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Abstract: Background: Large cohort longitudinal studies have almost unanimously concluded that
metabolic health in obesity is a transient phenomenon, diminishing in older age. We aimed to
assess the fate of insulin sensitivity per se over time in overweight and obese individuals. Methods:
Individuals studied using the hyperinsulinaemic-euglycaemic clamp at the Garvan Institute of
Medical Research from 2008 to 2010 (n = 99) were retrospectively grouped into Lean (body mass
index (BMI) < 25 kg/m2) or overweight/obese (BMI ≥ 25 kg/m2), with the latter further divided
into insulin-sensitive (ObSen) or insulin-resistant (ObRes), based on median clamp M-value (M/I,
separate cut-offs for men and women). Fifty-seven individuals participated in a follow-up study
after 5.4 ± 0.1 years. Hyperinsulinaemic-euglycaemic clamp, dual-energy X-ray absorptiometry and
circulating cardiovascular markers were measured again at follow-up, using the same protocols
used at baseline. Liver fat was measured using computed tomography at baseline and proton
magnetic resonance spectroscopy at follow-up with established cut-offs applied for defining fatty
liver. Results: In the whole cohort, M/I did not change over time (p = 0.40); it remained significantly
higher at follow-up in ObSen compared with ObRes (p = 0.02), and was not different between ObSen

and Lean (p = 0.41). While BMI did not change over time (p = 0.24), android and visceral fat increased
significantly in this cohort (ptime ≤ 0.0013), driven by ObRes (p = 0.0087 and p = 0.0001, respectively).
Similarly, systolic blood pressure increased significantly over time (ptime = 0.0003) driven by ObRes

(p = 0.0039). The best correlate of follow-up M/I was baseline M/I (Spearman’s r = 0.76, p = 1.1 × 10−7).
Conclusions: The similarity in insulin sensitivity between the ObSen and the Lean groups at baseline
persisted over time. Insulin resistance in overweight and obese individuals predisposed to further
metabolic deterioration over time.
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1. Introduction

The obesity rate has nearly tripled worldwide since 1975, with World Health Organization data
indicating that in 2016, 39% of adults were overweight and 13% were obese [1]. In the United States,
recent figures indicate that 40% of adults are obese, with the obesity rate in the 40–60 year old age
group exceeding 40% [1].

While obesity is a risk factor for metabolic disease, sub cohorts with obesity not complicated by
the metabolic syndrome have been described. These so called “metabolically healthy obese” may
have reduced risk of type 2 diabetes, cardiovascular disease and all-cause mortality compared with
individuals with obesity and the metabolic syndrome [2]. The criteria used to define metabolically
healthy obesity (MHO) varies widely across studies. With at least 30 different definitions applied, the
prevalence of MHO ranged from 6 to 75% in the obese population [3]. Most studies included blood
pressure, high density lipoprotein (HDL) cholesterol, fasting plasma glucose and/or triglyceride in
their definition. Less than half included the insulin resistance surrogate homeostatic model assessment
of insulin resistance (HOMA-IR), and less than one-third included diabetes [3]. Compared to the
use of the metabolic syndrome criteria to sub-categorise obesity, fewer studies have used insulin
sensitivity per se (that is, sub-categorisation into insulin-sensitive obesity (ObSen) and insulin-resistant
obesity (ObRes)). Most studies considering insulin resistance used the insulin resistance surrogate
homeostatic model assessment of insulin resistance (HOMA-IR) [3]; some smaller cohort studies used
the gold-standard hyperinsulinaemic-euglycaemic clamp [4,5].

Despite having a better metabolic health profile compared to the metabolically unhealthy obesity
group, longitudinal studies with diabetes and cardiovascular disease endpoints reported that MHO
individuals held an intermediate health status, such that they were still worse off than the healthy normal
weight individuals [6]. Moreover, recent longitudinal studies have shown that a large proportion of
MHO progress to the unhealthy category over time [7–14]. Predictors of loss of metabolic health in MHO
include older age [9,15] and poorer cardio-metabolic risk at baseline, including lower HDL [9,11–13],
higher triglycerides [11–13], higher central adiposity [11,15] and insulin resistance [9,11–13].

While there have been studies evaluating the stability of the MHO phenotype over time, to
our knowledge no study has reported the durability of insulin-sensitivity per se, measured by the
gold-standard hyperinsulinaemic-euglycaemic clamp in overweight and obese individuals. Focusing
on the change in insulin resistance over time is key to dissecting the mechanism underlying the
development of cardio-metabolic disease in individuals at risk. In the present study, we aimed to
trace the change in insulin resistance, and to uncover predictors of insulin resistance in older age. The
secondary aims were to trace the change in body composition, fat distribution and metabolic markers
over time in a well-phenotyped cohort studied approximately 5 years apart.

2. Experimental Section

2.1. Participants

The Insulin Sensitivity in Obesity Study (ISOS) was approved by the St Vincent’s Hospital Human
Research Ethics Committee and the Garvan Institute of Medical Research Governance Office and
registered at ClinicalTrials.gov (NCT02017210).

Participants of two previous separate studies performed at the Garvan Institute of Medical
Research (Darlinghurst, NSW, Australia) [16,17] were contacted by postal mail to gauge interest
in participating in a follow-up study. At the time of these previous studies (“baseline studies”),
participants agreed to be contacted in the future for other potential studies, but were not contacted
during the gap between the baseline and follow-up studies. The data collected in the original studies,
performed between 2008 and 2010, formed the baseline data. In the original studies, exclusion
criteria included weight change greater than 2 kg in the preceding 6 months, self-reported regular
exercise for periods longer than 60 min/week, treatment with medications known to affect insulin
sensitivity or carbohydrate metabolism, known renal, cardiac, or liver disease and current cancer,

ClinicalTrials.gov
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women planning pregnancy, consumption of more than 20 and 40 g/day alcohol for women and men,
respectively, and smoking >10 cigarettes/day. Type 2 diabetes was defined by medical history or by
fasting blood glucose (≥7.0 mmol/L) and/or 2-h blood glucose (≥11.1 mmol/L) following a 75 g oral
glucose tolerance test (OGTT), which was performed during screening [17]. Non-diabetic participants
from the baseline cohort (n = 99, Figure 1 (Consort Diagram)) had their interest for participating in a
follow-up study gauged by postal mail. Four were of Asian descent, the rest were Caucasian. Of the
baseline participants, 25 were uncontactable or living interstate, 12 declined, 3 had a medical condition
precluding participation in the follow-up study, 1 was actively losing weight, and 1 had passed away
(Figure 1). Fifty-seven individuals were invited to the Clinical Research Facility for a screening visit
to assess their medical status, and, if willing, progress to an additional study visit, which included
detailed phenotyping, as described below. Sixteen individuals who were screened at follow-up did not
progress to the detailed phenotyping study, 7 as they had lost interest and 9 due to medical conditions
(Figure 1).
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Figure 1. Study Flow (Consort Diagram). * Medical conditions precluding from follow-up screening
included bowel cancer, mitral valve repair and cardiac arrhythmia, chronic lymphocytic lymphoma,
breast cancer on letrozole, non-Hodgkin’s lymphoma, sleeve gastrectomy and trying to conceive.
** Medical conditions precluding from detailed phenotyping included tetralogy of fallot, venous
thrombotic disease, venous access difficulty (axillary lymph node clearance), iron deficiency anemia of
uncertain cause, significant coronary artery disease (requiring stenting, coronary artery bypass grafting
and aspirin therapy), immunosuppressant therapy for psoriatic arthritis, renal failure and significant
hypertension (189/109 mmHg), severe untreated autoimmune urticaria, excessive alcohol consumption
(>20 g/day for a female participant) with paroxysmal atrial fibrillation.

2.2. Baseline and Follow-Up Studies

Protocols applied during the baseline and follow-up studies were almost identical, as
detailed below.

2.2.1. Screening Visit

Participants were invited to the Clinical Research Facility to a screening visit in the morning
after an overnight fast. The study included physical examination, weight, height, waist and hip
circumference and blood pressure (Omron, Model IA1B, Port Melbourne, Australia) measurements.
Fasting blood samples were collected. Physical activity was assessed using the Stanford 7-day activity
questionnaires, as described previously [18].



J. Clin. Med. 2019, 8, 623 4 of 16

2.2.2. Detailed Phenotyping

On a separate day, participants underwent hyperinsulinaemic-euglycaemic clamp and dual-energy
X-ray absorptiometry (DXA) to assess insulin resistance and body composition, respectively. Liver
fat was assessed by computed tomography (CT) at baseline and, to minimise cumulative radiation
exposure, proton magnetic resonance spectroscopy (1H-MRS) at follow-up, as detailed below. These
are available for the entire baseline cohort (n = 99) and for a sub-cohort of the follow-up cohort (n = 41,
Figure 1).

Participants were instructed to abstain from physical activity and alcohol for 2 days
prior to the study day and to arrive to the Clinical Research Facility after an overnight fast.
Hyperinsulinaemic-euglycaemic clamp was performed using the same protocols used at the baseline
studies [16,17]. Intravenous access was obtained by cannulating each arm at the ante-cubital fossa.
One arm was used for obtaining venous blood glucose for monitoring throughout the clamp. The
contralateral arm was used for insulin (Actrapid, Novo Nordisk Pharmaceuticals, Baulkham Hills,
NSW, Australia) and 25% glucose (Baxter Healthcare, Toongabbie, NSW, Australia) infusion. Insulin
was infused at a constant rate, with a supra-physiological concentration chosen to suppress hepatic
gluconeogenesis, so that differences in net glucose disposal between groups could be interpreted as
differences in peripheral (mainly muscle) glucose disposal. Insulin infusion rate was the same as
that used in the baseline studies, 60 [16] or 80 [17] mU/m2/min. Glucose was infused at a variable
rate to maintain a venous glucose concentration of 4.5–5.5 mmol/L. Insulin resistance (median clamp
M-value (M/I)) was expressed in terms of average glucose infusion rate (GIR) obtained from the last
30 min of the clamp (steady state) normalised to fat-free mass (FFM) and steady state serum insulin
concentrations (I).

DXA (Lunar Prodigy, GE Healthcare, Chicago, IL, USA) was used to measure total body fat mass
and FFM (enCORE software Version 16), the android and gynoid region, and visceral fat (CoreScan
software, GE Healthcare) at St Vincent’s Clinic Bone Densitometry (Sydney, Australia). Standard fields
of view automatically placed by the DXA software included the android (abdominal) and gynoid
(hip) regions. The lower margin of the android region was defined by the pelvic cut line and the
lateral margins by the arm cut lines. The upper margin was set at a height that is equal to 20% of the
distance between the pelvic cut line and the neck cut line. The height of the android region is used to
delineate the gynoid area. The upper border is set below the pelvic cut at a distance that is 1.5 times the
height of the android region. The height of the gynoid region is twice the height of the android region.
The lateral borders are defined by the outer leg cut lines (GE Healthcare Lunar enCORE-based X-ray
Bone Densitometer User Manual, 2013). Visceral adipose tissue was determined from the android
region by the software algorithm, which corrects total fat mass in the android region for estimated
subcutaneous fat, providing visceral adipose tissue volume in cm3 (which may be converted to mass
using the multiplicative constant 0.94 g/cm3).

Liver fat was measured by liver density, an inverse measure of fat content, derived from CT
(Gemini GXL, Philips, The Netherlands) during the baseline study. Briefly, liver attenuation values
(measured in Hounsfield units [Hu]) from a 10 mm axial slice at T12/L1 level were derived. Three
regions of interest were measured and averaged (one in the left lobe, two in the right lobe) to calculate
the liver attenuation value. 1H-MRS was performed at the follow-up studies, using a 1.5-Tesla Ingenia
whole-body system (Philips Medical Systems, Best, The Netherlands). Briefly, image-guided, localised
1H-MRS were acquired from a voxel of 3.0 × 3.0 × 3.0 cm, with volumes of interest centred within the
right lobe of the liver. Subjects lay supine, with spectra acquired using the PRESS (point resolved
spectroscopy) technique (TR = 2800 ms, TE = 36 ms, six measurements, 1024 sample points) during
respiratory gating. Spectral data were post-processed by magnetic resonance user interface software
(jMRUI version 3.0, EU Project) as described [19]. In order to compare the liver fat content gathered
in the baseline and follow-up studies using different imaging methods (CT and MRS, respectively),
we considered the imaging modalities’ correlations with the gold-standard method for defining fatty
liver, the histological grading of liver tissue. Normal liver fat content is most commonly defined as
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macroscopic steatosis in less than 5% of hepatocytes [20]. To define fatty liver, we applied cut-offs
derived in the study by Van Werven et al., comparing CT, 1H-MRS and liver histology in a similar
cohort. In that study of 46 men and women (average body mass index (BMI) 27 kg/m2, 59 years of age)
fatty liver (>5% liver fat by histology) correlated to a CT measure of 54.2 Hu (with 74% sensitivity and
70% specificity) and 1H-MRS measure of 1.8% (with 91% sensitivity and 87% specificity) [21]. Hence,
the presence of excess liver fat accumulation was determined by a liver attenuation value of less than
54.2 Hu at baseline and a liver fat content of greater than 1.8% at follow-up.

2.3. Biochemical Analyses

Whole blood glucose was analysed using a glucose analyser (YSI 2300 Stat Plus, YSI Incorporated
Ohio USA, Yellow Springs, OH, USA), and serum insulin was measured using radioimmunoassay
(Human Insulin-Specific RIA, Millipore, Burlington, MA, USA). Serum lipid profile was analysed by a
spectrophotometric assay (Advia® 2400 Chemistry System [Siemens Medical Solutions Diagnostics,
Tarrytown, NY, USA]), with low-density lipoprotein (LDL) calculated using the Friedewald equation.
Fibroblast growth factor (FGF)-19, FGF-21, total adiponectin, fatty acid-binding protein 4 (FABP4),
lipocalin 2 and retinol-binding protein 4 (RBP4) were measured by ELISA (Antibody and Immunoassay
service, University of Hong Kong), as previously described [22]. Serum lipid profile and the circulating
adipokines were measured in serum samples, from the baseline and follow-up study stored at −80 ◦C,
after the completion of the follow-up study, whereas whole blood glucose was measured in fresh
samples when collected, on the baseline and follow-up studies. Serum insulin concentrations were
measured in samples batched and stored at −80 ◦C until analysis, at the end of the baseline and
follow-up studies, separately.

2.4. Statistical Analysis

Groupings of the cohort were made using the BMI and M/I value from the baseline data. The Lean
group included all individuals with BMI < 25 kg/m2. Those with BMI ≥ 25 kg/m2 were categorised as
ObRes if their M/I were below the median M/I value for each gender and ObSen if above.

The baseline and follow-up data were analysed to check for homoscedasticity using a Bartlett
test [23]. To compare the differences in outcome measures between groups, if the variances across the
groups were equal, one-way ANOVA was performed followed by a Tukey–Kramer posthoc test for
significance. In the case of unequal variances, Welsh’s ANOVA was calculated and the Games–Howell
posthoc test [24] used to determine significant differences. In both cases, the significance cutoff was 0.05.

To analyse the changes in the variables as a function of time, the rate of change was determined as
Follow−up Value − Baseline Value

Time between measurements for each baseline group. To assess whether the variables for each group
changed significantly over time, the values of the changes were tested to see if they were significantly
different from zero. A one-sample t-test was performed both for all the data (ptime) and for each group.
The significance level in the latter case was corrected for multiple comparisons using a Bonferroni
correction (significance at p ≤ 0.0167), where the significance cutoff of 0.05 was divided by 3, the
number of groups. As the change with time data had unequal variances across the groups, Welsh’s
ANOVA with the Games–Howell posthoc test was used to determine significant differences between
the groups (pgroup). A Chi-squared test was performed to test the change in liver fat status in the
different groups from baseline to follow-up.

Pairwise Spearman correlations between baseline and follow-up values were calculated. Both the
correlations with p ≤ 0.05 and p ≤ 0.01, taking multiple comparisons into account, were determined.
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Statistical analyses were implemented in MATLAB (R2018b The Mathworks, Inc. 2018, Natick,
MA, USA).

3. Results

3.1. Baseline Characteristics

The cohort characteristics are described in Table 1. Median age in this cohort was 49.8 years
(interquartile range (IQR) 22.9, (37.2, 60.0)). When retrospectively grouping the baseline cohort, ObSen

were significantly younger than ObRes (p = 0.001) and not different from the Lean group (p = 0.99).
BMI in ObRes was marginally higher than ObSen (p = 0.056). Fat-free mass and fat mass were not
significantly different between ObSen and ObRes (p ≥ 0.24). While fat content in the gynoid region was
not different between the overweight/obese groups, fat content in the android region in ObSen was
intermediate between Lean and ObRes, and a similar observation was noted for visceral adipose tissue
volume (Table 1). Liver fat measured by CT attenuation index in ObSen was intermediate between the
higher level measured in ObRes and lower level measured in the Lean group (Table 1).

Blood pressure (systolic and diastolic) and fasting blood glucose measured in ObSen were
intermediate between that measured in Lean and ObRes (Table 1). Fasting serum triglycerides
were significantly higher in both ObSen and ObRes compared with Lean (p ≤ 0.002), while fasting
HDL-cholesterol and LDL-cholesterol were not significantly different between the groups (p ≥ 0.15,
Table 1).

By design, baseline insulin sensitivity (M/I value) was higher in ObSen compared with ObRes. M/I
was not different between Lean and ObSen and was significantly higher in Lean compared with ObRes

(Figure 2A). Similarly, fasting insulin was significantly lower in ObSen versus ObRes, and not different
between Lean and ObSen (Figure 2B).

Circulating adiponectin was significantly higher and FABP4 lower in Lean compared with ObRes

(p ≤ 0.026), and concentrations of these adipokines in ObSen were not significantly different from either
Lean or ObRes. Other circulating cytokines, including FGF19, FGF21, lipocalin-2 and RBP4, were not
significantly different between the groups (p ≥ 0.23, Table 1).

Self-reported physical activity engagement was not significantly different between the groups
(p = 0.52, data not shown).
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Table 1. Characteristics of the cohort at baseline and follow-up.

Baseline Follow-Up

Characteristic Lean ObSen ObRes ANOVA p Value Lean ObSen ObRes ANOVA p Value

N (M/F) 42 (20/22) 30 (15/15) 27 (12/15) 17 (11/6) 20 (11/9) 20 (8/12)

Age (years) 45.6 ± 1.9 c 45.2 ± 2.3 c 57.7 ± 2.4 a,b 0.00 1 54.6 ± 2.7 c 54.2 ± 2.4 c 63.4 ± 2.4 a,b 0.01 1

Weight (kg) 64.4 ± 2.0 b,c 85.1 ± 2.3 a 91.0 ± 2.4 a 0.00 1 64.4 ± 3.4 b,c 89.5 ± 3.1 a 92.0 ± 3.1 a 0.00 1

BMI (kg/m2) 22.2 ± 0.6 b,c 28.9 ± 0.7 a 32.0 ± 0.7 a 0.00 1 22.8 ± 1.0 b,c 29.9 ± 0.9 a 32.0 ± 0.9 a 0.00 1

Waist circumference (cm) 80 ± 1 b,c 99 ± 2 a 106 ± 2 a 0.00 1 83 ± 3 b,c 103 ± 2 a 107 ± 2 a 0.00 1

Systolic blood pressure (mmHg) 114 ± 2 b,c 121 ± 2 a,c 134 ± 3 a,b 0.00 1 124 ± 4 c 127 ± 4 c 143 ± 4 a,b 0.00 1

Diastolic blood pressure (mmHg) 71 ± 1 b,c 76 ± 1 a,c 86 ± 2 a,b 0.00 1 79 ± 3 c 80 ± 3 c 91 ± 3 a,b 0.00 1

Fasting blood glucose (mmol/L) 4.5 ± 0.1 b,c 4.7 ± 0.1 a,c 5.1 ± 0.1 a,b 0.00 1 4.5 ± 0.1 c 4.8 ± 0.1 5.1 ± 0.1 a 0.00 1

Total body fat mass (%) 29 ± 1 b,c 38 ± 1 a 41 ± 1 a 0.00 1 31 ± 2 c 40 ± 2 42 ± 2 a 0.00 1

Android fat mass (% of total android mass) 26 ± 1 b,c 42 ± 1 a,c 47 ± 1 0.00 1 29 ± 3 b,c 45 ± 3 a 48 ± 2 a 0.00 1

Gynoid fat mass (% of total gynoid mass) 33 ± 1 b,c 39 ± 2 a 41 ± 2 0.00 1 34 ± 3 c 41 ± 3 42 ± 2 a 0.02 1

Visceral adipose tissue (cm3) 358 ± 110 b,c 1123 ± 129 a,c 1962 ± 13 a,b 0.00 1 593 ± 293 c 1289 ± 307 c 2370 ± 229 a,b 0.00 1

Liver fat *# 60 ± 2 b,c 56 ± 2 a,c 43 ± 2 a,b 0.00 1 1.4 ± 2.2 c 4.2 ± 2.3 8.6 ± 1.8 a 0.00 1

Total cholesterol (mmol/L) 2 4.3 ± 0.2 4.8 ± 0.2 4.7 ± 0.2 0.04 5.1 ± 0.3 5.1 ± 0.3 4.6 ± 0.2 0.30

Triglycerides (mmol/L) 2 0.9± 0.1 b,c 1.3 ± 0.1 a 1.9 ± 0.2 a 0.00 1 1.1 ± 0.2 c 1.3 ± 0.2 1.8 ± 0.1 a 0.00 1

HDL-cholesterol (mmol/L) 2 1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 0.63 1.6 ± 0.1 c 1.4 ± 0.1 c 1.2 ± 0.1 a,b 0.00 1

LDL-cholesterol (mmol/L) 2 2.6 ± 0.1 2.9 ± 0.2 2.7 ± 0.2 0.15 3.0 ± 0.2 3.1 ± 0.2 2.6 ± 0.2 0.34

Adiponectin (mg/L) 28.6 ± 3.1 c 23.8 ± 2.9 17.4 ± 2.9 a 0.01 1 27.7 ± 2.8 23.8 ± 2.7 18.7 ± 2.6 0.07

FABP4 (µg/L) 12.5 ± 5.5 c 18.7 ± 5.0 34.1 ± 4.9 a 0.01 1 13.9 ± 6.6 17.0 ± 6.0 32.2 ± 5.7 0.08

FGF19 (ng/L) 149 ± 37 107 ± 33 131 ± 32 0.70 102 ± 26 110 ± 26 112 ± 24 0.96

FGF21 (ng/L) 156 ± 53 143 ± 46 240 ± 40 0.23 151 ± 45 176 ± 35 191 ± 32 0.77

Lipocalin-2 (µg/L) 104 ± 11 93 ± 10 83 ± 10 0.37 114 ± 23 82 ± 22 79 ± 21 0.48

RBP4 (mg/L) 3.0 ± 0.5 2.3 ± 0.5 2.5 ± 0.5 0.60 2.8 ± 0.4 2.6 ± 0.4 2.1 ± 0.4 0.38

Participants treated with anti-hypertensive medication (n) 1 2 8 1 0 4

Participants treated with lipid lowering medication (n) 0 3 7 1 3 6

Data are mean ± standard error of the mean (SEM). Significance was tested using one-way Analysis of Variance (significant values highlighted in bold) with Games–Howell post hoc
analyses. a mean is significantly different to Lean, p < 0.05; b mean is significantly different to ObSen, p < 0.05; c mean is significantly different to ObRes, p < 0.05. 1 Where the homogeneity of
variances assumption was violated, the Welch statistic was used with Games–Howell post hoc. * Baseline based on CT attenuation (Hu) and follow-up based on 1H-MRS (%). # Liver
attenuation by CT is an inverse correlate of liver fat content. 2 Data logged prior to statistical analyses. Abbreviations: FGF, fibroblast growth factor; FABP4, fatty-acid binding protein 4;
RBP4, retinol-binding protein 4.
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Figure 2. Insulin resistance at baseline and follow-up in Lean and overweight/obese insulin-resistant
(ObRes) and insulin-sensitive (ObSen) individuals. Insulin resistance (median clamp M-value (M/I),
A and C) and fasting serum insulin (B and D) measured at baseline and follow-up, respectively, in Lean
and overweight/obese individuals. Data are individual data points with median and interquartile range
(IQR). Welsh’s ANOVA was calculated and the Games–Howell posthoc test was used to determine
significant differences. The p for the Welsh’s ANOVA is indicated at the top of the plots, with the
significance between groups indicated.

3.2. Follow-Up

Average follow-up was 5.4± 0.1 years (range 4.3–7.6). Of 99 participants at baseline, 57 participated
in the follow-up study (Figure 1). On average, individuals lost to follow-up (for all reasons as detailed
in Figure 1, n = 42) were younger, significantly leaner and metabolically healthier at baseline, with
lower blood pressure and a more favorable baseline lipid profile (Table 2).

BMI remained statistically indistinguishable between ObRes and ObSen at follow-up (p = 0.33,
Table 1), but, similarly to baseline, visceral fat volume remained lower in ObSen compared with ObRes

(p = 0.03, Table 1). At follow-up, however, the distinction in liver fat content, measured by 1H-MRS,
between ObSen and the ObRes group was no longer significant (p = 0.31, Table 1).
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Table 2. Baseline characteristics of participants who were lost to follow-up versus those who
were studied.

Baseline Characteristic Not Studied Studied p Value

N (M/F) 42 (20/22) 57 (27/30) 0.00 1

Age (years) 44.4 ± 2.0 52.1 ± 1.7 0.00 1

BMI (kg/m2) 25.2 ± 0.8 28.1 ± 0.7 0.00 1

Waist circumference (cm) 88 ± 2 96 ± 2 0.00 1

Systolic blood pressure (mmHg) 117 ± 2 125 ± 2 0.01 1

Diastolic blood pressure (mmHg) 75 ± 2 78 ± 1 0.04 1

Fasting blood glucose (mmol/L) 4.5 ± 0.1 4.8 ± 0.1 0.00 1

Fasting insulin (mU/L) 11.7 ± 1.1 14.4 ± 0.9 0.03 1

Total cholesterol (mmol/L) 2 4.1 ± 0.2 4.9 ± 0.1 0.00 1

Triglycerides (mmol/L) 2 1.1 ± 0.1 1.5 ± 0.1 0.01 1

HDL-cholesterol (mmol/L) 2 1.1 ± 0.1 1.4 ± 0.0 0.00 1

LDL-cholesterol (mmol/L) 2 2.5 ± 0.1 2.9 ± 0.1 0.02 1

Data are mean ± SEM. 1 Where the homogeneity of variances assumption was violated, the Welch statistic was used.
Significance was tested using one-way Analysis of Variance (significant values highlighted in bold). 2 Data logged
prior to statistical analyses. Abbreviations: HDL: high-density lipoprotein, LDL: low-density lipoprotein.

Between-group analysis at the follow-up time point revealed that M/I at follow-up in ObSen

remained significantly higher compared to ObRes, and not different from Lean (Figure 2C). Fasting
insulin was not significantly different between ObSen and ObRes at follow-up (p = 0.13), but remained
lower in Lean compared with ObRes (Figure 2D).

Systolic and diastolic blood pressure remained significantly lower in ObSen and Lean compared
with ObRes (p≤ 0.012), but fasting blood glucose was not significantly different between ObRes and ObSen

(p = 0.37), only significantly lower in Lean versus ObRes (p = 0.004). HDL-cholesterol was significantly
higher in ObSen compared with ObRes (p = 0.010), and serum triglycerides were significantly lower
in Lean compared with ObRes (p = 0.003), but not different between ObSen and either Lean or ObRes

(p = 0.070, Table 1).
Similarly to baseline, self-reported physical activity engagement was not different between the

groups at the follow-up time point (p = 0.35, data not shown).

3.3. Change in Anthropometry, Metabolic Health and Insulin Resistance

We evaluated the change in metabolic parameters with time, by calculating the difference in the
values of the measures from baseline to follow-up, normalising for the time elapsed between the
baseline and follow-up studies.

3.3.1. Body Weight and Fat Content

Surprisingly, BMI (ptime = 0.24, Figure 3A) and waist circumference (ptime = 0.17, Figure 3B) did
not change significantly over time in this cohort. However, body fat increased significantly over
time (ptime = 0.006, Figure 3C). Other anthropometric and body composition (DXA-derived) variables
changed significantly over time, and while none showed a significant difference between groups
(Figure 3), in many the significant changes over time were driven by the ObRes group (as evaluated by
one-way t-test, Bonferroni-corrected and accepting p ≤ 0.0167 as statistically significant). For example,
FFM decreased significantly (ptime = 0.0035, Figure 3D), and the change with time primarily driven by
the ObRes (p = 0.0163). Similarly, fat content in the android region increased significantly over time
(ptime = 0.0013, Figure 3E), driven by the ObRes group (p = 0.0087, Figure 3E). Visceral fat volume
increased over time (ptime < 0.001, Figure 3F), driven by a significant increase in the ObRes (p = 0.0001,



J. Clin. Med. 2019, 8, 623 10 of 16

Figure 3F). On the other hand, gynoid region mass decreased significantly in the cohort (ptime < 0.001),
also driven by a decrease in the ObRes (p = 0.0005).

3.3.2. Liver Fat

Fatty liver status did not change significantly for any of the groups from baseline to follow-up
(Chi-squared test p = 0.62, p = 0.32 and p = 1, for Lean, ObSen and ObRes, respectively). There was a
larger proportion of ObSen compared with ObRes having a stable absence of fatty liver (56 versus 12%);
and a larger proportion of ObRes compared with ObSen having a stable presence of fatty liver (76 versus
22%, Table 3).

Table 3. Presence of fatty liver at baseline and follow-up in Lean, ObSen and ObRes.

Presence of Fatty Liver
(Baseline to Follow-Up) *

Study Group

Lean
(n, % of Group)

ObSen
(n, % of Group)

ObRes
(n, % of Group)

Stable Absence (n = 14) 7 (64%) 5 (56%) 2 (12%)

Gain of fatty liver (n = 5) 2 (18%) 2 (22%) 1 (6%)

Loss of fatty liver (n = 2) 1 (9%) 0 (0%) 1 (6%)

Stable Presence (n = 16) 1 (9%) 2 (22%) 13 (76%)

Total (n = 37) 11 (100%) 9 (100%) 17 (100%)

Paired liver fat measurements were available for a sub-cohort of 37 individuals who had CT and MRS at baseline
and follow-up, respectively. * Presence of fatty liver determined by a CT value of <54.2 Hu at baseline and MRS
> 1.8% at follow-up, as described by van Werven et al. [21]. Terminology: Stable Absence: Fatty liver absent at
baseline and follow-up; Gain of fatty liver: Fatty liver absent at baseline but present at follow-up; Loss of fatty liver:
Fatty liver present at baseline but absent at follow-up; Stable Presence: Fatty liver present at baseline and follow-up.
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Figure 3. Change in anthropometry, metabolic health and glucose regulation markers from baseline to
follow-up in Lean and overweight/obese insulin-resistant and insulin-sensitive individuals. Annual
change in body mass index (BMI) (A), waist circumference (B), body fat (C), fat-free mass (D), android
fat (E), visceral fat (F), systolic (G) and diastolic (H) blood pressure, fasting blood glucose (I), M/I (J),
fasting insulin (K) and glucose infusion rate (GIR)/I (L) in Lean and overweight/obese individuals.
Change (IQR) in variables as a function of time, for each of the baseline groups: Lean, ObRes and
ObSen. The change was determined as Follow-up Value−Baseline Value

Time between measurements . Differences between the groups
were assessed using a Welsh’s ANOVA (accounting for unequal variances in the change data) with
the Games–Howell posthoc test. The pgroup value is indicated at the top of each plot for each variable.
Changes over time for the cohort were assessed using a one-sample t-test for difference from zero with
ptime also indicated at the top of each plot. The p values for the differences from zero for each individual
group are shown at the bottom of each plot. A correction for multiple comparisons (Bonferroni) was
applied with significance set at p ≤ 0.0167. Data are individual values of change (IQR). Abbreviations:
WC, waist circumference; FFM, fat-free mass; SBP, systolic blood pressure; DBP, diastolic blood pressure;
FBG, fasting blood glucose.

3.3.3. Cardiovascular Health Markers and Insulin Resistance

Systolic blood pressure increased overall (ptime = 0.0003, Figure 3G), and significantly in ObRes

(p = 0.0039), while diastolic blood pressure, whilst increasing across the whole cohort (ptime = 0.0003),
did not change significantly (with Bonferroni correction) within any of the groups (Figure 3H).
Fasting glucose (ptime = 0.42, Figure 3I), HDL-cholesterol (ptime = 0.88), LDL-cholesterol (ptime = 0.75),
triglycerides (ptime = 0.73) and total cholesterol (ptime = 0.78) did not change significantly over time in
this cohort (with little change in the number of individuals treated with lipid-lowering medication,
Table 1). Similarly, M/I (ptime = 0.40, Figure 3J) and fasting insulin (ptime = 0.95, Figure 3K) did not change
significantly over time. As body FFM decreased significantly in ObRes (Figure 3D, pObRes = 0.0163),
we calculated a new variable GIR normalised to circulating steady state insulin, but not normalised
to FFM. Similar to M/I, this new variable GIR/I did not change significantly over time in this cohort
(ptime = 0.31, Figure 3L).
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3.4. Correlates of Follow-Up Insulin Resistance

Baseline and follow-up anthropometry, metabolic markers and glucose control, including insulin
resistance, correlated tightly (Figure 4). The best correlate of follow-up insulin resistance (M/I) was
baseline M/I, followed by inverse correlations with central adiposity, measured by visceral fat volume
and waist circumference, fat-free mass, BMI, diastolic blood pressure, fasting serum insulin and liver
fat (Table 4).

Table 4. Baseline correlates of follow-up insulin resistance (M/I).

Baseline Measure R p

M/I 0.76 1.1 × 10−07

Visceral fat volume −0.63 5.7 × 10−05

Waist circumference −0.63 5.8 × 10−05

Fat-free mass −0.53 0.001

BMI −0.52 0.001

Diastolic blood pressure −0.49 0.003

Fasting Insulin −0.50 0.003

Liver attenuation (Hu) * 0.49 0.003

Systolic blood pressure −0.47 0.004

Fat in the android region (% of total abdominal fat) −0.46 0.006

Serum triglycerides −0.38 0.025

Serum HDL cholesterol 0.36 0.034

Adiponectin 0.34 0.044

Fasting blood glucose −0.34 0.046

Age −0.33 0.052

FGF21 −0.29 0.126

FABP4 −0.26 0.149

Body fat (% whole body mass) −0.25 0.154

Serum LDL 0.24 0.163

Total Cholesterol 0.19 0.277

RBP4 0.06 0.711

Fasting NEFA 0.07 0.714

Lipocalin−2 0.05 0.764

FGF19 −0.03 0.878

Fat in the gynoid region (% of total abdominal fat) −0.02 0.922

Spearman coefficients were calculated. Significant p values are bolded; * Liver attenuation by CT is an inverse
correlate of liver fat content.
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4. Discussion

In this study, we followed the change in insulin resistance, metabolic health and body fat
composition in individuals with overweight and obesity over a 4.3–7.6 year period. Insulin resistance
did not change significantly over time in this cohort, and, similarly to the Lean group, ObSen maintained
their superior insulin sensitivity relative to ObRes at follow-up. However, it is important to note that
when we retrospectively grouped individuals who were overweight and obese into insulin-sensitive
and insulin-resistant sub-groups, the ObSen group was significantly younger than the ObRes group.
This is consistent with large cohort epidemiological studies, following the change in metabolic health
in individuals who were overweight and obese, reporting that metabolically healthy obesity is rare in
older individuals, and that the majority of individuals who are overweight and obese are likely to
acquire the metabolic syndrome over time, at ages ranging from early 50s to late 80s [7–14].

Two consistent predictors of maintenance of metabolic health in obesity across previous large
cohort longitudinal studies were younger age, and a more peripheral fat distribution [9,15]. In our
study, we found that insulin-resistant individuals who were overweight/obese were more susceptible
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than the insulin-sensitive groups to adverse deposition of abdominal adiposity (android region and
visceral fat) and loss of gynoid region and fat-free mass. This was despite no change in BMI or waist
circumference over time. Insulin resistance in obesity is strongly associated with muscle mass loss in
the elderly, termed “sarcopenic obesity” [25]. In a large cohort of non-obese and obese individuals, Lee
and colleagues reported that the proportion of muscle mass (appendicular muscle) to body weight
was significantly elevated in men with obesity who remained metabolically healthy over 4 years [26].
The same was found in men and women who were non-obese, but interestingly, not in women with
obesity [26]. Skeletal muscle is the primary tissue determining whole body insulin resistance. Fat-free
mass loss was observed only in the ObRes sub-cohort. To our surprise, this was not reciprocated with
further deterioration in insulin resistance measured by either hyperinsulinemic-euglycemic clamp or
fasting insulin. This may be explained by these methodologies’ lowest detection limits, or by the fact
that the FFM loss was not substantial enough to affect whole body insulin resistance.

We and others have suggested that a low degree of liver steatosis is a strong feature of insulin
sensitivity in obesity [27]. Indeed, liver fat content measured by CT in ObSen in the present study
was intermediate, higher compared with Lean and lower compared with ObRes, confirming previous
observations [2,28]. Presence or absence of fatty liver over time in the present study did not change
for the majority of participants, with more ObSen having a stable absence of fatty liver than ObRes

and more ObRes having a stable presence of fatty liver than ObSen. At follow-up, the significant
distinction in liver fat content between ObSen and the ObRes was lost. We speculate that this relates
to the smaller sample size at follow-up, and possibly inadequate statistical power, or the relatively
short-term follow-up. Healthy adipose tissue expansion and better capacity to upregulate lipogenesis
in adipose tissue [2,29,30] are thought to explain protection against lipid spill-over to the liver and
the muscle in insulin-sensitive obesity. While these findings should be interpreted cautiously due to
the different modalities used to evaluate liver fat at baseline and follow-up, the maintenance of the
baseline liver fat status by the majority of participants is consistent with the lack of significant change
in insulin resistance over time in the present study.

Interestingly, the best correlate of future insulin resistance was insulin resistance measured at
baseline, suggesting that insulin resistance is an intrinsic characteristic. Other strong predictors were
visceral fat, waist circumference, BMI and liver fat. Higher waist circumference [15] and visceral fat
area [11] have been previously suggested to predict loss of metabolic health in obesity over time. Here,
we complement these findings and maintain that ectopic deposition of fat in the liver at younger age
predicts future insulin resistance.

The strengths of our study include the detailed phenotyping using gold-standard measurement of
insulin resistance and body fat composition and distribution, and the paired design. A major limitation
is the loss of participants to follow-up and the small sample size at follow-up. Furthermore, bias
relating to populations likely to volunteer to studies may have affected the findings and may explain
the failure to detect changes in body weight over time, contrary to expectations. Lastly, different
modalities were used to measure liver fat at baseline and follow-up and the cut-offs used to define fatty
liver status were adopted from a different study population, which may have influenced the findings.

5. Conclusions

Our findings suggest that insulin resistance at an older age strongly aligns with unfavourable
abdominal fat distribution and liver fat measured at a younger age. Furthermore, insulin resistance
at a young age predisposes to adverse metabolic outcomes and fat-free mass loss, suggesting that
maintenance of body fat-free mass should be encouraged to promote healthy aging in obesity.
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