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A B S T R A C T   

Forensic-evaluation systems should output likelihood-ratio values that are well calibrated. If they do not, their 
output will be misleading. Unless a forensic-evaluation system is intrinsically well-calibrated, it should be 
calibrated using a parsimonious parametric model that is trained using calibration data. The system should then 
be tested using validation data. Metrics of degree of calibration that are based on the pool-adjacent-violators 
(PAV) algorithm recalibrate the likelihood-ratio values calculated from the validation data. The PAV algo-
rithm overfits on the validation data because it is both trained and tested on the validation data, and because it is 
a non-parametric model with weak constraints. For already-calibrated systems, PAV-based ostensive metrics of 
degree of calibration do not actually measure degree of calibration; they measure sampling variability between 
the calibration data and the validation data, and overfitting on the validation data. Monte Carlo simulations are 
used to demonstrate that this is the case. We therefore argue that, in the context of casework, PAV-based metrics 
are not meaningful metrics of degree of calibration; however, we also argue that, in the context of casework, a 
metric of degree of calibration is not required.   

1. Introduction 

1.1. Forensic-evaluation systems should output well-calibrated likelihood- 
ratio values 

Forensic-evaluation systems should output likelihood-ratio values that 
are well calibrated [1–12]. If they do not, their output will be misleading. 
For a well-calibrated system, the likelihood ratios of the likelihood-ratio 
values that it outputs will be the same as the likelihood-ratio values 
that it outputs (Birdsall [13] §1.2). In practice, unless one were to train 
and test on the same data, because of sampling variability, if one were to 
re-calibrate an already well-calibrated system one would expect the 
likelihood ratios of the likelihood-ratio values only to be approximately 
the same as the original likelihood-ratio values.1 

1.2. Causes of poorly-calibrated likelihood-ratio output 
If a forensic-evaluation system makes use of feature vectors (i.e., sets 

of measurements made on the objects of interest) that have a small 
number of dimensions and that have distributions that do not violate the 
assumptions of a parsimonious parametric statistical model, and the 
number of data points available for model training is large compared to 
the number of parameter values to be estimated, then the output of the 
model will be intrinsically well calibrated. In real forensic settings, 
however, it is common for the feature vectors to have a large number of 
dimensions, for the fitted models to be complex, and for the number of 
data points available for training to be small, thus requiring a large 
number of parameter values to be estimated from a limited amount of 
data. Classic examples of high-dimensional data and complex models 
can be found in forensic voice comparison [6], but, with limited data, 
even moderate numbers of dimensions can lead to miscalibrated results 
even for relatively parsimonious models; see, for example [14,15], and 
the commentary of [8] on the latter. 
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1.3. How to calibrate forensic-evaluation systems 

A practical solution to the problem described in the previous section 
is to treat the output of the model as uncalibrated likelihood ratios, and 
then use a second model to calibrate the output of the first model ([3, 
16–18]), see Fig. 1. For simplicity, we will henceforth refer to the un-
calibrated likelihood ratios output by the first-stage model as “scores”, 
and refer to the calibrated likelihood ratios output by the second-stage 
model as “likelihood ratios”. Also for simplicity, we will assume that 
the forensic problem at hand is source attribution. 

The second-stage module is trained using a separate dataset from 
that previously used to train the first-stage model. We will henceforth 
refer to the second dataset as the “calibration data”. Same-source and 
different-source pairs are constructed from the calibration data. Those 
pairs are input to the first-stage model which then outputs a set of same- 
source scores and a set of different-source scores. The second-stage 
calibration model is trained using those same-source and different- 
source scores. The scores are univariate, and a parsimonious para-
metric model is used as the calibration model. Hence, even with a 
moderate amount of calibration data, there are a relatively large number 
of data points available to estimate a small number of parameter values. 
This results in well-calibrated output. 

A point to note is that the calibration model is applied to scores that 
are uncalibrated log likelihood ratios – the calculation of the scores has 
taken account of both the similarity between the members of each pair, 
and their typicality with respect to the relevant population. Using 
scores that only take account of similarity will not result in meaningful 
likelihood-ratio values [19–21]. 

Another point to note is that the calibration data must be represen-
tative of the relevant population for the case and must reflect the con-
ditions of the questioned-source specimen and known-source sample in 
the case ([1,10]). If there is a mismatch between the conditions of the 
questioned-source specimen and known-source sample, then one mem-
ber of each pair in the calibration data must reflect the conditions of the 
questioned-source specimen and the other member of the pair must 
reflect the conditions of the known-source sample. If the calibration data 
do not represent the relevant population for the case and do not reflect 
the conditions for the case, then the resulting model will miscalibrate the 
output. The decision as to whether the calibration data are sufficiently 

representative of the relevant population for the case and sufficiently 
reflective of the conditions for the case will be a subjective judgement 
made by the forensic practitioner, but this should be made transparent so 
that the decision can be reviewed by an independent practitioner and 
potentially be debated before the court ([10,22,23]). 

1.4. Metrics of degree of calibration 

1.4.1. Introduction 
Several metrics have been proposed for measuring the degree of 

calibration of the output of a forensic-evaluation system.2 Vergeer et al. 
[11] explored the performance of different metrics using simulated data 
for which the true distributions were known. Metrics based on the ex-
pected value of different-source likelihood-ratio values and the expected 
value of the inverse of same-source likelihood-ratio values (after Good 
[24]) did not perform as desired, nor did metrics based on the propor-
tion of different-source likelihood ratios above 2 and the proportion of 
same-source likelihood ratios below 0.5 (after Royall [25]). We will not 
discuss these metrics further here. Instead, we will focus on metrics that 
make use of the pool-adjacent-violators (PAV) algorithm ([16,26,27]).3 

1.4.2. Ccal
llr 

The more established of the PAV-based metrics is Ccal
llr (Brümmer & 

du Preez [16]). Ccal
llr = Cllr − Cmin

llr , where Cllr is the log-likelihood-ratio 
cost, calculated as in Eq. (1),4 and Cmin

llr is Cllr calculated after the 
log-likelihood-ratio values resulting from the validation data have been 
transformed using PAV. PAV is a non-parametric algorithm that, subject 
only to the constraint of monotonicity, shifts the log-likelihood-ratio 

Fig. 1. Schematic of a forensic-evaluation system consisting of a feature-to-score model (a complex multidimensional model that outputs uncalibrated likelihood 
ratios) followed by a score-to-log-likelihood-ratio model (a parsimonious unidimensional calibration model). 

2 There can be ambiguity as to whether the term “calibration” refers to the 
process of calibrating a system or to a property of a system, i.e., how well 
calibrated its output is. We will use “degree of calibration” to refer to the latter 
meaning.  

3 PAV is also known as isotonic regression.  
4 The form of Eq. (1) is that given in González-Rodríguez et al. [1] and 

thereafter widely repeated in the literature. It can be derived from Brümmer & 
du Preez [16] Eq. (43). Cllr is equivalent to the deviance statistic assuming equal 
priors for the two categories. 
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values so as to minimize Cllr. The same same-source and different-source 
log-likelihood-ratio values that are used for training PAV are themselves 
transformed and used to calculate Cmin

llr . 

Cllr =
1
2

(
1
Ns

∑Ns

i
log2

(

1 +
1

Λsi

)

+
1

Nd

∑Nd

j
log2

(
1 + Λdj

)
)

(1) 

In Eq. (1), Λsi and Λdj are respectively the same-source and different- 
source likelihood-ratio values output by the system in response to the 
validation data, and Ns and Nd are respectively the number of same- 
source and different-source likelihood-ratio values.5 In order for the 
results to be meaningful in the context of the case, the validation data 
must be representative of the relevant population for the case and must 
reflect the conditions of the questioned-source specimen and known- 
source sample in the case, including any mismatch between them ([1, 
10]). The validation data must also be separate from the calibration data 
(and from any other data used for training the system).6 

1.4.3. devPAV 
A novel PAV-based metric, devPAV, was introduced in Vergeer et al. 

[11]. For a graphical explanation of the calculation of devPAV, see 
Ref. [11] Fig. 2. Log likelihood ratios are calculated using the validation 
data. The PAV algorithm is applied to the resulting log likelihood ratios. 
The PAV-based log-likelihood-ratio to recalibrated-log-likelihood-ratio 
mapping function is plotted, with log-likelihood-ratio values on the x 
axis and recalibrated-log-likelihood-ratio values on the y axis. The line y 
= x is plotted on the same axes. If the log-likelihood-ratio values output by 
the system were perfectly calibrated, then recalibrating them would 
(theoretically) result in the same values, i.e., y = x. Within the range 
from the smallest same-source log likelihood ratio to the largest 
different-source log likelihood ratio (the range within which the 
recalibrated-log-likelihood-ratio values will be finite), the area between y 
= x and the log-likelihood-ratio to recalibrated-log-likelihood-ratio map-
ping function is calculated. This is achieved by stepping through adjacent 
pairs of log-likelihood-ratio and recalibrated-log-likelihood-ratio values, 
and calculating the areas of rectangles and triangles that piecewise make 
up the total area. The total area is then divided by the length of the range 
from the smallest same-source log likelihood ratio to the largest 
different-source log likelihood ratio. For the calculation of devPAV, both 
log-likelihood-ratio values and recalibrated-log-likelihood-ratio values are 
scaled as base-ten logarithms. 

2. Argument 

2.1. Introduction 

The purpose of the present paper is to present the argument that, in 
the context of conducting casework, once a forensic-evaluation system 
has been appropriately calibrated, subsequently calculated PAV-based 
ostensive metrics of degree of calibration do not in fact provide infor-
mation about degree of calibration. Instead, PAV-based ostensive metrics 
of degree of calibration provide information about sampling variability 
between the calibration and validation data and about overfitting on the 
validation data. Once a forensic-evaluation system has been appropri-
ately calibrated, PAV-based metrics are not meaningful metrics of degree 
of calibration. The fact that they are not meaningful metrics of degree of 
calibration, however, is not of concern because, in the context of deciding 
whether a system is sufficiently well calibrated to be used for a case, a 
metric of degree of calibration is not required. 

Note that the argument presented here relates to attempted mea-
surement of degree of calibration of already-calibrated systems, not to 
measurement of degree of calibration of uncalibrated systems. 

Note, also, that the argument presented here relates to the use of 
metrics of degree of calibration in the context of using a forensic- 
evaluation system in a case and presenting the results to a court (or to 
some other decision maker in the judicial process). It does not relate to 
the use of metrics of degree of calibration in the context of research and 
development of forensic-evaluation systems nor to selection of which of 
multiple systems to use. The present paper is written from the perspective 
of best practice for a forensic practitioner who is conducting a forensic 
evaluation or who is independently reviewing a report on a forensic 
evaluation conducted by another forensic practitioner. The present paper 
should be read in the context of the Consensus on validation of forensic 
voice comparison [10]. 

2.2. Metrics of degree of calibration are not required 

An astute reader of the Consensus on validation of forensic voice com-
parison [10] may have noticed that, although it recommended that 
forensic-evaluation systems be well calibrated, it did not recommend 
that practitioners calculate and present to a court a metric of degree of 
calibration. In the context of a case, discussion regarding calibration 
should not centre around ostensive metrics of degree of calibration. 
Instead, it should centre around the following questions:  

• Has the system been calibrated using an appropriate calibration 
model?7  

• Has the calibration model been trained using appropriate data? 

In order for these questions to be answerable, the forensic practi-
tioner must describe the calibration model and the calibration data so 
that their appropriateness can potentially be reviewed by an indepen-
dent practitioner and can potentially be debated before the court. 

An example of lack of appropriate calibration in the context of a 
forensic-voice-comparison case is described in Morrison [28]: The 
questioned-speaker recording was a recording of a mobile telephone call 
in which the speaker of interest was distant from the telephone, and the 
known-speaker recording was a recording of a landline telephone call in 
which the speaker of interest was in a highly reverberant environment. 
In contrast, the forensic-voice-comparison system was trained on 
high-quality audio recordings, and it did not include an explicit cali-
bration stage. 

An example of a calibration model that would be inappropriate for 
evidential casework is described in Jessen et al. [29]: The calibration 
model included shifting the scores so that 10% of the different-source 
scores had values greater than 0. This may be appropriate in an inves-
tigative context in which one requires a 10% false-alarm rate, but, in the 
context of assessing strength of evidence for presentation in court, unless 
this accidently corresponds to the shift that minimizes Cllr (and for the 
conditions tested in Ref. [29], it did not), this procedure deliberately 
miscalibrates the output of the system. 

An example of use of inappropriate calibration data in the context of 
a forensic-voice-comparison case is described in Morrison [23]: The 
speakers of interest on the questioned- and known-speaker recordings 
had West Yorkshire accents, and the questioned-speaker recordings 
were covert recordings made in a car. These were poor-quality re-
cordings that included engine and traffic noise. In contrast, the cali-
bration data were high-quality audio recordings of speakers with 
“standard southern British English” accents, and consisted of only one 
recording of each speaker (different parts of the same recordings were 

5 Readers requiring a gentler introduction to Cllr are referred to Ref. [6] §20.8 
or [10] Appendix C.  

6 Cross-validation is often used as a means of maximizing use of limited 
calibration and validation data while avoiding training and testing on the same 
data. 

7 We define an appropriate calibration model as one that, subject to the 
constraints of the model, either directly or indirectly minimizes the Cllr for the 
calibration data. 
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used to create same-speaker pairs). For another example of use of 
inappropriate calibration data, see Morrison & Thompson [22] §7.8 

These are examples in which the appropriateness of the calibration 
model and calibration data could be (or actually were) debated before a 
court. In none of these examples would a metric of degree of calibration 
have been of assistance. 

A metric of degree of calibration might be of assistance in demon-
strating that a calibration model is inappropriate, but a Cllr value greater 
than 1 or a graphical representation (such as a Tippett plot or probability- 
density plot) would probably be sufficient to convey gross miscalibration 
to a court. If an appropriate calibration model and appropriate calibra-
tion and validation data have been used, then one would not expect a Cllr 
value greater than approximately 1. If the Cllr value is less than 1 the 
system is providing useful information, therefore, ceteris paribus, it would 
be better to use that system than to use no system. 

In the context of providing a critique of a forensic-evaluation report, 
the practitioner who is critiquing the report is unlikely to have access to 
the evaluation-software (including the calibration model) or the cali-
bration and validation data used by the practitioner who conducted the 
evaluation (assuming they exist – all too often a critique points out that 
there was no calibration or validation). Hence a practitioner who is 
independently critiquing the report will usually not be able to generate 
graphics or metrics indicative of the degree of calibration of the forensic- 
evaluation system that was actually used. In such circumstances, all they 
can do is discuss whether the calibration model and the calibration and 
validation data were appropriate from a theoretical perspective. 

A metric of degree of calibration would not be of assistance in 
deciding on the appropriateness of the calibration data (nor would a 
graphical representation of results): If it were decided that the calibra-
tion model and the calibration data were appropriate, and validation 
data were selected using the same criteria as were used to select the 
calibration data, but in reality the calibration and validation data were 
not appropriate, then no amount of testing using the validation data 
would reveal that mistake. All resulting performance metrics, including 
metrics of degree of calibration, would be misleading, but there would 
be no way of knowing that this was the case. The decision as to whether 
the calibration and validation data are appropriate is a pre-empirical 
decision. 

2.3. PAV-based ostensive metrics of degree of calibration actually 
measure sampling variability and overfitting 

Assume we have a two-stage system including a feature-to-score 
model then a score-to-log-likelihood-ratio model. The latter is the cali-
bration model. The calibration model is a parsimonious model trained 
on a set of calibration data, and the performance of the system is tested 
using a set of validation data. Both the calibration data and the valida-
tion data are selected using the same criteria to decide whether they are 
sufficiently representative of the relevant population for the case and 
sufficiently reflective of the conditions for the case. In fact, it would be 
usual to obtain a single data set and then split it into a calibration set and 
a validation set, either as two completely separate sets or via cross- 
validation. 

Either directly or indirectly, an appropriate calibration model will, 
subject to the constraints of the model, minimize Cllr for the calibration 
data.9 The Cllr value calculated for the calibration data, however, will be 
the result of training and testing on the same data, and will therefore be 

overfitted on the calibration data and will tend to be overly optimistic 
with respect to the expected performance of the system when applied to 
previously-unseen data. Importantly, previously-unseen data include 
the questioned-source specimen and known-source sample in the case. 
Results intended to be representative of the expected performance of the 
system when generalized to previously-unseen data are obtained using 
validation data. Same-source and different-source pairs are constructed 
from the validation data. Those pairs are input to the first-stage model 
which then outputs a set of same-source scores and a set of different- 
source scores. These validation scores are input to the calibration 
model that was already trained on the calibration data. The resulting 
calibrated log-likelihood-ratio values derived from the validation data 
are used to calculate a Cllr value. The latter Cllr value represents the 
expected performance of the system when applied to previously-unseen 
data, such as the questioned-source specimen and known-source sample 
in the case. 

If one were to take the log-likelihood-ratio values resulting from the 
validation data, use them to train a new calibration model and then 
recalibrate them using that model, one would be both training and 
testing on the validation data, would overfit on the validation data, and 
would tend to obtain overly optimistic results. If the same type of model 
were used for calibration and recalibration, a metric based on the dif-
ference between calibrated and recalibrated results would therefore 
simply capture the difference due to sampling variability between the 
calibration and validation data, and due to overfitting because of both 
training and testing on the validation data. If the recalibration model 
were PAV and it was both trained and tested on the validation data, then 
the results would be doubly overfitted. They would be doubly overfitted 
not just because of training and testing on the same data, but also 
because of the weak constraints of the non-parametric PAV algorithm. 

In the description of the devPAV metric in §1.4.3 above, we wrote: “If 
the log-likelihood-ratio values output by the system were perfectly 
calibrated, then recalibrating them would (theoretically) result in the 
same values, i.e., y = x.” We included the parenthetical “theoretically” 
because, in practice, even if the log-likelihood-ratio values were 
perfectly calibrated, the overfitting of PAV to real data would result in 
differences between the PAV-transformed log-likelihood-ratio values 
(the y values) and the original pre-PAV log-likelihood-ratio values (the x 
values). 

The Cllr value based on the calibration data and the Cllr value based 
on the validation data will differ because of sampling variability, but this 
is not a problem. These two values are not compared with each other, 
only the latter is presented as a metric of accuracy. The same would be 
true for other metrics of accuracy such as false-alarm rate and miss-rate 
in a classification framework. The problem lies in both training and 
testing on the validation data, and overtraining on the validation data, 
then comparing a measure of the accuracy of the resulting system (Cmin

llr ) 
with a measure of the accuracy of the system that will actually be used in 
the case (the Cllr value based on the calibrated system and validation 
data). Cmin

llr characterizes the performance of a system that included 
PAV-calibration on the validation data. Since this is not the system that 
will actually be used to compare the questioned-source specimen and 
known-source sample in the case, Cmin

llr is not informative about the 
performance of the system that will actually be used in the case. 

One would not usually use the non-parametric PAV as the actual 
calibration model because it would overfit its training data and tend not 
to generalize well to new data. One would usually deliberately choose a 
parsimonious parametric model that would be a less good fit for its 
training data but tend to generalize better to new data. Linear discrim-
inant analysis (LDA) and logistic regression (LogReg) are examples of 
parsimonious models that could be used – they both result in a linear 
mapping between scores and the log likelihood ratios. A linear mapping 
requires the estimation of only two parameter values. LogReg is usually 
preferred over LDA because it does not depend on as strong assumptions 
– it is more robust when the data deviate from being Gaussians with the 

8 Technically, in these examples, the data were used to implement a 
normalization procedure, which serves a similar function but is not exactly the 
same as an explicit calibration model.  

9 A model that did not directly or indirectly minimize Cllr could potentially be 
appropriate in some other context, but would not be appropriate in the context 
of calculating likelihood ratios as expressions of strength of evidence to be used 
for legal-decision making. 
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same variance. One could potentially use non-linear, but still monotonic, 
models that would require estimating only a few more parameter values. 

The effects of sampling variability and of overfitting would be 
reduced for very large data sets, but in forensic practice the amount of 
case-relevant data available is usually relatively small. 

2.4. Conclusion 

Forensic-evaluation systems should be calibrated using a parsimo-
nious parametric calibration model trained using calibration data, and 
should then be tested using validation data. The calculation of PAV- 
based ostensive metrics of degree of calibration involves both training 
and testing on the validation data. Therefore, for a system that has 
already been calibrated using a parsimonious calibration model, what 
the PAV-based metrics are measuring is not degree of calibration. What 
they are measuring is sampling variability between the calibration and 
validation data, and the difference in fit between a parsimonious para-
metric model and an overfitted non-parametric model. 

In the next section we support the theoretical argument made in the 
present section by presenting demonstrations based on Monte Carlo 
simulations. 

3. Demonstrations 

3.1. Introduction 

Following Vergeer et al. [11], we present demonstrations based on 
simulated data. By specifying the population distributions, we can 
compare empirical results with expected results. By generating multiple 
Monte Carlo samples, we can explore effects due to sampling variability. 

3.2. Perfectly calibrated systems 

Assume a Gaussian population distribution for the same-source 
scores and a Gaussian population distribution for the different-source 
scores, and assume that the two Gaussians have the same variance.10 

Fitting an LDA model would result in a score-to-log-likelihood-ratio 
mapping function that is linear, i.e., has the equation y = a+ bx, in 
which x is a score value (which has the form of a log-likelihood-ratio 
value), y is the corresponding calibrated natural-log-likelihood-ratio 
value,11 and a and b are the intercept and slope. As shown in Eqs. (2)– 
(4), the value of the slope (b) depends on the separation of the same- 
source mean and the different-source mean (μs and μd) relative to 
their shared variance (σ2), and the intercept (a) depends on the location 
of the midpoint between the same-source mean and the different-source 
mean. 

y= ln

⎛

⎜
⎜
⎝

1
σ
̅̅̅̅
2π

√ e
(x− μs )2

− 2σ2

1
σ
̅̅̅̅
2π

√ e
(x− μd )

2

− 2σ2

⎞

⎟
⎟
⎠= ln

(

e
(x− μs )2 − (x− μd )

2

− 2σ2

)

=
x2 + μ2

s − 2xμs − x2 − μ2
d + 2xμd

− 2σ2

=
− μ2

s + 2xμs + μ2
d − 2xμd

2σ2 =
− μ2

s + μ2
d

2σ2 +
μs − μd

σ2 x= a + bx

(2)  

Fig. 2. (a): Monte Carlo population distributions, μd = 3, μs = 6, σ = 1. (b): Score-to-log-likelihood-ratio mapping function corresponding to (a). (c): Distributions of 
(a) after transformation using the mapping function in (b), μd = − 4.5, μs = 4.5, σ = 3. (d): Log-likelihood-ratio-to-log-likelihood-ratio mapping function corre-
sponding to (c). 

10 Usually the different-source scores would have substructure due to each 
feature-data point used to generate them being used in multiple pairs (source 1 
v source 2, source 1 v source 3, source 2 v source 3, etc.), but for simplicity we 
ignore that here.  
11 Henceforth, unless explicitly stated otherwise, all references to logarithms 

are to natural logarithms. 
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b=
μs − μd

σ2 (3)  

a=
− μ2

s + μ2
d

2σ2 = − b
μs + μd

2
(4) 

If, for example, for the Monte Carlo population distributions we 
specify μd = 3, μs = 6, and σ = 1 (Fig. 2(a)), the score-to-log- 
likelihood-ratio mapping function will be y = − 6− 3

12 × 6+3
2 + 6− 3

12 x = −

13.5 + 3x (Fig. 2(b)). Hence, the parameter values for the transformed 
distributions will be μd = − 13.5+ 3× 3 = − 4.5, μs = − 13.5+ 3×

6 = 4.5, and σ = 3 × 1 = 3 (Fig. 2(c)). If we recalibrate these values, 
the recalibration mapping function (the log-likelihood-ratio-to-log- 

likelihood-ratio function) will be y = − 4.5+4.5
32 × 4.5− 4.5

2 + 4.5+4.5
32 x = − 0 ×

1x = x (Fig. 2(d)), i.e., the log likelihood ratios of the calibrated log 
likelihood ratios equal the calibrated log likelihood ratios. 

In general, once one has ascertained σ2 (the common variance for the 
same-source and different-source scores) and μs and μd (the means of the 
same-source and different-source scores) one knows everything about 
the distributions of the log-likelihood-ratios of the calibrated system: 
The calibrated standard deviation will be σcal = bσ =

μs − μd
σ ,12 and the 

calibrated means will be located symmetrically about 0 with a separa-

tion of σ2
cal, i.e., μcal,d = −

σ2
cal
2 and μcal,s = +

σ2
cal
2 (Peterson et al. [30] §4.9; 

Good [24]; van Leeuwen & Brümmer [18]). Fig. 3 shows examples of 
ln(LR) distributions for perfectly calibrated systems with different 
values for σcal. 

3.3. Monte Carlo simulations 

Assume a situation in which the feature data for each of the cali-
bration set and the validation set allow us to generate 50 same-source 
scores and 1225 different-source scores (the latter number being the 
size of the upper-right of a 50 × 50 matrix). Further assume that the 
Monte Carlo populations consist of Gaussians with means μd = 3 and 
μs = 6, both with the same standard deviation σ = 1 (Fig. 2(a)). We 
draw Monte Carlo samples consisting of 50 same-source scores and 1225 
different-source scores. We draw one sample as a calibration set and one 
sample as a validation set. We use the calibration set to train a cali-
bration model, apply the calibration model to the validation set, then 
calculate Cllr for the resulting calibrated log-likelihood-ratio values. We 
recalibrate the calibrated log-likelihood-ratio values, both training and 
testing the recalibration model on the calibrated log-likelihood-ratio 
values, then calculate Cllr for the recalibrated log-likelihood-ratio 
values. Hereinafter, we refer to the latter as Crecal

llr , which equals Cmin
llr if 

the recalibration model is PAV.13 

We repeat this process 10,000 times, and each time:  

• We compare Cllr for the calibrated log-likelihood-ratio values with 
the expected Cllr value given the Monte Carlo population parameters, 
i.e., we calculate Cllr − Cexpect

llr .  
• We compare Cllr for the calibrated log-likelihood-ratio values with 

the recalibrated Cllr value, i.e., we calculate Cllr − Crecal
llr . If the reca-

libration model is PAV, Cllr − Crecal
llr = Cllr − Cmin

llr = Ccal
llr .  

• We calculate devPAV, and, for comparison purposes, devLDA and 
devLogReg. The latter were calculated in the same way as devPAV, 
but, rather than using the PAV-derived likelihood-ratio-to-recali-
brated-log-likelihood-ratio mapping function, the LDA- or LogReg- 
derived likelihood-ratio-to-recalibrated-log-likelihood-ratio map-
ping function was used instead.14 

Cllr − Cexpect
llr is the perfect metric of degree of calibration, but it is not 

a practical metric: It can only be calculated when one has oracle Fig. 3. Examples of ln(LR) distributions for perfectly calibrated systems with 
different values for σcal. 

12 In signal detection theory, d′

=
μs − μd

σ .  
13 We used an implementation of the PAV algorithm that returned − ∞ for all 

different-source log-likelihood-ratio values below the smallest same-source log- 
likelihood-ratio value and +∞ for all same-source log-likelihood-ratio values 
above the largest different-source log-likelihood-ratio value. If small and large 
finite values were used instead (e.g., following Laplace’s rule of succession), 
then when there are large separations between μs and μd (as in §3.5.4 below), 
most of the transformed values would be either the small finite value or the 
large finite value, and the value of Cmin

llr could be larger than the value of Cllr. In 
pilot work, this was actually the case.  
14 Part of calculating in the same way as devPAV included only calculating 

devLDA and devLogReg over the range between the smallest same-source log- 
likelihood-ratio value and the largest different-source log-likelihood-ratio 
value. 
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Fig. 4. Monte Carlo population distributions: a Gaussian distribution for different-source scores and a skewed distribution for same-source scores.  

Fig. 5. Violin plots for Cllr − Cexpect
llr given: (a) Gaussian distributions for both different-source and same-source scores; (b) Gaussian distribution for different-source 

scores and a skewed distribution for same-source scores. 
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knowledge of the population distributions, i.e., in the context of Monte 
Carlo simulations. Rather than an analytical solution for Cexpect

llr (which, 
depending on the population distributions, may not exist), we obtain a 
Monte Carlo approximation by drawing a sample of 500,000 same- 
source score values and 500,000 different-source score values, then 
for each score value we calculate the corresponding log-likelihood-ratio 
value given the Monte Carlo population models, and finally we calculate 
Cllr for those log-likelihood-ratio values.15 

We compared the following four combinations of calibration and 
recalibration models: LDA-LDA, LDA-PAV, LogReg-LogReg, and LogReg- 
PAV.16 

We repeated the entire process using different Monte Carlo popula-
tion distributions: Reflecting a pattern seen for empirical score distribu-
tions (for examples, see §5 of Morrison & Poh [31]), we used a 
same-source distribution that has a negative skew (a heavy left tail), 
see Fig. 4. We generated this based on a Gumbel distribution, see Eq. (5), 
in which g is the probability density function for a Gumbel distribution, 
g− 1 is a function that generates random numbers based on a Gumbel 
distribution with the specified parameter values, and μs and σ have the 
same values as previously used for the Gaussian same-source distribution. 

x= μs − g− 1(ν= 0, τ= σ) (5)  

g(x|ν, τ)= e
−

(

x− ν
τ +e−

x− ν
τ

)

τ 
The Matlab code used to run these simulations is available at 

http://geoff-morrison.net/#no_cal_metric. The code can be modified to 
explore other settings, including changing the separation between the 
same-source and different-source distributions and changing the sam-
ple size. 

3.4. Results 

For the system with Gaussian distributions for both different-source 
and same-source scores, the value for Cexpect

llr was 0.240. For the system 
with a Gaussian distribution for different-source scores and a skewed 
distribution for same-source scores, the value for Cexpect

llr was 0.461. 
Figs. 5–7 summarize the values for Cllr − Cexpect

llr , Cllr − Crecal
llr , and 

devPAV/devLDA/devLogReg resulting from the Monte Carlo simula-
tions. The figures have been formatted such that all violin plots within a 
figure have the same area. 

Fig. 6. Violin plots for Cllr − Crecal
llr given: (a) Gaussian distributions for both different-source and same-source scores; (b) Gaussian distribution for different-source 

scores and a skewed distribution for same-source scores. 

15 Similarly, van Leeuwen & Brümmer [18] proposed calculation of Cexpect
llr 

using numerical integration.  
16 The logistic-regression models were not regularized. 
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3.5. Discussion 

3.5.1. Cllr − Cexpect
llr results 

As shown in Fig. 5(a), when both the same-source and different- 
source Monte Carlo population distributions were Gaussian, for both 
LDA- and LogReg-calibration models, Cllr values were centred around 
Cexpect

llr with a slight positive skew. LDA, a parametric model whose as-
sumptions were met by the population distributions, had a slightly 
tighter Cllr distribution than did LogReg, which was fitted using an 
iterative algorithm. The variation of the Cllr values about Cexpect

llr reflects 
sampling variability of both the calibration data and the validation data. 

Sampling variability also accounts for the spread of the Cllr values 
when the recalibration model was PAV, but those values were not cen-
tred around Cexpect

llr , their distribution was substantially lower. The PAV- 
recalibrated Cllr values, i.e., Cmin

llr values, tended to be lower. The reason 
for this is overfitting as a result of using a minimally-constrained non- 
parametric model that was both trained and tested on the validation 
data. In this example, the LDA-calibrated and LogReg-calibrated Cllr 

values were on-average closer to Cexpect
llr , i.e., the LDA-calibrated and 

LogReg-calibrated log-likelihood-ratio values were on-average closer to 
the “true” log-likelihood-ratio values obtained using oracle knowledge 
of the true Monte Carlo population distributions, i.e., the LDA-calibrated 
and LogReg-calibrated log-likelihood-ratio values were better calibrated 
than the PAV-recalibrated log-likelihood-ratio values. 

As shown in Fig. 5(b), when the different-source Monte Carlo popu-
lation distribution was Gaussian but the same-source Monte Carlo pop-
ulation distribution was skewed, for both LDA- and LogReg-calibration 
models, Cllr values were usually higher than Cexpect

llr . The results were not 
as well calibrated as when the models’ assumptions were met by the 
population distributions. LogReg, which is not as sensitive to deviations 
from Gaussian distributions with the same variance as is LDA, had a 
somewhat tighter Cllr distribution than did LDA, i.e., LogReg-calibrated 
log-likelihood-ratio values where somewhat better calibrated than 
LDA-calibrated log-likelihood-ratio values. A model with a few more 
parameters to fit a non-linear (but still monotonic) mapping function 
would potentially lead to a better degree of calibration. Potential 
improvement in degree of calibration would have to be traded off against 
the danger of overfitting on the calibration data and then not general-
izing well. As before, PAV overfitted the validation data and PAV- 
recalibrated Cllr values, i.e., Cmin

llr values, tended to be lower than Cexpect
llr . 

The results shown in Fig. 5 indicate that the values of the metric 
Ccal

llr = Cllr − Cmin
llr will tend to be larger than the corresponding value for 

the perfect metric of degree of calibration, Cllr − Cexpect
llr , i.e., the value 

(
Cllr − Cmin

llr
)
−
(
Cllr − Cexpect

llr
)
= Cexpect

llr − Cmin
llr will tend to be positive. 

This is demonstrated in the rightmost violin plots of Fig. 5, for which the 
values of Cmin

llr − Cexpect
llr tended to be negative. Ccal

llr would therefore tend 
to indicate a poorer degree of calibration than is actually the case. 

Fig. 7. Violin plots for devPAV given: (a) Gaussian distributions for both different-source and same-source scores; (b) Gaussian distribution for different-source 
scores and a skewed distribution for same-source scores. 
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3.5.2. Cllr − Crecal
llr results 

As shown in Fig. 6, when calibrating and recalibrating using the same 
type of model, LDA-LDA and LogReg-LogReg, there was a spread in the 
distribution of the Cllr − Crecal

llr values. This was due to sampling vari-
ability between the calibration data and the validation data. The spread 
was narrower in Fig. 6(a), for which the Monte Carlo population dis-
tributions met the assumptions of the LDA-LDA models (both the same- 
source and different-source distributions were Gaussians with the same 
variance). In Fig. 6(a) the distributions for LDA-LDA were slightly nar-
rower than for LogReg-LogReg. In Fig. 6(b), for which the different- 
source Monte Carlo population distribution was Gaussian but the 
same-source Monte Carlo population distribution was skewed, the 
spread in the distribution of the Cllr − Crecal

llr values for both LDA-LDA and 
LogReg-LogReg were wider than in Fig. 6(a). In Fig. 6(b), the spread for 
LogReg-LogReg was less than for LDA-LDA, LogReg being more robust to 
violations of the assumptions of Gaussians with the same variance. 

In Fig. 6, the distributions of Cllr − Crecal
llr for LDA-LDA were close to 

symmetrical about 0, with only very slight positive skew. It appears that 
both training and testing the LDA recalibration model on the validation 
data did not lead to substantial overfitting. This is an advantage of a 
parsimonious parametric model. For LogReg-LogReg, there was a posi-
tive skew to the Cllr − Crecal

llr distributions. This reflects some overfitting 
due to both training and testing the LogReg recalibration model on the 
validation data. 

For the LDA-LDA and LogReg-LogReg models, is Cllr − Crecal
llr an in-

dicator of degree of calibration? If it were, would we expect to see a shift 

in values in Fig. 6(b) similar to the shift in values in Fig. 5(b)? We argue 
that what Cllr − Crecal

llr reflects is not degree of calibration but sampling 
variability between the calibration and validation data, and, more so for 
LogReg-LogReg, some overfitting on the validation data. 

For LDA-PAV and LogReg-PAV, for which the recalibration models 
were PAV,. The distributions of the Ccal

llr values were substantially greater 
than 0, and substantially greater than the Cllr − Crecal

llr distributions for 
LDA-LDA and LogReg-LogReg. As previously discussed in the context of 
the Cllr − Cexpect

llr results, the substantially larger values for Ccal
llr were due 

to the minimally-constrained non-parametric PAV model being both 
trained and tested on the validation data and overfitting the validation 
data. Due to this overfitting, Ccal

llr tends to indicate a poorer degree of 
calibration than is actually the case. Due to this overfitting, we argue 
that Ccal

llr is not a meaningful metric of degree of calibration for systems 
that have already been calibrated using a parsimonious parametric 
model. 

Ferrer et al. [33] similarly observed that PAV overfitted on small 
data sets. Rather than calculating Cmin

llr using PAV, they calculated an 
alternative version using LogReg, i.e., the same as our Crecal

llr for the 
LogReg-LogReg models. Data sets that are considered “small” in the 
automatic-speaker-recognition literature (to which Ferrer et al. [33] 
belongs) may be larger than case-relevant data sets typically available in 
forensic casework contexts. 

Fig. 8. Violin plots for Cllr − Cexpect
llr given a range of σ2

cal values, and sample sizes of (a) 50, (b) 100, and (c) 300.  
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3.5.3. devPAV results 
By design, devPAV values are greater than or equal to 0.17 Otherwise, 

results in Fig. 7 show the same relative pattern as for Cllr − Crecal
llr results 

in Fig. 6. In particular, as for Ccal
llr compared to Cllr − Crecal

llr for LDA-LDA 
and LogReg-LogReg, the devPAV distributions (for LDA-PAV and 
LogReg-PAV) had larger values than for devLDA and devLogReg (for 
LDA-LDA and LogReg-LogReg). The larger values for devPAV were due 
to the minimally-constrained non-parametric PAV model being both 
trained and tested on the validation data, and it overfitting the valida-
tion data to a greater extend than did the parsimonious parametric 
models. Due to this overfitting, we argue that devPAV is not a mean-
ingful metric of degree of calibration for systems that have already been 
calibrated using a parsimonious parametric model. 

3.5.4. Selected Vergeer et al. (2021) results 
Vergeer et al. [11] included comparison of the behaviour of different 

calibration metrics given perfectly calibrated Monte Carlo population 
distributions consisting of Gaussians with the same variance. The values 
used for σ2

cal were 2, 12, 22, and 34, and same-source sample sizes used 

were 50, 100, and 300.18 Vergeer et al. [11] did not present results from 
the full factorial of these combinations. We replicated this portion of 
Vergeer et al. [11], and our Figs. 8–10 show the full factorial of results 
for, Cllr − Cexpect

llr , Ccal
llr , and devPAV distributions respectively. The argu-

ments we make below could have been based on results already pre-
sented in Vergeer et al. [11], but examining the full factorial makes the 
pattern of results more obvious. 

The Cexpect
llr values for σ2

cal of 2, 12, 22, and 34 were 0.710, 0.155, 
0.038, and 0.007 respectively. For the perfect metric of degree of cali-
bration, Cllr − Cexpect

llr , the distributions shown in Fig. 8 were centred 
around 0. The spread of the distributions is due to sampling variability. 
As the size of the samples increased, from panel (a) through panel (c), 
the spread of the distributions decreased. This is the expected effect on 
sampling variability of increasing the sample size. As the separation 
between the same-source and different-source log-likelihood-ratio 
values increased, from left to right, the spread of the distributions also 

Fig. 9. Violin plots for Ccal
llr given a range of σ2

cal values, and sample sizes of (a) 50, (b) 100, and (c) 300.  

17 Any values in Fig. 7 or 10 that appear to be less than 0 are due to the 
bandwidth of the kernels used to draw the violin plots. 

18 The σ2
cal values of 2, 12, 22, and 34, were encoded in Ref. [11] as μcal,s values 

of 1, 6, 11, and 17. Separations of 22 and 34 variance units would have pro-
duced likelihood-ratio values many orders of magnitude larger than the sample 
size. In the context of a case we would apply a method to avoid overstating 
strength of evidence (e.g. Refs. [31,34,35]), but did not do so for these 
simulations. 
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decreased. This is due to the fact that as the separation between the 
same-source and different-source log-likelihood-ratio values increased 
both Cllr values and Cexpect

llr values decreased, thus the magnitude of the 
difference between them decreased. 

The distributions of Ccal
llr values shown in Fig. 9 exhibited the same 

pattern of spread as for the Cllr − Cexpect
llr values, but, in addition, ab-

solute Ccal
llr values decreased as sample size increased and as the sepa-

ration between the same-source and different-source log-likelihood- 
ratio values increased. 

The distributions of devPAV values shown in Fig. 10 exhibited a 
different pattern: As the size of the samples increased, from panel (a) 
through panel (c), the spread of the distributions decreased, but as the 
separation between the same-source and different-source log-likelihood- 
ratio values increased, from left to right, the spread of the distributions 
increased rather than decreased. Also in contrast to Ccal

llr values, as the 
separation between the same-source and different-source log-likelihood- 
ratio values increased, the average devPAV values increased rather than 
decreased. The increase in the spread as the separation between the same- 
source and different-source log-likelihood-ratio values increased may be 
due to the fact that devPAV is only calculated for log-likelihood-ratio 
values in the range from the smallest same-source value to the largest 
different-source value. As the separation between the same-source and 
different-source log-likelihood-ratio values increases, this range will 
decrease, making the amount of data on which devPAV is calculated 

smaller and thus making devPAV more sensitive to sampling variability. 
The increase in average devPAV values as the separation between the 
same-source and different-source log-likelihood-ratio values increased 
may also be related to the decrease of the range over which it is calculated 
– since devPAV only has positive values, an increase in the spread of those 
values would be correlated with an increase in their average value. 

Given that all the Monte Carlo population distributions were 
perfectly calibrated, a good metric of degree of calibration should have 
had the same average value for all the different population distributions. 
Because this was not the case for either Ccal

llr or devPAV (across the 
different population distributions the median varied 27-fold for Ccal

llr and 
5-fold for devPAV), we argue that neither is a good metric of degree of 
calibration.19 

4. Conclusion 

All forensic-evaluation systems used in casework should be cali-
brated. If they are not intrinsically well calibrated, they should include 
an explicit calibration model. 

Fig. 10. Violin plots for devPAV given a range of σ2
cal values, and sample sizes of (a) 50, (b) 100, and (c) 300.  

19 The comparison across the different population distributions may be 
somewhat unfair given that a σ2

cal of 34 is rather extreme, but this was a 
replication of the range of values used in Vergeer et al. [11]. 
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We have presented an argument that, in the context of casework, 
PAV-based ostensive metrics of degree of calibration (Ccal

llr and devPAV) 
are not meaningful metrics of degree of calibration for systems that have 
already been calibrated using a parsimonious calibration model. We have 
argued that, in this context, rather than measuring degree of calibration, 
PAV-based metrics reflect sampling variability between the calibration 
and validation data and overfitting on the validation data. 

The fact that PAV-based ostensive metrics of degree of calibration are 
not meaningful metrics of degree of calibration in the context of a 
casework is not of concern, however, because a metric of degree of 
calibration is not required: A decision as to whether a calibration model 
is appropriate in the context of a case does not require the use of a metric 
of degree of calibration. Cllr>1 and graphical representations would be 
sufficient to indicate gross miscalibration, which will not occur if an 
appropriate calibration model has been used. Whether a calibration 
model is appropriate may (and often only can) be argued on theoretical 
grounds, and a decision as to whether the calibration data are appro-
priate is a pre-empirical decision that cannot be informed by a metric of 
degree of calibration. 
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