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Abstract: The present investigation aims to develop nanocrystalline (NC) pure aluminum powders
using cryomilling technique and manufacture bulk components using spark plasma sintering (SPS).
The cryomilling was performed on pure Al powders for 2, 6, and 8 h. The cryomilled powders were
then consolidated using SPS to produce bulk components. The particle morphology and crystallite
size of the powders and the bulk SPS components were analyzed using scanning electron microscopy
(SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed
that the crystallite size of pure Al powders decreases with increased cryomilling time. The results
also showed that the SPS at elevated temperatures resulted in a slight increase in crystallite size,
however, the changes were insignificant. The mechanical properties of the bulk components were
determined using a Vickers microhardness tester. The hardness of the cryomilled SPS component
was determined to be three times higher than that of the unmilled SPS component. The mechanism
for the reduction in crystallite size with increasing cryomilling time is discussed. This fundamental
study provides an insight into the development of bulk nanomaterials with superior mechanical
properties for automotive, aerospace, marine, and nuclear applications.

Keywords: nanocrystalline aluminum; cryomilling; spark plasma sintering; synthesis; characterization;
microstructures; mechanical properties

1. Introduction

Over the past decades, conventional polycrystalline materials with coarse grain size
have been commonly used for various industrial applications. However, researchers need
to find alternative ways when the application demands superior mechanical properties
and surface integrity. Severe plastic deformation (SPD) is considered a viable solution for
improving surface mechanical properties and surface integrity in polycrystalline materi-
als [1–4]. These SPD methods can create gradient nanostructured layers on the component’s
surface, thereby providing superior fatigue resistance, corrosion resistance, hardness, and
other tailored properties. This method can significantly hinder crack initiation and propa-
gation on the component surface and remarkably improve surface mechanical properties.
However, SPD techniques can provide enhancement in properties up to a limited depth
from the surface. In addition to that, these post-processing techniques are costly. Scholars
revealed that adopting nanostructuring can enhance the bulk mechanical properties of the
materials and can be effectively used for an application that needs remarkable properties [5].

The concept of nanostructuring to achieve nanocrystalline (NC) materials was first
introduced by Birringer et al. [6] in 1984. NC materials are single or multi-phase solids
with a mean crystallite size of 100 nm or less [7]. Since then, this concept has been widely
accepted and is quite popular among material scientists and engineers. According to the lin-
ear Hall–Petch relationship for NC materials, a significant proportion of the crystallites are
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located on or near the grain boundaries due to the small size of the constituting grains [8].
These act as a barrier for dislocation movement and grain growth, thus creating internal
flow stress [9]. As a result of this, NC materials offer superior mechanical properties and are
considered as a potential candidate for applications that demand improved properties com-
pared to polycrystalline materials with coarser grain structures [10]. Scholars have reported
high hardness [11,12], enhancement in strength [13,14], superior wear resistance [15,16],
improved fatigue life [17,18], high thermal expansion coefficient [19,20], and high corrosion
resistance [21,22] for NC materials. NC materials are also reported to have seven times
higher hardness and ten times higher yield strength as compared to their polycrystalline
coarse grain counterparts [23,24]. NC materials possess a unique combination of high
strength and ductility, making them ideal for structural and functional applications in
diverse sectors, such as automotive, aerospace, marine, and nuclear applications.

NC materials can be produced using different methods, but the commonly employed
methods are high-energy ball milling (HEBM) and cryomilling. Among them, cryomilling
is a much sought-after energy-efficient and environment-friendly process to synthesize NC
materials in bulk quantities. The cryomilling process uses liquid nitrogen (LN2) which is
non-toxic to the environment. The cryogenic temperature during the process aids in rapid
grain refinement and prevents any hazardous decomposition of materials being cryomilled,
ensuring a lesser chance of contamination. The only by-product of the process is nitrogen
gas which can be directly released into the air, causing no harm to the environment. The
presence of a cryogenic environment also prevents the recovery and recrystallization of
refined grains [25]. This ultimately provides a superior crystallite size reduction and
significant grain refinement compared to other NC material synthesis methods. Several
studies reported the beneficial role of cryomilling on the mechanical properties of various
components used for diverse applications. Guan et al. [26] analyzed the effect of cryomilling
duration on microstructure evolution and microhardness of AZ31 Mg powders. The
authors reported a crystallite size of 26 nm after 6 h of cryomilling, and they revealed
that in the initial stages of cryomilling, cold welding of the particles dominated over the
fracture, which led to an increase in the crystallite size. However, when the cryomilling
time increases, fracture dominates over cold welding, which reduces crystallite size. The
authors summarized that the 6 h of cryomilling significantly reduced the crystallite size
and provided a remarkable improvement in the hardness of the material. Kumar et al. were
able to produce bulk quantities of NC aluminum powder with crystallite size as low as
7 nm to 10 nm [27]. Recently, cryomilling has been actively employed to produce bulk NC
powders for various metals and their alloys, thus establishing it as an effective method of
manufacturing bulk quantities of NC powders [28–32].

The superior properties of the bulk samples depend upon the preservation of the NC
structure during the sample preparation. However, conventional methods of producing
bulk samples using powder metallurgy often result in substantial grain coarsening during
the consolidation process. Tang et al. [33] experimented with cryomilled Al5083/SiCp
composite powders and performed hot isostatic pressing (HIP) to create bulk samples. Their
results showed that cryomilled powder with a mean crystallite size of 30 nm undergoes
rapid grain growth after HIP followed by hot rolling at 400 ◦C, with an increase in the
crystallite size in the range of 100 nm to 200 nm. In the inter-particle region, the grain
size increased to 700 nm, which no longer lies under the NC regime (less than 100 nm).
Kishimoto et al. [34] reported an increase in crystallite size in the range of 25 nm to 500 nm
during the HIP of 14CrYWTi ferritic alloys. Spark plasma sintering (SPS) is a novel powder
metal sintering technique that has been recently employed to prepare nearly dense bulk
NC components using metal powders [35–37]. SPS is a modified HIP method in which the
pulsed-current and the uniaxial pressure are applied at the same time [38]. The heating
of the powder sample occurs due to the pulsed current flowing through the die into
the sample, which causes rapid heating of the sample at nearly 1000 ◦C/min [39]. The
high temperature allows for the densification of the powdered sample under constant
uniaxial pressure. This allows the creation of bulk samples at much lower temperatures
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and shorter heating cycles than other consolidated techniques. Due to a lower temperature
and short heating cycle, the metal powders can retain the NC property, which facilitates
the improvement in mechanical properties [40]. The electric discharge generated between
the powder particles helps break down the oxide layer on the aluminum particle surface,
thus reducing the oxide content in the SPS sample [41]. Although SPS has been used
to consolidate different types of metals, ceramics, alloys, etc., the inherent behavior of
each of the constituents during the consolidation process affects the properties of the SPS
component. In the case of NC materials, the NC grains are susceptible to grain coarsening
due to elevated temperatures [42]. Therefore, the sintering parameters such as sintering
temperature, uniaxial pressure, and sintering time need to be well established for such
unique materials. During the SPS consolidation process, the densification mechanism
to produce highly dense components for low melting point metal, such as pure Al with
NC grain structure, remains unclear. There is also very limited research on the effect of
cryomilled particle morphology, such as an increased surface area for oxidation and uneven
surface texture on the SPS sample density and grain growth.

In the current study, the cryomilling process was used to prepare NC pure Al powders,
and the SPS process was used to consolidate these powders to achieve a bulk NC sample.
The morphology and microstructure evolution of the pure Al powders and the bulk SPS
samples were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD),
and transmission electron microscopy (TEM). The hardness of the bulk SPS samples was
studied using Vickers microhardness testing. The inherent mechanisms of the cryomilling
and SPS processes and their effect on the crystallite size and properties of pure Al were
analyzed based on the characterization studies.

2. Experimental Procedures
2.1. Sample Preparation
2.1.1. Powders

To prepare NC powder samples, gas-atomized pure Al powder (product no. 11067)
from Alfa Aesar (Haverhill, MA, USA), with −325 mesh and 99.5% purity (trace metals
less than 0.5%) was cryomilled for the current study. Pure Al was selected for this study
to gain a fundamental understanding of crystallite size reduction using the cryomilling
process for Al and its alloys. This study also helps to understand the mechanisms involved
in bulk component manufacturing using NC powders at elevated temperatures that can be
used to manufacture other NC alloys with enhanced mechanical properties. Figure 1 shows
the morphology of as-received Al powder particles which have an irregular cylindrical
shape. The powders were stored in airtight containers under a nitrogen environment in a
glove box to prevent oxidation, with silica packets to remove any water from the ambient
environment before and after cryomilling.
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The cryomilling of the powders was performed using a modified Union Process 01-ST
attritor mill. To prepare the setup for cryomilling, the attrition chamber was moved into the
glove box under a nitrogen environment to avoid the exposure of Al powder to atmospheric
oxygen, thus preventing oxidation. First, a layer of stainless steel (SS) milling media of
6 mm diameter was added to the attrition chamber to cover the bottom surface. The Al
powder was then evenly spread on top of this milling media layer. 0.1 wt.% of stearic acid
(C18H36O2) was also added per 100 g of pure Al powder as a process control agent to avoid
the agglomeration of the particles during the cryomilling process. Followed by the addition
of powders, the remaining milling media was then added to sandwich all the powders in
between the milling media layers. Finally, the milling rod was inserted into the chamber
and the lid was secured at the top of the chamber, including the seal and lubricant that
hold the milling rod in place. This loaded and sealed chamber was then removed from
the glovebox and attached to the milling frame. The chamber was hooked up to a liquid
nitrogen tank pumping directly into the attrition chamber to ensure the powder remains at
cryogenic temperatures and to displace any oxygen. The exhaust from the chamber was
hooked up to a fume hood to minimize the exhaust metal powder dispersion into the room.
Figure 2 shows the cryomilling setup used for the experiment at the University of Nevada,
Reno, NV, USA [5].
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Figure 2. Cryomilling setup at the University of Nevada, Reno.

The Al powder was cryomilled with a ball to powder ratio of 30:1 at 180 rpm for 2,
6, and 8 h. The nitrogen was supplied continuously to the attrition chamber through a
cryo-pump using a cryo-controller, at a constant pressure of 16 psi which maintains the
chamber temperature at around −190 ◦C. The temperature was monitored continuously
for the entire duration of the experiment. After completion of the cryomilling process, the
chamber was allowed to warm up between −10 ◦C to 4 ◦C for the extraction process. The
chamber was then removed from the milling frame and wiped clean before being placed
back in the glovebox to remove excess moisture from condensation. The glovebox was then
sealed and again filled with nitrogen for the extraction process. The powder and media
were poured onto a sieve to separate the powder from the media. The milled powder
was then collected and packed in an airtight container for material characterization and
preparation of bulk SPS samples.

2.1.2. Bulk SPS Consolidated Samples

The bulk SPS components were prepared with unmilled and cryomilled pure Al
powders at California Nanotechnologies (Cerritos, CA, USA) using a 211XL SPS machine.



Nanomaterials 2022, 12, 551 5 of 19

20-g powders samples were formed at 500 ◦C under 100 MPa pressure using a 25.4 mm
diameter mold. Preliminary tests were conducted to determine the ideal time of consol-
idation for each type of sample. The raw/unmilled pure Al samples were sintered for
around 30 min whereas the 8 h cryomilled samples were sintered for around 15 min. The
prepared SPS samples were 12.7 mm tall and 25.4 mm in diameter, as shown in Figure 3.
The density of the SPS samples was determined using the Archimedes principle. While
the SPS samples for raw/unmilled powders had a density value of 99.3% of theoretical
density (TD), the samples prepared with cryomilled powders had a density of 98% of TD.
The small difference in the density arises due to the varying morphology of the unmilled
and milled powders. During the cryomilling process, the repeated welding and fracturing
of the particles leads to the formation of crevices and voids on the surface of the particles.
This uneven texture of the particle surface traps air between multiple particles during the
SPS process causing the formation of microscopic voids. As a result, the density of milled
particles is slightly lower than the unmilled particles.
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2.2. Characterization
2.2.1. X-ray Diffraction Analysis

The unmilled and cryomilled pure Al powders were analyzed using Bruker D8 ad-
vance X-ray diffractometer (Billerica, MA, USA) by Cu Kα (λ = 0.154178 nm) radiation
to determine the phase composition and the crystallite size. Five XRD diffraction peaks
were used to determine the phases using the JCPDS data for Pure Al. The crystallite size
was calculated by the measurement of the peak broadening method using a linear fitting
to obtain the Full Width at Half Maximum (FWHM) [43]. The Williamson–Hall method
was used to compute the crystallite size of the nanomaterials by determining the total
broadening of the peaks [44]. The total broadening (βT) is equal to the sum of broadening
due to Strain (βε) and the broadening due to crystallite size (βD). The total broadening is
given by the following Equation (1):

βT cos θ = ε (4 sin θ) +
Kλ

D
(1)

Here, ε is the strain, θ is the Bragg’s angle, K is the Scherrer’s constant, λ is the wavelength
of X-ray, and D is the crystallite size. The above equation represents a straight line when
βT cos θ is plotted against 4 sin θ. The slope of the straight line is ε and y-intercept is Kλ

D .
A straight-line curve fitting of this equation, as shown in Figure 4, indicates that the Al
powder is completely random and has no preferential orientation (texture). This straight-
line fit has a high value of correlation coefficient (r2) which indicates that the crystallite
size can be accurately calculated using this method. However, for cryomilled powders,
there is a deviation from the straight-line fit reducing the value of r2 which decreases
the accuracy of the crystallite size measurement. With the increase in cryomilling time,
the net contribution in the broadening of the XRD peaks from the strain energy increases
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as compared to the broadening due to the reduction in crystallite size [45]. Hence, for
higher cryomilling durations, the Williamson–Hall analysis cannot be used to compute the
crystallite size accurately.
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In general, the peaks in an XRD pattern start to broaden with the increase in milling
time, resulting in the decrement of crystallite size. This broadening of peaks can be
measured at the FWHM to determine the crystallite size using the Scherrer’s Equation (2)
as given below:

L =
Kλ

B(2θ) cos θ
(2)

Here, B(2θ) is the FWHM of an individual XRD Peak, θ is the Bragg’s angle, λ is the
wavelength of X-ray, L is the determined crystallite size, and K is the Scherrer’s constant.
The value of K is 0.94 for pure aluminum as it has a cubic symmetry.

2.2.2. Transmission Electron Microscopy Analysis

Analysis of the crystal structure, grain size, and the chemical composition within the
microstructure of pure Al and cryomilled powder particles were also performed utilizing
TEM (JEOL 2800 STEM field-emission gun, Tokyo, Japan) at 200 keV coupled with dual
energy dispersive X-ray spectroscopy (EDS) detectors. The elemental and chemical compo-
sition of the pure Al powder particles and bulk SPS samples were determined using these
dual EDS detectors.

The Al powder samples were prepared for TEM by dispersing the dry powders onto
the TEM grid: ultrathin carbon type A, 400 mesh copper (TedPella, Redding, CA, USA,
Product no. 01822). For SPS samples, thin metal shavings were milled out and a focused ion
beam (FIB) lamella was prepared using a standard procedure on a ThermoFisher (Waltham,
MA, USA) FEI Helios Nanolab 650 equipment [46]. The region of interest was located
using the SEM. An electron beam deposited platinum protective layer was deposited with
approximate dimensions 10 µm × 1 µm × 1 µm. A second protective layer was then
deposited using an ion beam deposited platinum. Trenches were milled on both sides of
the protective layer. A micromanipulator was brought near to the surface and attached
with a platinum weld. The sides were cut free, and the lift-out section was then moved
to a support grid. Once there, it was attached to another platinum weld and then the
manipulator was cut free. The lift-out was then thinned out using a series of decreasing ion
beam voltages: 30 kV, 16 kV, 8 kV, and a final polishing using 2 kV.

The HRTEM images of the nanoparticles were analyzed using ImageJ software to
obtain the d-spacing from the crystalline structure. The fringe pattern in the HRTEM image
shows the individual atomic layers that can be measured by directly drawing a selection
line. This selection line results in a profile plot that can be measured across the maximum
points to determine the d-spacing. However, the image contrast may result in a poor profile
plot, in turn affecting the accuracy of d-spacing determination. In the current study, the
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fringe pattern is first converted into Fast Fourier Transform (FFT) followed by inverse FFT
after selecting specific bright diffraction spots in the FFT image. This provides a clear image
with high contrast which can be analyzed by plotting the profile by a selection line drawn
across the fringe pattern to determine the d-spacing. This d-spacing is used to determine
the crystallographic plane for the bright spots by referring to the corresponding JCPDS card
for Pure Al. The d-spacing can be calculated from the plotted profile using the following
Equation (3):

d-spacing =
Total length o f plot pro f ile in nm

Total number o f pro f ile peaks in pro f ile length
(3)

2.2.3. Scanning Electron Microscopy Analysis

The particle morphology and microstructure of the pure Al and cryomilled Al powders
were examined by field-emission SEM (FEI Quanta 600 FEG, Waltham, MA, USA). The
SEM images were taken at 10 kV at multiple magnification levels up to 5000×. Elemental
analysis of cryomilled powder particle surface was also performed in SEM using EDS by
measuring the energy and intensity of X-rays generated by the electron beam on the sample.

2.2.4. Study the Effect of Annealing Temperature on Grain Coarsening

Due to the small crystallite size and large grain boundary percentage, the crystallites
are susceptible to grain coarsening behavior at elevated temperatures due to annealing. To
understand this grain coarsening behavior of cryomilled powders, samples were subjected
to annealing temperatures in a Thermo Scientific (Waltham, MA, USA) Lindberg/Blue M
LGO 1200 ◦C BF 51842 Series Box Furnace for 1 h at 300 ◦C, 400 ◦C, 500 ◦C, and 550 ◦C,
and allowed to air cool. Post-annealing, the crystallite sizes were determined using XRD to
understand the effect of varied annealing temperatures on the grain coarsening.

2.2.5. Microhardness Testing

The microhardness testing was performed on a Tukon 1202 (Buehler, Lake Bluff, IL,
USA) microhardness testing machine using a Vickers diamond indenter tip at an indentation
load of 50 g with a total indentation time of 15 s, and a dwell time of 10 s. To prepare
the samples for microhardness testing, each SPS sample was cut using a diamond disk
precision cutter and cold mounted using an epoxy resin-hardener in a 31.75 mm diameter
mold. The top surface of the mounted samples was then polished with up to a 1 µm
diamond polish slurry to get a mirror finish. For microhardness testing, the samples were
secured to the indentation platform by securing tabs that ran parallel to the platform. Ten or
more indents were performed on the polished top surface of the SPS sample across the
surface. Any exceptionally low hardness measurement values were considered erroneous.
These lower values were most likely measured when the indenter was on top of or in close
vicinity of a porosity. These values were ignored during the microhardness calculations.

3. Results and Discussion
3.1. Cryomilled Powders

Cryomilling of the powders was performed in the mechanical attritor at cryogenic
temperatures. During the cryomilling process, the Al particles undergo repeated fracturing,
shearing, cold welding, and re-fracturing under the forces of SS milling media impacting
with each other [47]. Due to this repeated fracturing and cold welding of the particles,
the aspherical particles become flattened after 2 h of cryomilling as seen in Figure 5a. On
further cryomilling, these particles start agglomerating together to form spherical structures
that are much larger than the original powder, as seen after 6 h of cryomilling in Figure 5b.
The surface of these agglomerated particles starts to smoothen out on further cryomilling.
An individual agglomerated particle with flattened surface texture after 8 h of cryomilling
is shown in Figure 6a. These bigger particles also break apart into smaller particles of less
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than 50 µm, as seen in Figure 6b. It can also be observed from the SEM images that the
milled Al particles, after 8 h of cryomilling, have a lot of fractures and pores.
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Figure 6. SEM micrographs of pure Al powders after 8 h of cryomilling as seen (a) agglomerating to
form large particles, and (b) broken apart into small particles.

During the processing of cryomilled powders, they are mostly maintained in a nitrogen
environment to prevent oxidation. However, to understand the oxidation impact on the
as-received powders, EDS studies were conducted on the unmilled particle surface. The
EDS elemental analysis in TEM for unmilled pure Al particle surface showed the presence
of 5.82% oxygen on the surface of the particle, indicating surface oxidation of as-received
pure Al. This occurs due to short periods of exposure of metal powders to atmospheric
oxygen since pure Al is highly susceptible to oxidation. Figure 7 shows the EDS plot for the
unmilled powder particle surface, showing elemental peaks for Al and oxygen. The inset
of Figure 7 shows the corresponding unmilled pure Al particle as determined using TEM.
The selected area shown on the surface of the particle in the inset figure was characterized
as part of particle surface elemental analysis. During cryomilling of this as received pure
Al powders, the oxidized surface on the unmilled particles gets mixed and agglomerated
inside the particle body due to the repeated fracturing and welding. This agglomerated
oxygen might have an impact on the particle properties. Thus, EDS studies were also
conducted using SEM on cryomilled powder particles showing that the particles were
composed of 99% pure Al, indicating no contamination during the cryomilling process.
It also indicated that oxygen is present in trace amounts which will not have any impact
on the particle property. Figure 8 shows the EDS plot for the 8 h cryomilled sample
particle, showing peak for pure Al only. The inset of Figure 8 shows the corresponding 8 h
cryomilled particle (selected area) that was subjected to EDS characterization.
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Figure 8. EDS plot for the 8 h cryomilled powders showing elemental peak for Al and the corre-
sponding particle (inset image) as determined using SEM.

The XRD pattern of the cryomilled powder particles showed the material phase
composed of pure Al with no impurities (JCPDS Card No. 03-065-2869). XRD peak intensity
matching to the JCPDS card indicates that the Al powder is completely random and has
no preferential orientation (texture) [30]. Figure 9a shows the XRD patterns for 0, 2, 6, and
8 h cryomilled Al powders. Sharp XRD peaks for all four powder samples indicate that
the Al powder is completely crystalline before and after the cryomilling process. Figure 9b
shows the broadening and shifting of the characteristic (111) peaks for unmilled and 2,
6, and 8 h cryomilled pure Al powders. The peak shift however does not indicate any
specific pattern and thus was assumed to be a device error. For the XRD peak broadening,
it is clear that for unmilled pure Al powders, the peak is much narrower than that of the
8 h cryomilled powders. It is also observed that with the increase in cryomilling time the
corresponding XRD peaks tend to broaden, which indicates the reduction in crystallite
size and increase in strain energy as suggested by the Williamson–Hall equation. From the
Williamson–Hall analysis, the correlation coefficient of the linear fit (r2) for the unmilled
pure Al was determined to be 0.99 and for the 2 h cryomilled sample, it was 0.98. This
value further reduces to 0.94 and 0.92 for 6 h and 8 h cryomilled sample, respectively,
causing a deviation from the straight-line fit. This deviation results in decreased accuracy
for the crystallite size measurement [44,45]. Scherrer’s equation was used to overcome this
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limitation for the crystallite size determination. The broadening of the XRD peak results
in increasing the FWHM, which has an inverse relationship with the crystallite size in
Scherrer’s equation. The value of K for pure Al is 0.94 and the wavelength (λ) is 1.541178 Å
for the Cu radiation tube.
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The nanostructuring and the polycrystallinity of the cryomilled powders were verified
with the bright-field TEM image. Figure 10a–d shows the bright-field TEM images for the
unmilled, 2, 6, and 8 h cryomilled pure Al powder particles. The inset of each of these bright-
field TEM images shows the associated selected area diffraction (SAD) pattern having sharp
spots and concentric ring pattern, conclusively indicating the polycrystalline nature of the
material. SAD patterning was used to determine the crystal structure, lattice parameters,
and crystallinity of the material. The SAD pattern was formed by focusing an electron beam
through the sample and recording the diffracted beams from different crystallographic
planes diffracting at certain angles. The diffracted beams were projected onto the phosphor
screen, which leave corresponding bright spots. In this SAD pattern, each point represents
a single crystallographic plane direction. These sharp spots in the SAD pattern can be
analyzed to determine the specific plane associated with the corresponding spots. In the
inset of Figure 10a, the SAD pattern for unmilled pure Al shows a diffraction pattern closer
to that of a single crystal with a few distinct bright spots at regular spacing and a specific
pattern. However, the appearance of a few non-regular bright spots indicates diffraction
from more than one crystallite in the diffraction area. Thus, the powder particles have a
polycrystalline nature with a larger crystallite size. In the inset of Figure 10b–d, the SAD
pattern for the 2, 6, and 8 h cryomilled samples, the SAD pattern shows a ring of bright spots,
which indicates the diffraction from many crystallites in the diffraction area. Thus, it can be
concluded that the crystallites are much smaller for cryomilled powders, to accommodate
many more crystallites in a smaller diffraction area. The small size of the crystallites is also
indicated by the reduced brightness in the outer rings, as the crystallographic planes for
these rings have larger atomic spacing and show the existence of NC crystallite structures.
A few less bright spots in the SAD pattern are due to the existence of finer crystallites (up
to a few 100 nm) in the same diffraction area.

Dark-field imaging was used to determine the portion of the image that contributed
to a particular bright spot in the SAD pattern. These spots were measured for each of the
dark field images, using ImageJ software to determine the crystallite size of the material.
Figure 11a–c shows the dark field TEM images for the (111), (200), and (220) crystallographic
planes for 8 h cryomilled sample. The crystallite sizes as measured using the dark field
TEM image analysis are 18 nm for (111) plane, 22 nm for (200) plane, and 16 nm for (220)
plane. Thus, the average crystallite size as determined by the SAD pattern in TEM is 19 nm,
which complies with the XRD measurement. Table 1 shows the comparison of calculated
crystallite sizes for the unmilled, 2, 6, and 8 h cryomilled powders. The XRD results show
a 35% decrease in the crystallite size for 8 h cryomilled powder as compared to unmilled
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powder. The crystallite size for unmilled pure Al was determined to be 43 nm, which was
reduced to 28 nm after 8 h of cryomilling. Similar results were observed in TEM studies as
well, where the crystallite size is 67 nm for unmilled pure Al which reduces to 19 nm after
8 h of cryomilling. This reduction in crystallite size is about 72%. Thus, it is evident from
both XRD and TEM studies that the average crystallite size of the pure Al reduces with the
increase in milling time.
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Table 1. Calculated crystallite sizes for different XRD peaks as determined from Scherrer’s equation.

Milling Time L–XRD (nm) L–TEM (nm)

Unmilled 43 67
2 h 35 27
6 h 31 26
8 h 28 19

To determine the specific crystallographic planes, the HRTEM images were analyzed
using ImageJ software to obtain the d-spacing from the crystalline structure. Figure 12a
shows the HRTEM fringe pattern for 8 h cryomilled sample. This image was processed
using the ImageJ software to obtain a FFT image as shown in Figure 12b. Here, all the bright
spots corresponding to crystallographic planes are visible. The image was then converted
to an inverse FFT image after selecting a few bright diffraction spots. Figure 12c shows
the high contrast inverse FFT image with distinct fringe pattern lines along with a drawn
selection line running perpendicular to the fringe pattern. The selection line is drawn to
generate the plot profile for the fringe pattern.
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Figure 12. HRTEM results showing (a) fringe pattern for the cropped image, (b) FFT processed
image, and (c) an inverse FFT processed image with an inscribed selection line for 8 h cryomilled
powder particle.

Figure 13 shows the plotted profile of the fringe pattern generated in the ImageJ
software using the selection line drawn in Figure 12c. This plot profile can be measured
up to the maximum distance to calculate the d-spacing. This d-spacing value is used to
determine the crystallographic plane for the bright spots by referring to the corresponding
JCPDS Card for Pure Al. The d-spacing was calculated from Figure 13 using Equation (3).

d-spacing =
5 nm

21 f ringes
= 0.2381 nm

Effect of Annealing Temperatures on Grain Coarsening of Cryomilled Powders

The production of bulk samples was carried out using SPS consolidation at elevated
temperatures. Since the cryomilled powders have a very fine crystallite size, they are
susceptible to strain relaxation, grain growth, and recrystallization at elevated tempera-
tures [48]. Thus, the SPS process may cause grain coarsening of the cryomilled pure Al,
which may ruin the nanocrystalline aspect of the manufactured bulk sample. To understand
the effect of different annealing temperatures on the crystallite size, the cryomilled powders
were subjected to elevated temperatures of 300 ◦C, 400 ◦C, 500 ◦C, and 550 ◦C for 1 h and
allowed to cool in air. The crystallite size of the annealed samples was determined using
XRD. Table 2 shows the crystallite size measurement for 8 h cryomilled pure Al powder
sample, which was annealed at different temperatures. It is evident from the table that
the crystallite size increases with the increase in annealing temperatures. This increase in
crystallite size is attributed to the grain coarsening and strain relaxation at elevated temper-
atures. The crystallite size, as determined for 8 h cryomilled sample annealed at 300 ◦C,
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is 27 nm, and for the sample annealed at 550 ◦C, the crystallite size is 34 nm. Although
there is a slight increase in the crystallite size, this change is insignificant because the
crystallite sizes of annealed samples are still well in the NC range, which will provide the
desired improvement in the mechanical properties of SPS samples. This test ensured that
the samples could withstand short heat treatment cycles without undergoing considerable
change in the crystallite size.
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Table 2. Crystallite size measurement using XRD for 8 h cryomilled pure Al powders using Scher-
rer’s equation.

Annealing
Temperature L111–XRD (nm) L200–XRD (nm) L220–XRD (nm) L311–XRD (nm) L222–XRD (nm) Average L (nm)

300 ◦C 36 31 25 22 23 27
400 ◦C 39 34 26 23 24 29
500 ◦C 44 38 30 26 27 33
550 ◦C 46 40 31 27 27 34

3.2. Bulk SPS Consolidated Samples

The unmilled and 2, 6, and 8 h cryomilled Al powders were consolidated using SPS
process to produce 12.7 mm tall and 25.4 mm diameter bulk SPS samples with density
of 98% of TD. The XRD patterns for SPS samples exhibit sharp peaks, indicating that
the pure Al has retained its crystalline structure even after the SPS process. Table 3
shows the XRD crystallite size calculation for unmilled, 2, and 8 h cryomilled and SPS
samples as determined from Scherrer’s equation. It is also observed that the average
crystallite size for SPS samples increased when compared to the as-cryomilled powders.
The average crystallite size for the SPS sample increased by around 46% from 43 nm for
unmilled powders to 63 nm after SPS. For 2 h cryomilled sample, the average crystallite
size increased by nearly 70% from 35 nm for milled powders to 60 nm after SPS. Similarly,
for 8 h cryomilled sample, the crystallite size showed an increment of 55% from 28 nm
for powders to 43 nm after SPS. This increase in crystallite size is attributed to the grain
coarsening, strain relaxation, and recrystallization that occurs at elevated temperatures
(500 ◦C) during the SPS process. Still, the crystallite sizes of the bulk samples lie in the
nanocrystalline range. Another likely reason for this restrained grain growth may be due
to the rapid heating cycle, the applied pressure, and the pinning effect of the aluminum
oxide on the surface during the consolidation process [49,50].
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Table 3. XRD crystallite size measurements for SPS samples as determined from Scherrer’s equation.

Milling Time L111–XRD (nm) L200–XRD (nm) L220–XRD (nm) L311–XRD (nm) L222–XRD (nm) Average L (nm)

Unmilled SPS 57 53 73 65 68 63
2 h SPS 59 57 64 56 62 60
8 h SPS 48 40 34 50 44 43

To understand the nanostructure of the pure Al SPS sample, bright field TEM studies
were conducted on the thin sections of SPS samples. These thin samples were prepared
using FIB standard procedures to create ultra-thin lamella suitable for TEM [51,52]. The
samples were prepared for unmilled and 8 h cryomilled samples to understand the effect
of cryomilling and SPS on the nanostructure of pure Al. Figure 14a shows the dark-field
TEM image for the unmilled pure Al SPS sample, showing closely packed equiaxed coarse
grain structures with average widths varying from 38 nm to 400 nm in size. This structure
is similar to the recrystallization structure of pure Al, manufactured by other methods [53].
However, for the 8 h cryomilled SPS sample, the grain morphology was a bit different.
Figure 14b shows a band-like structure with elongated grains for 8 h cryomilled SPS
samples where the grain sizes are much finer than that of the unmilled sample. These
elongated grains are not equiaxed and stretched out in a particular direction corresponding
to all the adjacent grains. These elongated grains have an average width varying from
30 nm to around 200 nm. In comparison to the unmilled sample, this reduction in grain size
is attributed to the cryomilling process. High strain rates during the cryomilling process are
responsible for the elongation of the grain structure. Severe plastic deformation, diffusion,
and viscous flow during the SPS process are responsible for the further densification of
the grain structure, which is observed for both the unmilled and milled SPS samples.
Figure 14c shows a similar region of interest from the bright-field TEM image of the 8 h
cryomilled SPS sample. It shows specific regions of coarser grains within the bulk sample.
These irregular-shaped coarse grain structures are much larger than the adjacent finer grain
structures. These regions may have formed due to abnormal grain coarsening during the
elevated temperatures during the SPS consolidation or may be due to the diffusion of atoms
into the porosity sites of the cryomilled powders [54].
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Figure 14. Dark-field TEM images for (a) unmilled pure Al SPS sample (b) 8 h cryomilled SPS sample
(c) 8 h cryomilled SPS sample showing regions of fine and coarse grain structure.

EDS studies were also conducted using TEM on unmilled and cryomilled SPS samples
to determine any phase changes or contamination during the SPS process. The EDS of
the unmilled pure Al SPS sample showed the presence of around 96.58% aluminum and
2.71% oxygen, as shown in Figure 15. The EDS of the 8 h cryomilled pure Al SPS sample
showed the presence of around 97.11% aluminum and 2.14% oxygen, as shown in Figure 16.
The elemental values for both the samples are nearly the same, indicating a minimum
effect of cryomilling and SPS on the elemental composition of the prepared bulk samples.
The reduction in the oxide film is attributed to the high sintering temperature which is
responsible for breaking down the oxide layers on the aluminum powder particle surface
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during the sintering process. Other minor elements (less than 1%) plotted in the EDS
extracted spectrum are false positive peaks detected by the EDS.
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Mechanical Properties of the Bulk SPS Consolidated Samples

Hall–Petch strengthening is the determining mechanism responsible for superior
mechanical properties in NC materials. The reduction in crystallite size accommodates
more grain boundaries, which eventually act as a barrier to the movement of dislocations
in the grain structure of the NC materials. This large dislocation pile-up reduces the
plastic flow of the material, thus increasing the strength and hardness of the material. The
Hall–Petch relationship in terms of hardness is given by the following Equation (4).

Hy = H0 + kd−1/2 (4)

Here, k and H0 are the empirical constants. The hardness (Hy) of the material is inversely
proportional to the square root of the crystallite size (d). Therefore, at lower values of
crystallite sizes, the hardness will be very high. Hence, a little change in crystallite size
below 50 nm causes a much larger change in the mechanical properties.

To determine the mechanical properties, Vickers microhardness tests were performed
on the bulk SPS samples. Over 10 indentations were taken for each of the samples that
were uniformly spread all over the polished surface. Hardness data has excluded the
values that were significantly lower than the average. It is assumed that these indents
were made on a pore zone. Table 4 shows the Vickers microhardness test results for the
unmilled and the 8 h cryomilled SPS samples. The Vickers microhardness for the 8 h
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cryomilled pure Al SPS sample is 142 HV and for the unmilled pure Al SPS sample, it is
52 HV. Thus, the Vickers microhardness increases almost 3 times from the unmilled SPS
sample to the 8 h cryomilled SPS sample. This drastic increase in the microhardness is
due to plenty of fine grain accumulation on or near the grain boundaries that acts as a
hindrance to crack propagation and dislocation movement, thus enhancing the hardness
property of the cryomilled material [55]. The densification of the bulk sample during the
SPS process is increased by severe plastic deformation, viscous flow, diffusion, and creep
that eliminates pores and crevices, further increasing the hardness of the materials [35]. It
is also observed that there was no hardness gradient in values in the radial direction of
the polished SPS sample surface, indicating uniform temperatures across the component
during the SPS process.

Table 4. Vickers microhardness results for unmilled and 8 h cryomilled SPS samples.

Sample Vickers Microhardness (HV)

Unmilled Al SPS 52 ± 1
8 h cryomilled Al SPS 142 ± 12

4. Conclusions

The current study demonstrated the manufacturing methodology for NC pure Al parts
using a combination of cryomilling and SPS. The SPS parts produced exhibited NC grain
size that provided superior properties to the bulk samples. This study provided a good
understanding of the cryomilling process to reduce the crystallite size of the metal powders.
It also helped to understand the annealing mechanisms involved in bulk component
manufacturing, which could be incredibly useful for manufacturing other NC bulk alloys
with superior mechanical properties. The following conclusions can be drawn from the
current study:

1. Pure Al powders showed a 35% decrement in the crystallite size after 8 h of cryomilling
determined using XRD. TEM studies also showed a decrease of about 72% in crystallite
size. Thus, both XRD and TEM studies confirm the reduction in the crystallite size
with increasing cryomilling time.

2. There was an increase in crystallite size with the increase in annealing temperatures
due to grain coarsening, however, the crystallite sizes were still very well in the NC
range. This ensured that the samples could withstand short heat treatment cycles
without undergoing much change in the crystallite size.

3. Sintering temperature and pressure are crucial factors during the SPS process that
ensures the uniform density and preservation of NC grains in the manufactured parts.
The crystallite size increased by 55% after SPS for the 8 h cryomilled sample. The high
sintering temperature helps in breaking down the oxide film on the powder particle
surface, which reduces the oxide composition in the bulk sample.

4. There was a three-fold increase in the hardness for the 8 h cryomilled SPS sam-
ple, which is attributed to the combined effect of reduced crystallite size during the
cryomilling process and densification of the SPS sample due to severe plastic defor-
mation, diffusion, viscous flow, and creep. No hardness gradient was observed in
the radial direction of the SPS samples, suggesting uniform heating during the SPS
consolidation process.
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EDS Energy dispersive X-ray spectroscopy
FCC Face centered cubic
FFT Fast fourier transform
FWHM Full width at half maximum
HEBM High energy ball milling
HIP Hot isostatic pressing
HRTEM High resolution transmission electron microscopy
HV Vickers microhardness
NC Nanocrystalline
RPM Rotations per minute
SAD Selected area diffraction
SEM Scanning electron microscopy
SPD Severe plastic deformation
SPS Spark plasma sintering/sintered
SS Stainless steel
TD Theoretical density
TEM Transmission electron microscopy
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