation, the shoreline and configuration of
these marginal seas changed dramatically (Wang, 1999; Ni
et al., 2014). Repeating drastic changes and complex ocean
currents together shape the abundant geographic variation and
ecological adaptation of marine animals. Comparative molecular
phylogeography fuses population genetics and phylogenetics,
and combines molecular genetics, statistics, ecology and
biogeography (Avise, 2009). Population diversity and adaptive
divergence are critical for predicting the evolutionary potential,
of both populations and species (Therkildsen et al., 2013). Due to
ubiquitous cryptic and sibling species, the geographical
distribution of marine biodiversity is often underestimated
(Bickford et al., 2007; Taylor et al., 2017; Jorde et al., 2018).
Cheng et al. revealed the allopatric speciation and recent
hybridization of two Oratosquilla oratoria cryptic species using
the mtDNA COI and nrDNA ITS genes (Cheng and Sha, 2017).
Two phylogeographic lineages of Bostrychus sinensis underwent
secondary contact and hybridization in the East China Sea (Qiu
et al., 2016; Ding et al., 2018). Shen et al. documented no gene
flow among three cryptic species of Mugil cephalus in the NW
Pacific, indicating complete speciation (Shen et al., 2011).

The kuruma shrimp (Marsupenaeus japonicus), a
commercially important crustacean, is widely distributed in the
East and South China Sea, the region off Australia and the
western Indian Ocean (Tsoi et al., 2014). Traditionally, M.
japonicus was regarded as the only species of Marsupenaeus
(Tirmizi, 1971; Lavery et al., 2004). A study by Tsoi et al. showed
that kuruma shrimp had two morphologically similar varieties,
namely, Forms I and II, which were characterized by their
carapace banding patterns (Tsoi et al., 2005). Form I was
confined to the East China Sea and northern South China Sea,
while Form II was distributed in the South China Sea, Australia,
and Southeast Asia seas. Tsoi et al. indicated that the two forms
were overlapped in the northern South China Sea and Taiwan by
sampling mixed individuals from Hong Kong and Taiwan (Tsoi
et al., 2007). However, the certain sympatric range had not been
showed because of vague samples. In addition, previous
laboratory results indicated that the sympatric areas were
limited to the Huilai-adjacent sea area (He et al., 2012). It is
important to determine the areas of sympatry and understand
the ecological differences of sympatric cryptic species, which are
valuable systems for exploring gene exchange, introgressive
hybridization, and species differentiation (Michel et al., 2010;
Addison and Kim, 2018).

Several previous studies on the population genetic structure of
kuruma shrimp were based on mt-DNA and a few simple
sequence repeats (SSR) markers. Mitochondrial genes are
maternally inherited, which makes them inappropriate for the
detection of hybridization (Ballard and Whitlock, 2004;
Mccauley et al., 2005; Ravago-Gotanco et al., 2018). These
population genetic studies provided substantial evidence for
the existence of two phylogeographic lineages. However, a
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handful of genetic markers is not appropriate for inferring
fine-scale population structure and genetic differentiation,
especially in cryptic species (Struck et al., 2018; Pedraza-
Marrón et al., 2019). Recent rapid developments in next-
generat ion sequencing (NGS) have provided many
extraordinary tools with which to study population divergence
(Davey et al., 2011; Xu et al., 2016; Clucas et al., 2018; Friedline
et al., 2019; Rincon-Sandoval et al., 2019; Vendrami et al., 2019).
The genotyping-by-sequencing (GBS) technique can rapidly
generate considerable numbers of genome-wide genetic
markers, which has revolutionized the field of ecological and
evolutionary genomics (Elshire et al., 2012; Andrews et al., 2016;
Hume et al., 2018). Using the GBS technique, increasing
numbers of studies have revealed fine-scale population genetic
structure (Near et al., 2018; Palaiokostas et al., 2018; Robledo
et al., 2018; Zhao et al., 2018). Most cryptic species have been
distinguished by DNA-barcoding and other genetic methods,
while few have been verified to be reproductively isolated or
incompatible using interbreeding experiments (Kress et al., 2015;
Lehnert et al., 2016; Paterson et al., 2016). As speciation remains
controversial, different scholars have used different definitions
and criteria, and it is difficult to accurately define cryptic or
sibling species based on only one type of data (Bolnick and
Fitzpatrick, 2007; Fitzpatrick et al., 2008; Mallet et al., 2009; Fišer
et al., 2018; Struck et al., 2018; Pedraza-Marrón et al., 2019).

In this study, we investigated the areas of sympatry and
whether there is hybridization among the wild populations by
sampling from a narrow sympatric zone. Furthermore, we
combined orthologous genes with genotyping-by sequencing
(GBS) to establish the fine-scale population structure and
phylogenetic relationships of kuruma shrimp in the NW
Pacific region. To verify the existence of reproductive
incompatibility, we implemented choice and no-choice
interbreeding experiments in purse seines. This study provides
comprehensive insight into the twoMarsupenaeus species, which
will facilitate further studies on the molecular mechanisms
underlying genetic differentiation.
MATERIALS AND METHODS

Sample Collection
Kuruma shrimp samples were collected from eight locations along
the coast of China from September 2016 to May 2018 (Figure 1).
The samples were collected directly from local fishermen. All
samples were collected in accordance with the national legislation
of the countries concerned. The morphological and sexual
characters were identified and recorded, and part of the
abdominal muscle was preserved in 100% ethanol for
subsequent DNA extraction. Genomic DNA from 160
individuals was isolated from muscle tissues using a DNeasy
Blood and Tissue Kit (Qiagen, Germany) following the
manufacturer’s instructions. DNA integrity and purity were
visualized by 1% agarose gel electrophoresis. DNA purity and
concentration were measured using a NanoPhotometer® (Implen,
CA, USA) and Qubit fluorometer (Life Technologies, CA, USA),
February 2020 | Volume 11 | Article 118

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Cryptic Species of Kuruma Shrimp
respectively. Only nondegraded samples with an OD260/280 from
1.7 to 1.9 were subjected to genotyping-by-sequencing. The
hepatopancreas tissues of ten HL1 individuals (var. I, mean
weight: 12.67 g) and ten HL2 individuals (var. II, mean weight:
11.36 g) individuals from the Huilai population were rinsed
separately with RNase-free water for RNA extraction.

Estimation of Substitution Rates and
Phylogenetic Analysis Based
on Transcriptomes
Comparative transcriptome libraries were sequenced on an
Illumina HiSeq X-Ten platform with 150-bp paired-end reads at
Novogene Bioinformatics Technology Co., Ltd. (Beijing, China).
Orthologous genes were screened by OrthoMCL (Li et al., 2003).
Subsequently, synonymous substitution rates (dS) were calculated
using PAML (Phylogenetic analysis by maximum likelihood). In
this study, we screened a single copy nuclear genes (SCNGs),
which was annotated as caspase (EF079670.1), and the caspase
gene has high sequence diversity (Bin et al., 2011). DnaSP v6
(Rozas et al., 2017) and Network software (Bandelt et al., 1999)
were used to analyze the haplotype data.

Genotyping-by Sequencing (GBS) Library
Construction and Sequencing
Libraries were constructed following the GBS protocol described
by Elshire et al. (2012), with minor modifications. Briefly, total
gDNA from each sample was completely digested with the
restriction enzyme HaeIII to obtain suitable markers. The P1
and P2 adapters with barcodes were ligated to the sticky ends of
the digested fragments by adding T4 ligase (New England
Biolabs, USA). Twenty samples with equal molarities from
each population were pooled together. The restriction
Frontiers in Genetics | www.frontiersin.org 3
fragments with ligated adapters were amplified to construct
sequencing libraries. To ensure quality, the libraries were
quantified using a Qubit 2.0, and the concentration was diluted
to 1 ng/ml. All libraries were sequenced on the Illumina HiSeq
4000 platform with 150-bp paired-end reads at Novogene
Bioinformatics Technology Co.Ltd (Beijing, China).

Data Processing and SNP Genotyping
The original data obtained by high-throughput sequencing were
transformed to raw reads by base calling. Clean data were
obtained by removing reads containing adapters, ploy-N
sequences and low-quality bases from the raw data. Then, the
enzyme catch ratio was calculated to evaluate the efficiency of
enzyme digestion. The high-quality clean reads were mapped to
the reference sample (XM08) using the Burrows-Wheeler
Aligner (BWA) with the command ‘mem-t4-k32-M’ (Li and
Durbin, 2009). The SAMtools package (Li et al., 2009) was used
to call candidate SNP markers from the alignment results for
subsequent analysis. High-quality SNP sites were obtained by
screening with the parameter dp2, miss0.9 and minimum allele
frequency (MAF) > 0.01. Subsequently, we tested for Hardy-
Weinberg equilibrium (HWE) and linkage disequilibrium
between each pair of loci by the program PLINK v.1.9 (Purcell
et al., 2007).

Population Genetic Polymorphism
Following SNP detection, vcf files were converted to other
formats by PGDSpider for downstream analysis (Lischer and
Excoffier, 2012). The observed heterozygosity (Ho) analysis,
expected heterozygosity (HE) analysis and Analysis of
Molecular Variance (AMOVA) were performed in the
Arlequin v3.5 (Excoffier and Lischer, 2010). VCFtools
(Danecek et al., 2011) was used to calculate the within-
population genetic differentiation index (Fst) and nucleotide
diversity (p). Isolation-by-distance mantel tests were
performed to examine correlations between genetic distance
and geographic distance matrices by IBD (Isolation By
Distance) software (Bohonak, 2002). Populations v1.2 (http://
www.bioinformatics.org/project/?group_id=84) was used to
produce the pairwise population matrix of Nei’s standard
genetic distances (Dst). To estimate contemporary migration
rates, we used the Bayesian algorithm implemented in BayesAss
software (v 3.0.4) (Wilson and Rannala, 2003).

Population Structure Analysis
Phylogenetic analyses were performed for all high-quality SNP
sites, and the individual SNPs were used to calculate the distance
among populations. The distance matrix, calculated using
TreeBeST v1.9 software (Vilella et al., 2009), was used to
construct a phylogenetic tree with the neighbor-joining
method with 1,000 bootstrap values. Phylogenetic trees were
constructed for all individuals, which visually display the
evolutionary relationship between different populations and
varieties. To illustrate the genetic relationship of different
populations, principal component analysis (PCA) of 160
individuals was conducted based on SNPs among individual
genomes using the program GCTA v1.25 (http://cnsgenomics.
FIGURE 1 | Map showing geographic locations of kuruma shrimp. The lines
represent the ocean currents and arrows indicate direction (black represent
summer and gray represent winter). The pie charts represent haplotype
composition. ZS, Zhoushan; ND, Ningde; XM, Xiamen; HL, Huilai; ZH, Zhuhai;
ZJ, Zhanjiang; BH, Beihai, QH, Qionghai.
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com/software/gcta/#PCA) and visualized by R language. The
population genetic structure and ancestry of each sample were
analyzed by the program FRAPPE v1.1 (Hua et al., 2005) with
105 burn-in iterations and 5*105 Markov chain Monte Carlo
iterations. We further used Admixture (Alexander et al., 2009) to
determine the most likely number of genetic clusters and validate
the population structure constructed by FRAPPE.

Detecting of Wild Hybrid Individuals
and Interbreeding Experiments
The two varieties have only subtle morphological differences in
carapace color banding patterns. We screened the cytochrome b
(Cytb) mitochondrial gene and sodium-potassium ATPase
alpha-subunit (NaK) gene to detect hybridizat ion.
Mitochondrial genes are maternally inherited, and nuclear
genes contain genetic information from both parents. It was a
rapid and accurate method for interspecific hybrids identification
by combining Cytb, NaK and available sequences of NCBI
(National Center for Biotechnology Information). About 600
wild individuals from sympatric areas Huilai, Zhuhai and
Zhanjiang were detected by amplifying the Cytb and NaK gene
sequences. Meanwhile, we performed the choice and no-choice
interbreeding experiments for detecting the reproductive
isolation between two varieties. Two hundred healthy
individuals, approximately 100 each of var. I (mean weight,
73.83 ± 20.37 g) and var. II (mean weight, 65.34 ± 12.52 g),
were transported from Huilai to an aquaculture farm in
Dongshan (Fujian) and acclimated for four weeks (23°C, 28
salinity) until the primary molt was complete. The rest of the
healthy individuals (59% for var. I and 79% for var. II) were used
for interbreeding experiments. The seawater was renewed every
2 d, and the shrimps were fed twice daily with oysters or squid.
We assessed the mating condition of female individuals by
checking spermatophores every 3 d. Once mating was
completed, the female individuals were moved to a prepared 5
m3 circular barrel. On the second day, the eyestalk on one side
was cut off disinfected by 0.5% povidone iodine solution.
Thereafter, the females were fed nereids to stimulate
ovarian development.
RESULTS

Estimation of Differentiation Time
and Phylogenetic Analysis
We sequenced and compared the hepatopancreas transcriptomes
of HL1 (var. I) and HL2 (var. II) (Table S1), and identified 5036
pairs of putative orthologs. The detailed introduction could be
found in Wang et al. (Wang et al., 2019). Using the PAML
CodeML package, we calculated the dN/dS (w) ratios of 2491
pairs of orthologous genes (Table S2), and the peak in the dS
value distribution was at 0.0083 (Figure 2A). The average dS rate
for the nuclear genes is approximately 2×10-9 ~ 16×10-9

substitutions per synonymous site per year for higher animals
and Drosophila (Li et al., 1987; Sharp and Li, 1989). According to
the formula: T = K/2r (Graur and Li, 2000), we estimated the
divergence time between variety I and variety II to be
Frontiers in Genetics | www.frontiersin.org 4
approximately 0.26 ~ 0.69 Mya. The caspase gene (w value =
1.22) was amplified from 160 genomic DNA samples. There were
57 unique haplotypes, with high diversity (0.891). Network
analysis identified two well-supported clades consisting of the
expected lineages of variety I (ZS, ND, XM, and HL) and variety
II (ZH, ZJ, BH, and QH) (Figure 1). The two varieties each had a
dominant haplotype (Hap15 and Hap4) and shared
six haplotypes.

GBS Mapping and SNP Genotyping
GBS sequencing of 160 samples produced 112.45 Gb of raw
reads, with an average of 0.7Gb per individual. After quality
filtering, a total of 112.44 Gb of clean reads was retained, which
represented an average effective rate of 99% (Table S3). The
sequencing results showed that the average Q20 values, Q30
values and GC content were 93.66%, 86.05% and 38.7%,
respectively (Table S4). Due to the lack of a reference genome,
clean reads from the high-coverage-depth sample were
assembled as references for downstream analyses. After
screening by SAMTOOLS, a total of 28,891 SNPs for all
populations, 24,861 SNPs for var. I populations (ZS, ND, XM
and HL), and 15,904 SNPs for var. II populations (ZH, ZJ, BH
and QH) were obtained. The number of usable SNPs among the
eight populations ranged from 2,751 loci in the ZH population to
7,669 loci in the XM population. For all eight populations, 17,937
SNPs were putative transitions (Ts), and 10,954 SNPs were
putative transversions (Tv) with a Ts : Tv ratio of 1.64. In
addition, we analyzed the pairwise SNP markers between all
populations, and the results showed that the number of SNPs
shared between varieties was significantly lower than that shared
within varieties (Figure S1). In addition, we compared the
special samples of HL and ZJ with the others in the same
population and sex differences in var. I and var. II.

Genome-Wide Analysis of Genetic
Diversity and Differentiation
The genetic diversity based on all SNP loci was computed in the
eight populations (HE, 0.2447~0.28842; HO, 0.30286~0.38663; p,
0.0018~0.0032) (Table S5). The mean HO of 0.357 was
significantly higher than the mean HE of 0.269 (p < 0.001),
which suggests heterozygote excess among samples. The
AMOVA results showed that 92.4% of the genetic variation
was within populations and only 7.6% occurred among
populations (Table S6). Pairwise Fst values showed that the
var. I and II populations were strongly and significantly
genetically differentiated, with Fst values ranging from 0.0964
(ZJ vs HL) to 0.3378 (BH vs ND) (Figure S2A). The mean Fst
values within varieties were 0.0064 for var. I and 0.0067 for var.
II, which indicated a little genetic differentiation. Based on a
Mantel test, the correlation between genetic similarity and log
(geographic distance) was statistically significant for all eight
populations (R2 = 0.534) (Figure S2B). However, the correlation
for both var. I (R2 = 0.002) and var. II (R2 = 0.229) was
insignificant. The calculation results of contemporary
migration rates showed that recent migration rates from var. I
to var. II and vice versa were very low (Figure S3), suggesting
that gene flow between var. I and II was substantially blocked.
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Pairwise migration rates showed that the migration from ZS,
ND, and HL to XM was much higher than that in the other
direction. Similarly, the rates from ZH, ZJ, and QH to BH were
much higher than those were in the other direction. The mean
posterior estimates of inbreeding coefficients (Ic) showed that
the values of XM and BH were 0.003 and 0.0009, which were
much lower than the values of the other populations.

Population Genetic Structure Analysis
Principle component analysis demonstrated that the ZS, ND, XM,
HL samples were clustered with var. I on the left and ZH, ZJ, BH,
QH samples were clustered with var. II on the right (Figure 2B).
Additionally, the special individuals from the HL (6/9/14) and ZJ
(6/9/10/20) populations were clustered with var. II and I,
respectively, which was in accordance with their morphological
characteristics. The phylogenetic analysis of all eight populations
based on genetic distance showed that var. I (ZS, ND, XM, HL)
and var. II (ZH, ZJ, BH, QH) formed two distinct clusters with
little genetic variation within each cluster (Figure 2C). To some
extent, the phylogenetic tree displayed a similar topological
pattern reflecting the geographic distribution of all populations.
Frontiers in Genetics | www.frontiersin.org 5
The cluster analysis implemented in FRAPPE revealed the
optimal K value was 2 and the eight populations were split into
two groups, namely, var. I and var. II (Figure 2D). It was
interesting to see that the special samples of HL6/9/14 and ZJ 6/
9/10/20 retained pure genetic information. Based on distance
matrix, the phylogenetic trees (Figure 3) were constructed for all
individuals, which formed two distinct clusters similar to the
result of structure.

Identification of Wild Hybrid Individuals
The two morphologically similar varieties have only subtle
differences in carapace color banding patterns. The Zhoushan (ZS,
var. I) and Qionghai (QH, var. II) populations have pure genetic
backgrounds. Firstly, we amplified the Cytb and NaK sequences of
about one hundred ZS individuals and one hundredQH individuals,
and found stable heterozygous loci (Figures 4A,B). Subsequently,we
amplified theCytb andNaK genes of about 600wild individuals from
sympatric areas. Phenotypes (carapace pattern) of all individuals
were consistentwith genotypes (Figures S4 andS5). Ampliconswere
unimodal in the detected base loci. These results indicated that there
was no natural hybridization in wild populations.
FIGURE 2 | The ds value density distribution and the peak was signed (A). Principle component analysis (PCA) (B). The UPGMA clustering tree based on pairwise
distances for eight populations (C). Bayesian plot of ancestral fractions from the admixture analysis. Each vertical column represents one individual (D).
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Choice and No-Choice Interbreeding
Experiments
A total of 138 individuals were divided into eight breeding-pair
treatments in purse seines (Figure 4C). After 3 months of
culture, the mating condition of individuals in each purse seine
was recorded, as shown in Figure 4C. Overall, the selfing rates
were higher than the hybridization rates, with the selfing rates of
var. I higher than those of var. II. In the beginning, there were 20
individuals per variety in the purse seine one. However, we
captured only four individuals of var. II and were unsure of the
conditions they had experienced. By comparing the different
treatments, we found that the attraction within varieties was
significantly higher than that between varieties. Our primary
focus was cross-combinations, most of which failed. However,
fortunately, we obtained two hybrid individuals from purse
seines 1 and 2, both of which were var. I females. The two
individuals were numbered N0101 and N0201 and then moved
to a five m3 circular barrel. It was strange that the two individuals
did not complete spawning and this phase lasted 6 d, ending up
shedding the spermatophore.
Frontiers in Genetics | www.frontiersin.org 6
DISCUSSION

Population Distribution Characteristics
In the present study, we investigated and collected kuruma
shrimp samples along the coast of China. We found that the
sympatric areas range from Huilai (Guangdong) to Beihai
(Guangxi) with a tendency change to some extent. In previous
studies by Tsoi et al. (2014),M. japonicus (var. I) was found to be
confined to the East China Sea (including Japan) and the
northern South China Sea. Var. II (called M. pulchricaudatus)
was widely distributed in the South China Sea, Australia, the Red
Sea, the Mediterranean and the western Indian Ocean. However,
the authors did not explicitly identify the sympatric areas. Tsoi
et al. (2007) mentioned that two and six individuals from Hong
Kong and Taiwan were identified as variety II, respectively, and
the others were variety I. However, the author stated that the
origin of these samples was unknown. Our previous
investigations showed that the sympatric area was limited to
Huilai (Guangdong) (Zeng et al., 2010; He et al., 2012). The
kuruma shrimp, having a nocturnal habit, mainly inhabits 10~40
FIGURE 3 | Phylogenetic tree for all individuals.
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m depths. As a subtropical species, kuruma shrimp have broad
temperature adaptability, and the appropriate temperature range
is 24~29°C. However, kuruma shrimp will stop eating at 8~10°C
and die below 5°C. The threshold temperature of embryo
development is 20~32°C. In the Yellow Sea, the temperature
gradually decreases form December to February. Even in
summer, the cold water area (below 10°C), which is influenced
by the YSCWM (Yellow Sea Cold Water Mass), covers a third of
the Yellow Sea’s total area (Li et al., 2015). Our previous research
revealed that the thermotolerance of var. II was stronger than
that of var. I by comparing CTMax values and acclimation
response ratio (ARR) values (Song et al., 2014). Teske et al.
indicated that temperature-mediated diversifying selection may
be an important early-stage factor in the evolution of marine
biodiversity (Teske et al., 2019). In addition, the Yangtze River
discharge and diluted water of the Zhujiang (Pearl) River have a
significant effect on sea-surface salinity (SSS) (Delcroix and
Murtugudde, 2002; Zhou et al., 2012). The larvae of M.
japonicus were hyper-osmoconformers and has a weak salinity
tolerance (Dalla Via, 1986; Charmantier et al., 1988). Thus, the
natural environment in the north of the Yangtze estuary is not
suitable for kuruma shrimp survival. In summary, the
temperature and salinity were major limiting factors.
Frontiers in Genetics | www.frontiersin.org 7
Genomic Population Structure
Our study reported the generation of genome-wide SNPs for
kuruma shrimp using the GBS-seq approach. This is the first
study to construct the fine-scale population structure of kuruma
shrimp along the Chinese coast. For technical reasons, previous
studies relied on mitochondrial genes and several microsatellite
markers, which cannot depict genetic structure in detail,
especially for cryptic species. The average of the pairwise Fst
values, including in sympatric areas, was 0.263 with weak gene
flow, which indicated strong genetic differentiation (Wright,
1978). Our results showed that recent migration rates both
from var. I to var. II and vice versa were very low.
Reinforcement theory holds that reinforcement is nearly
identical to later stage of speciation, which is an increase in
prezygotic isolation between hybridizing populations (Howard
and Gregory, 1993; Servedio and Noor, 2003; Dyer et al., 2018).
Although gene exchanges does inhibit the speciation process, it is
the proportion of migrants (m) exchanged rather than the
number of migrants (Nm) that matters (Porter and Johnson,
2002; Panova et al., 2006). Sota et al. revealed that the diverged
populations of Parafontaria tonominea underwent restricted
dispersal and secondary contact without hybridization (Sota
and Tanabe, 2009). The Mantel test showed that genetic
FIGURE 4 | Establishment of hybrid evaluation system (A, B). Choice and no-choice interbreeding experiments (C).
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similarity and geographic distance were significant positively
correlated, which conformed to isolation as distance by Wright
(1943). The fine-scale genetic structure showed that special
individuals in the HL and ZJ populations had a pure genetic
background. In addition, the HL6/9/14 and ZJ6/9/10 individuals
were all female, and ZJ20 was male, which may indicate
reproductive isolation or incompatibility between the two
varieties and guide the next crossbreeding experiments. We used
the mitochondrial and nuclear gene to identify suspected
hybridization. This approach has been shown to be effective in
abalone (You et al., 2014) and groupers (Qu et al., 2015).Wedidnot
detect any hybrids, even though some individuals from sympatric
areas had carapace banding patterns different from those of var. I
and II. Therefore, these special samplesdidnot provide insights into
hybridization events. Due to the lack of reference genome, we could
not obtain detailed annotation information, such as sex differences
and environment-related genes.

Transcriptome Divergence Between Two
Marsupenaeus Species
Our data provided confirmatory evidence for the obvious genetic
divergence of two varieties (var. I and II), whichwas consistentwith
the findings of previous studies based on limited SSR markers and
mitochondrial genes (Tsoi et al., 2007; He et al., 2012; Tsoi et al.,
2014). Bothwithin varieties and in all populations, the XMandND
populations exhibited complex genetic patterns, which might be
related to the land-sea changes and complex ocean currents in the
Taiwan Strait. By comparative transcriptome analysis, the
divergence time between the two varieties was estimated to be
0.26~0.69 Mya, which was in the middle Pleistocene [Marine
Isotope Stage 9~16, (Railsback et al., 2015)]. During the middle
Pleistocene, shallow seafloors along the Southeastern coast ofChina
including the Taiwan Strait experienced transgressive-regressive
cycles (Wang, 1999; Voris, 2000; Ni et al., 2014). The divergence
time obtained here was later than the time estimated based on
mitochondrial genes (1.1~4.7 Mya) by Tsoi et al. (2005; 2007).
Although there was no obvious spawning migration, kuruma
shrimp presented regional clustering phenomenon, and
migration mainly depended on the dispersal ability of planktonic
larvae. During the spring and summer, adult individuals spawn in
shallow water, facilitated by the China Coastal Current and
Kuroshio Current that flow northeastwardly across the Taiwan
Strait. Throughout the year, the ocean current in the Qiongzhou
Strait essentially travels east to west, and the South China Sea water
flows into Beibu Gulf through the Qiongzhou Strait (Dasen, 2006).
Therefore, the BH populations are unique, which can be seen from
their migration rates and inbreeding coefficients.

Identification of Hybrids
We amplified and compared the Cytb andNaK genes of about 600
sympatric individuals and the carapace coloring patterns were in
accordance with genotypes. There was no natural hybridization in
wild populations based on the current sample size. In the eight
breeding treatments, only two var. I females mated with var. II
males. The successful selfing rate was significant higher than that of
hybridization, with var. I exhibiting higher values than var. II.
Frontiers in Genetics | www.frontiersin.org 8
Unfortunately, the two individuals did not complete spawning,
ending up shedding the spermatophore. Only a few examples of
interspecies hybridization between penaeids were using
spermatophore transplantation, and spawn rate, hatch rate and
the survival of hybrids were lower than that of intraspecificmatings
(Bray et al., 1990; Benzie et al., 1995; Lin et al., 1998).Misamore et al.
indicated that no spontaneous matings were observed between
penaeus setiferus and penaeus vannamei, and no interspecific
crosses were fertile in the artificial insemination (Misamore and
Browdy, 1997).

Previous laboratory studies have shown significant differences
in the morphology (L/BL and H/BL) of seminal vesicles by
comparing dozens of var. I and II females at different
developmental stages (III, IV, and V). Landry et al. revealed
the rapid evolution of gamete recognition and sperm
morphology of Echinometra cryptic species in the past 250,000
years (Landry et al., 2003). Sexual morphological divergence
affected mating compatibility and resulted in mechanical
reproductive isolation between sympatric Parafontaria
tonominea species (Sota and Tanabe, 2009). In addition, the
survival rate of var. II was lower than that of var. I, especially in
the purse seine 1, which we speculate was due to several reasons,
such as competition, sexual selection, environmental suitability
and limited space. Among these factors, the temperature may be
the major limitation and var. II individuals have poor low-
temperature tolerance, which limit northward spread. Cryptic
and sibling species have different habitat preferences defined by
abiotic factors, such as depth, temperature, salinity and dissolved
oxygen (Wellenreuther et al., 2007; Dennis and Hellberg, 2010;
Niemiller et al., 2013; Gabaldón et al., 2015; Yasser et al., 2018).
CONCLUSION

Overall, we conclude the occurrence of prezygotic reproductive
isolation between the two varieties, which prevents natural
hybridization. This isolation mechanism also explains the
incomplete speciation (Kautt et al., 2016; Turissini et al., 2017;
Plough et al., 2018; Raphael et al., 2019). This laboratory
crossbreeding experiment and wild populations failed to obtain
hybrid offspring, which indicated that reproductive isolation exists
between the two varieties.Work to date suggests that the two forms
exhibit wide variation inmany aspects, including their phenotypes,
seminal vesicles, temperature tolerance, and molecular sequences
(mitochondria and nuclear genes). Therefore, we believe that the
two morphologically similar varieties (I and II) are two separate
species. Additionally, we support Tsoi’s nomenclature:
Marsupenaeus japonicus (Form I) and Marsupenaeus
pulchricaudatus (Form II) (Holthuis et al., 1993; Tsoi et al., 2014).
As Tsoi et al. reported, it is essential to improve species-specific
culturing techniques for these two species. In the future, we will
evaluate and compare various traits between the twomarsupenaeus
species, including multiple environmental factors. In addition, a
more optimized hybrid experiment and a mating behavioral study
will be implemented to confirm reproductive isolation. The results
of this study provided comprehensive insight into the two
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marsupenaeus species, which not only will facilitate further studies
on the molecular mechanisms underlying genetic differentiation,
but also can serve as a case study for future research on speciation
and hybridization.
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