
pharmaceuticals

Article

Regulation of Cellular and Cancer Stem Cell-Related Putative
Gene Expression of Parental and CD44+CD24− Sorted
MDA-MB-231 Cells by Cisplatin

May Zie Koh 1, Wan Yong Ho 1,* , Swee Keong Yeap 2,*, Norlaily Mohd Ali 3, Lily Boo 3

and Noorjahan Banu Alitheen 4

����������
�������

Citation: Koh, M.Z.; Ho, W.Y.; Yeap,

S.K.; Ali, N.M.; Boo, L.; Alitheen, N.B.

Regulation of Cellular and Cancer

Stem Cell-Related Putative Gene

Expression of Parental and

CD44+CD24− Sorted MDA-MB-231

Cells by Cisplatin. Pharmaceuticals

2021, 14, 391. https://doi.org/

10.3390/ph14050391

Academic Editors:

Maryam Nakhjavani,

Amanda Townsend and

Mary J. Meegan

Received: 26 February 2021

Accepted: 13 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
mayzie.koh@gmail.com

2 China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia
3 Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia;

norlailyma@gmail.com (N.M.A.); boolily83@gmail.com (L.B.)
4 Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;

noorjahan@upm.edu.my
* Correspondence: WanYong.Ho@nottingham.edu.my (W.Y.H.); skyeap@xmu.edu.my (S.K.Y.)

Abstract: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that promotes
a higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer
drugs for treating TNBC. However, the occurrence of cisplatin resistance still remains one of the
challenges in fully eradicating TNBC. The presence of cancer stem cells (CSCs) has been proposed as
one of the factors contributing to the development of cisplatin resistance. In this study, we aimed
to characterize the cellular properties and reveal the corresponding putative target genes involved
in cisplatin resistance associated with CSCs using the TNBC cell line (MDA-MB-231). CSC-like
cells were isolated from parental cells and the therapeutic effect of cisplatin on CSC-like cells was
compared to that of the parental cells via cell characterization bioassays. A PCR array was then
conducted to study the expression of cellular mRNA for each subpopulation. As compared to treated
parental cells, treated CSCs displayed lower events of late apoptosis/necrosis and G2/M phase cell
arrest, with higher mammosphere formation capacity. Furthermore, a distinct set of putative target
genes correlated to the Hedgehog pathway and angiogenesis were dysregulated solely in CSC-like
cells after cisplatin treatment, which were closely related to the regulation of chemoresistance and
self-renewability in breast cancer. In summary, both cellular and gene expression studies suggest the
attenuated cytotoxicity of cisplatin in CSC-like cells as compared to parental cells. Understanding
the role of dysregulated putative target genes induced by cisplatin in CSCs may aid in the potential
development of therapeutic targets for cisplatin-resistant breast cancer.

Keywords: triple-negative breast cancer; cisplatin resistance; cancer stem cells; Hedgehog path-
way; angiogenesis

1. Introduction

Triple-negative breast cancer (TNBC) is a breast cancer subtype defined by its lack of
an estrogen receptor (ER) and progesterone receptor (PR), and the absence of amplification
of human epidermal growth factor receptors 2 (HER-2) [1]. Globally, TNBC accounts for
approximately 10–24% of all breast cancer cases, and is more common in Asian countries [2].
In Malaysia, the incidence of TNBC has been reported to range from 12.3% to 17.6% of the
total breast cancer cases [3–5]. TNBC displays more aggressive behavior than other breast
cancer subtypes, and is strongly associated with the recurrence of metastatic breast cancer,
and metastasis is a major cause of patient morbidity and mortality [6,7].

Due to the absence of all three receptors, treatment for TNBC patients is highly chal-
lenging as no defined targets are available. Although not currently considered a standard
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drug for TNBC, clinical trials using mono-treatment with cisplatin and combinations with
other drugs have been reported, in which cisplatin was used in neoadjuvant treatment [8,9]
as well as a treatment for metastatic TNBC [10]. Cisplatin is capable of targeting the DNA
repair complex of TNBC by forming DNA adduct to inhibit DNA replication, leading to
cell-cycle arrest and apoptosis [11,12]. In addition, cisplatin is also able to dissociate p63
and p73, the transcription factors that are co-expressed exclusively in TNBC. The binding
of these proteins suppressed pro-apoptotic activities in TNBC. Therefore, dissociation of
the proteins would activate p73-dependent transcription of pro-apoptotic Bcl-2 family
members, leading to apoptosis [13]. Thus, treatment regimes involving cisplatin have
shown promising results for most TNBC patients [14–16], renewing the interest in the use
of cisplatin to treat TNBC [17]. However, the efficacy of cisplatin on TNBC is still not
optimal due to the frequent occurrence of drug resistance [18–21], which remains the major
obstacle for the effective clinical application of cisplatin.

On the other hand, many studies have demonstrated the presence of cancer stem
cells (CSCs) as one of the leading causes of drug resistance in cancer patients. A previous
study demonstrated CSCs to be a contributor to cisplatin resistance developed in basal-like
breast cancer [22]. Thus, the presence of CSCs in TNBC could be one of the factors for the
development of cisplatin resistance. In fact, previous studies demonstrated overexpression
of apoptosis-related proteins in CSCs, including survivin [23,24], cellular inhibitors of
apoptosis, inhibitors of apoptosis protein (IAP) [25] and cell cycle regulatory components
that inhibit apoptosis, leading to higher chemoresistance [26]. Apart from displaying higher
chemoresistance, CSCs are known to be highly self-renewable. For example, Moreover,
CSCs were found to be more likely to metastasize to secondary sites, and later generate a
secondary tumor via their self-renewability [27].

Over the past decades, researchers have demonstrated that low CD24 expression and
high CD44 (CD24−/CD44+) is the standard biomarker for breast CSCs. These biomarkers
were first discovered by Al-Hajj et al. (2003), showing that as low as 100 cells express-
ing CD24−/CD44+ were able to generate tumors in mice, whereas thousands of non
CD24−/CD44+ cells failed to do so [28]. Following this discovery, many have utilized this
CSC phenotype as a biomarker for breast CSCs isolation [29–31]. Indeed, Ghebeh et al.
(2013) compared the stem-cell properties of CSCs isolated from different biomarkers and
concluded that the CD24−/low/CD44+ phenotype was the predominant biomarker for
breast CSCs among other biomarkers [32]. Furthermore, enriched aldehyde dehydrogenase
1 (ALDH1) activity is one of the features of breast CSCs previously discovered by Ginestier
et al. (2007), and elevation of ALDH1A1 activity was later found to be correlated with
tumorigenesis and drug resistance in breast cancer [33–35].

Therefore, the present study aims to investigate the contribution of the CSC subpopu-
lation to cisplatin resistance in TNBC and the putative target genes that are dysregulated in
CSCs as compared to parental cells in response to cisplatin treatment. Likewise, signaling
pathways that are associated with these putative target genes can also be identified to
support more effective treatment strategies. To address the research questions, CSC-like
cells isolated from the TNBC cancer cell line, MDA-MB-231, which is one of the most com-
monly utilized TNBC cell lines for CSC studies, were used in this study to investigate the
cisplatin-induced alteration of cellular and putative target gene expression characteristics.

We report that CSC-like cells are more resistant to cisplatin treatment, supported
by lower late apoptosis/necrosis, higher expression of an CSC-like phenotype and self-
renewability as compared to its parental counterpart after cisplatin treatment. Furthermore,
dysregulation of putative target genes such as Smoothened (SMO), Glycogen Synthase
Kinase 3 Beta (GSK3β), Notch Receptor 2 (NOTCH2), Delta-like protein 1 (DLL1) and
WNT1, which were correlated with the Hedgehog signaling pathway and angiogenesis in
CSC-like cells, may attenuate cisplatin cytotoxicity in TNBC, and this discovery provides a
potential approach to improve the efficacy of cisplatin in TNBC therapy.
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2. Results
2.1. IC50 Value of Cisplatin on Parental MDA-MB-231

Cisplatin displayed its cytotoxic effect in a dose-dependent manner in parental MDA-
MB-231 cells (pMDA). The IC50 values of cisplatin were >200 µM, 56.27 ± 2.59 µM (95%
confidence interval (CI) 53.7–58.88; r2 = 0.99) and 30.51 ± 2.60 µM (95% CI 27.54–32.36;
r2 = 0.99) for 24, 48 and 72 h, respectively (Figure 1), as determined by non-linear regression
analysis. The shortest time point at which cells achieved a stable cytotoxicity effect was
selected to acquire cisplatin-treated subpopulations. The acquired IC50 value of pMDA
was reduced drastically by >3.5-fold at 48 h as compared to 24 h, but to a much lower
extent (1.9-fold) at 72 h as compared to 48 h, indicating 48 h was the shortest tested time
point to achieve a stable cisplatin cytotoxic effect. Therefore, the IC50 value of cisplatin
treatment at 48 h (56 µM) was selected to treat both pMDA and the sorted CD24−/CD44+

CSC-like subpopulation (sMDA) to study the effect of cisplatin on sMDA.
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Figure 1. Cell viability of pMDA after 24, 48 and 72 h of cisplatin treatment. The values are
represented as means ± SD for triplicates of independent experiments.

2.2. Sorted MDA-MB-231 Retains Higher Cancer Stem Cell Phenotype Than Parental
MDA-MB-231 after Cisplatin Treatment

Cisplatin decreased the expression of CSCs markers CD24−/CD44+ and ALDH1A1
on pMDA and sMDA significantly compared to their respective controls, but to a lower
extent in sMDA (Figure 2a). Under the same treatment conditions, cisplatin reduced a
higher percentage of CSC-like cells (CD24−/CD44+) in cisplatin-treated pMDA (tpMDA)
than the CSC-like cells in cisplatin-treated sMDA (tsMDA), as compared to their respective
controls (Figure 2a). On the other hand, cisplatin treatment led to a higher percentage
of CD24+/CD44− cells in pMDA than sMDA (Figure 2a). More significantly, cisplatin
treatment significantly reduced the population of cells expressing ALDH1A1 in tpMDA,
compared to tsMDA (Figure 2a).

In accordance with the results obtained from flow cytometry analysis, the immunoflu-
orescent microscope imaging showed a higher number of CD24−/CD44+ and ALDH1A1-
expressing cells in tsMDA than in tpMDA, as visualized by the higher intensity of the red
signal (Figure 2b,c).

On the other hand, CD24 expression was significantly increased in tpMDA (Figure 2b),
complemented by the observed faint CD24 green signal (indicated by a white circle in the
Figure) as compared to pMDA (Figure 2b). Although the increment of the CD24 green
signal in tsMDA relative to sMDA was not observable, tsMDA displayed relatively lower
expression of CD24 markers and equally visible CD44 expression, and acquired more CSC
features as compared to tpMDA.

Considering together the quantitative and qualitative results obtained for both CSC
biomarkers, the sorted subpopulation retained a higher percentage of CSC-like cells after
cisplatin treatment as compared to its parental cells.



Pharmaceuticals 2021, 14, 391 4 of 21Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Breast cancer stem cell markers detected using flow cytometry and fluorescent microscopy. (a) Fold change of 
the cellular population expressing CD24−/CD44+, CD24+ and ALDH1A1 on the control pMDA or sMDA vs cisplatin-treated 
tpMDA and tsMDA, respectively. Data are presented as means ± SD for triplicates of independent experiments, with 

Figure 2. Breast cancer stem cell markers detected using flow cytometry and fluorescent microscopy. (a) Fold change of the
cellular population expressing CD24−/CD44+, CD24+ and ALDH1A1 on the control pMDA or sMDA vs cisplatin-treated
tpMDA and tsMDA, respectively. Data are presented as means ± SD for triplicates of independent experiments, with
different letters showing significant differences where p < 0.05. (b) Immunofluorescence imaging of control and treated
pMDA and sMDA at 20× objective magnification, stained by anti-CD24-FITC (green), anti-CD44-Alexa Fluor 647 (red) and
Hoechst stain (blue); scale bar: 50 µm, with a zoomed inset presenting CD24 detected in tpMDA. (c) Control and treated
pMDA and sMDA at 20× objective magnification, stained by anti-ALDH1A1-APC (red) and Hoechst stain (blue), under the
respective filters, along with a merged image, scale bar: 50 µm.
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2.3. Sorted MDA-MB-231 Is More Resistant to Anticancer Drugs

sMDA demonstrated higher resistance to all three drugs as compared to pMDA
(Figure 3). The IC50 values of cisplatin, doxorubicin and 5FU were determined by means of
non-linear regression analysis. The IC50 values of cisplatin for pMDA were 75.31 ± 2.63 µM
(95% CI 72.44–77.62; r2 = 0.95), 37.19 ± 6.98 µM (95% CI 29.51–43.16; r2 = 0.96) and 22.50 ±
5.70 µM (95% CI 17.78–28.84; r2 = 0.96), whereas for sMDA they were 133.30 ± 13.90 µM
(95% CI 120.20–147.90; r2 = 0.80), 59.38 ± 2.82 µM (95% CI 56.23–61.66; r2 = 0.92) and 43.49
± 5.64 µM (95% CI 36.98–46.77; r2 = 0.90) for 24, 48 and 72 h, respectively. Moreover, IC50
values of doxorubicin for pMDA were 2.34 ± 0.48 µM (95% CI 1.95–2.88; r2 = 0.90), 0.18
± 0.10 µM (95% CI 0.11–0.29; r2 = 0.91) and 0.04 ± 0.04 µM (95% CI 0.01–0.08; r2 = 0.89),
whereas for sMDA they were 3.07 ± 0.49 µM (95% CI 2.57–3.55; r2 = 0.78), 0.44 ± 0.17 µM
(95% CI 0.26–0.58; r2 = 0.84) and 0.20 ± 0.08 µM (95% CI 0.11–0.26; r2 = 0.86) for 24, 48
and 72 h, respectively. The determined IC50 values across 24, 48 and 72 h for cisplatin
ranged between 1.6- to 1.9-fold higher for respective treatments in sMDA as compared to
pMDA, and were 1.3-fold, 2.5-fold and 5.0-fold higher in sMDA than that of pMDA for
24, 48 and 72 h, respectively, for doxorubicin. With almost equally high tolerance to 5FU,
both pMDA and sMDA displayed IC50 values beyond 500 µM at 24 h (result not shown)
and insignificantly different IC50 values at 48 h of 5FU treatment. However, similar to the
trend of the IC50 values acquired from the other two chemotherapeutic drugs, sMDA, with
an identified IC50 value of 187.40 ± 25.83 µM (95% CI 162.20–213.80; r2 = 0.91), showed a
2.0-fold higher IC50 value than that of pMDA, which displayed 95.37 ± 18.75 µM (95% CI
74.13–109.70; r2 = 0.92) at 72 h of 5FU treatment.
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Figure 3. The IC50 values (µM) of chemotherapeutic drugs, including cisplatin, doxorubicin and 5FU in pMDA and sMDA
for 24, 48 and 72 h, determined via the Real-Time Glo assay. All data were expressed as means ± SD for triplicates of
independent experiments. * represents significant differences (p < 0.05) as compared to pMDA.

2.4. Sorted MDA-MB-231 Is More Resistant to Cisplatin-Induced Apoptosis

The reduction of cell viability after cisplatin treatment is mainly due to the induction
of apoptosis. In this study, the effects of cisplatin on apoptosis and cell cycle distribution in
pMDA and sMDA were evaluated via the FITC Annexin V/PI Apoptosis Detection Kit
and the BD Cycletest plus DNA kit, respectively.

Cisplatin exerted a different degree of apoptosis in pMDA and sMDA, demonstrated
by 42.52% significantly higher (p = 0.0001) early apoptosis, with 45.84% significantly
lower (p = 0.0032) late apoptosis/necrosis in tsMDA as compared to tpMDA (Figure 4a,b).
Moreover, the effects of cisplatin exclusively on G0/G1, S and G2/M phases for treated
subpopulations were evaluated by excluding the sub-G0/G1 phase to precisely identify
the interference of cisplatin treatment on these phases (Figure 4c). As compared to their
respective controls, cisplatin triggered a higher and more significant cell increment in the S
phase in tsMDA (increased by 5.98%; p < 0.0001) than that of tpMDA (increased by 1.53%;
p = 0.043), whereas tpMDA alone displayed a significant (p < 0.0001) cell increment in
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the G2/M phase, by 13.12% as compared to pMDA. Furthermore, as compared to their
respective controls, the increases in sub-G0/G1 content induced by cisplatin treatment
were 7.2% significantly lower (p = 0.0008) in tsMDA (increased by 19.63%) than that of
tpMDA (increased by 26.83%) (Figure 4d). These data showed that cisplatin induced a
lower increase in sub-G0/G1 content in tsMDA, and at the same time induced tsMDA to be
arrested at the S phase, whereas tpMDA was arrested more significantly at the G2/M phase.
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Figure 4. Comparison of apoptotic events and cell cycle distribution of pMDA and sMDA after cisplatin treatment.
(a) Apoptotic event triggered by cisplatin treatment. (b) Representative AnnexinV/PI flow cytometry data for pMDA,
tpMDA, sMDA and tsMDA. (c) Effect of cisplatin treatment on cell cycle distribution of pMDA and sMDA exclusively on
the G0/G1 phase, S phase and G2/M phase and (d) solely on the sub-G0/G1 phase. Data are presented as means ± SD for
triplicates of independent experiments, with different letters showing significant differences where p < 0.05.

2.5. Sorted MDA-MB-231 Retains Remarkably Higher Self-Renewability after Treatment

Both pMDA and sMDA controls generated 100% of mammospheres before treat-
ment, with larger but less compact mammospheres observed in pMDA (734.6 ± 36.1 µm)
and smaller but more compact mammospheres observed in sMDA (416.5 ± 27.3 µm)
after 14 days in culture. Although both pMDA and sMDA possessed similarly high self-
renewability before cisplatin treatment, only tsMDA retained its self-renewability despite
the significant reduction, whereas tpMDA lost its self-renewability completely after cis-
platin treatment. As the result, tsMDA displayed approximately 90.97% significantly
higher (p < 0.0001) self-renewability than that of tpMDA (Figure 5a). Conversely, tsMDA
then generated larger mammospheres (68.4 ± 1.8 µm), whereas tpMDA failed to generate
mammospheres after cisplatin treatment (Figure 5b). These data suggested that cisplatin
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reduced the self-renewability of sMDA to a remarkably lower extent as compared to pMDA,
which completely lost its self-renewability after cisplatin treatment.
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2.6. Dysregulation of Cancer Stem Cell-Correlated Putative Target Genes in MDA-MB-231
Parental and Sorted MDA-MB-231 Induced by Cisplatin Treatment

The RT2 profiler PCR array, a qPCR-based method with the features of a mini-array,
was used to study cellular gene expression, particularly on functionally correlated putative
target genes in CSCs before and after cisplatin treatment in order to decipher the alteration
of putative gene profiles in pMDA and sMDA subpopulations.

Cisplatin induced more genes to be downregulated by at least two-fold (40% and 55%
of genes in tpMDA and tsMDA, respectively), with fewer upregulated genes (2% and 23%
of genes in tpMDA and tsMDA, respectively) in both treated subpopulations as compared
to their respective controls (Figure 6).
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2.7. Dysregulated Cancer Stem Cell-Correlated Putative Target Genes and Corresponding
Signaling Pathways Induced by Cisplatin Treatment

Based on the determined dysregulated putative gene profiles in respective subpopula-
tions, signaling pathways correlated with these dysregulated putative target genes were
annotated via the PANTHER overrepresentation test (Figures 7 and 8).



Pharmaceuticals 2021, 14, 391 9 of 21

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 9 of 21 
 

 

dysregulated putative target genes were significantly annotated to seven signaling path-
ways (Figure 8a). Among these pathways, more than 10% of these putative target genes 
were involved in ‘platelet-derived growth factor (PDGF)’, ‘Notch’ and ‘angiogenesis’ 
pathways, which are correlated with breast cancer progression. Moreover, there were four 
significantly dysregulated putative target genes solely in the pMDA subpopulation after 
cisplatin treatment, comprising one upregulated and three downregulated putative target 
genes (Figure 8 and Supplementary Table S2). No significant pathway was annotated 
based on these dysregulated genes in pMDA after cisplatin treatment (result not shown). 
On the other hand, there were 37 significantly dysregulated putative target genes solely 
in the sMDA subpopulation after cisplatin treatment, comprising 21 upregulated and 16 
downregulated putative target genes (Figure 7 and Supplementary Table S2). Eight of 
these exclusively dysregulated putative target genes in tsMDA were significantly anno-
tated to three signaling pathways—‘Hh’, ‘cholecystokinin receptor (CCKR)’ and ‘angio-
genesis’ pathways (Figure 8b). 

 
Figure 7. Venn diagram of cisplatin-induced dysregulation of putative target genes in pMDA and sMDA. Numbers of 
significantly dysregulated CSC-correlated putative target genes (≥2-fold, p < 0.05) in pMDA and sMDA subpopulations 
after cisplatin treatment, with uniquely and commonly expressed putative target genes in tpMDA vs pMDA control and 
tsMDA vs sMDA control. 

Figure 7. Venn diagram of cisplatin-induced dysregulation of putative target genes in pMDA and sMDA. Numbers of
significantly dysregulated CSC-correlated putative target genes (≥2-fold, p < 0.05) in pMDA and sMDA subpopulations
after cisplatin treatment, with uniquely and commonly expressed putative target genes in tpMDA vs pMDA control and
tsMDA vs sMDA control.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 8. PANTHER pathway analysis. Annotated signaling pathways correlated to (a) commonly dysregulated CSC-
correlated putative target genes (≥2-fold, p < 0.05) in pMDA and sMDA after cisplatin treatment, and (b) exclusively 
dysregulated CSC-correlated putative target genes (≥2-fold, p < 0.05) in sMDA after cisplatin treatment. The corresponding 
adjusted Fisher’s exact p-values (p < 0.05) are presented for each pathway. 

3. Discussion 
The present study described the effect of cisplatin on CSC-like subpopulations in 

comparison to its parental cells in the TNBC cell line, MDA-MB-231. This study focused 
on the effect of cisplatin on the cellular characteristics of both sorted CSC-like (sMDA) and 
parental (pMDA) MDA-MB-231 subpopulations. Furthermore, the differential expression 
of the CSC-related putative target genes of the model was also evaluated. Therefore, this 
study was intended to provide a better understanding of the correlation of CSC-like sub-
population to the efficacy of cisplatin treatment in TNBC. 

Cisplatin is able to activate apoptosis in cancer cells via DNA damage induced by 
formation of DNA adducts [36,37]. In this study, tpMDA displayed significant apoptotic 
events, with majority of cells trapped in late apoptosis/necrosis (Figure 4a,b). In comple-
ment to the apoptotic event, tpMDA showed a significant increase in sub-G0/G1 events, 
which represent fragmented DNA (Figure 4d), one of the hallmarks of cell apoptosis [38]. 
In addition, tpMDA was arrested in the S and G2/M phases, with a higher rate and signif-
icance observed in the G2/M phase (Figure 4c)—prolonged G2/M arrest could also lead to 
apoptosis [39–41]. However, accumulating evidence suggests that CSCs in the breast are 
more resistant to the induction of apoptosis by conventional chemotherapy [42–46]. 
sMDA displayed generally higher IC50 values than pMDA, showing higher chemo-
resistance not only to cisplatin, but to all of the tested anticancer drugs (Figure 3). Cisplatin 
activated a milder degree of apoptosis in sMDA as the majority of the tsMDA were still 
undergoing early apoptosis, whereas most of the tpMDA had already progressed to late 
apoptosis/necrosis after exposure to cisplatin treatment (Figure 4a,b). A significant incre-
ment in sub G0/G1 events was also observed in tsMDA but the increment was lower than 
that of tpMDA as compared to the pMDA controls (Figure 4d). Furthermore, tsMDA dis-
played a higher number of cells arrested in the S phase than that of tpMDA (Figure 4c), 

Figure 8. PANTHER pathway analysis. Annotated signaling pathways correlated to (a) commonly dysregulated CSC-
correlated putative target genes (≥2-fold, p < 0.05) in pMDA and sMDA after cisplatin treatment, and (b) exclusively
dysregulated CSC-correlated putative target genes (≥2-fold, p < 0.05) in sMDA after cisplatin treatment. The corresponding
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Cisplatin-induced, significantly dysregulated putative target genes (≥2-fold, p < 0.05)
in pMDA and sMDA (relative to their respective controls) were compared to identify
the commonly and distinctively dysregulated putative gene profiles between pMDA and
sMDA (Figure 7). There were 33 commonly dysregulated putative target genes between
pMDA and sMDA after cisplatin treatment—up to 32 putative target genes were downreg-
ulated, with only 1 upregulated putative target gene detected (Figure 7). However, the only
upregulated putative target gene (DLL4) displayed a negligible difference of only 0.1-fold
between the increment in sMDA (2.85-fold) and pMDA (2.74-fold) as compared to their
respective controls (Supplementary Table S1). A number of these commonly dysregulated
putative target genes were significantly annotated to seven signaling pathways (Figure 8a).
Among these pathways, more than 10% of these putative target genes were involved in
‘platelet-derived growth factor (PDGF)’, ‘Notch’ and ‘angiogenesis’ pathways, which are
correlated with breast cancer progression. Moreover, there were four significantly dysreg-
ulated putative target genes solely in the pMDA subpopulation after cisplatin treatment,
comprising one upregulated and three downregulated putative target genes (Figure 8 and
Supplementary Table S2). No significant pathway was annotated based on these dysregu-
lated genes in pMDA after cisplatin treatment (result not shown). On the other hand, there
were 37 significantly dysregulated putative target genes solely in the sMDA subpopulation
after cisplatin treatment, comprising 21 upregulated and 16 downregulated putative target
genes (Figure 7 and Supplementary Table S2). Eight of these exclusively dysregulated puta-
tive target genes in tsMDA were significantly annotated to three signaling pathways—‘Hh’,
‘cholecystokinin receptor (CCKR)’ and ‘angiogenesis’ pathways (Figure 8b).

3. Discussion

The present study described the effect of cisplatin on CSC-like subpopulations in
comparison to its parental cells in the TNBC cell line, MDA-MB-231. This study focused on
the effect of cisplatin on the cellular characteristics of both sorted CSC-like (sMDA) and
parental (pMDA) MDA-MB-231 subpopulations. Furthermore, the differential expression
of the CSC-related putative target genes of the model was also evaluated. Therefore,
this study was intended to provide a better understanding of the correlation of CSC-like
subpopulation to the efficacy of cisplatin treatment in TNBC.

Cisplatin is able to activate apoptosis in cancer cells via DNA damage induced by
formation of DNA adducts [36,37]. In this study, tpMDA displayed significant apoptotic
events, with majority of cells trapped in late apoptosis/necrosis (Figure 4a,b). In comple-
ment to the apoptotic event, tpMDA showed a significant increase in sub-G0/G1 events,
which represent fragmented DNA (Figure 4d), one of the hallmarks of cell apoptosis [38].
In addition, tpMDA was arrested in the S and G2/M phases, with a higher rate and signifi-
cance observed in the G2/M phase (Figure 4c)—prolonged G2/M arrest could also lead
to apoptosis [39–41]. However, accumulating evidence suggests that CSCs in the breast
are more resistant to the induction of apoptosis by conventional chemotherapy [42–46].
sMDA displayed generally higher IC50 values than pMDA, showing higher chemoresis-
tance not only to cisplatin, but to all of the tested anticancer drugs (Figure 3). Cisplatin
activated a milder degree of apoptosis in sMDA as the majority of the tsMDA were still
undergoing early apoptosis, whereas most of the tpMDA had already progressed to late
apoptosis/necrosis after exposure to cisplatin treatment (Figure 4a,b). A significant in-
crement in sub G0/G1 events was also observed in tsMDA but the increment was lower
than that of tpMDA as compared to the pMDA controls (Figure 4d). Furthermore, tsMDA
displayed a higher number of cells arrested in the S phase than that of tpMDA (Figure 4c),
suggesting the possibility of a greater DNA repair mechanism in the sorted breast CSC-like
subpopulation, in accordance with lung CSCs that demonstrated enhanced ability to imple-
ment DNA repair by arresting cells in the DNA-replicating S phase after being treated by
cisplatin [47]. In fact, a previous study showed that breast cancer MCF-7 cells were arrested
at the G1/S phase when sub-lethal cisplatin concentrations were used, whereas higher
doses and higher cisplatin concentrations induced G2/M arrest, preceding cell death [48].
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Thus, cisplatin may have exerted a high-dose lethal effect on tpMDA, which significantly
arrested cells in the G2/M phase, but a sub-lethal effect on tsMDA, resulting in cell arrest
in the S phase, although same cisplatin treatment condition was applied. Thus, the cell
arrest in the S phase observed for tsMDA in this study could be a protective effect against
cisplatin treatment.

Drug resistance characteristics were correlated to the higher expression of ALDH [34]
and CD24−/CD44+ [49,50] which are the key markers in CSCs. A previous study has
shown that inhibition of ALDH activity via all-trans-retinoic acid (ATRA) or specific ALDH
inhibitor diethylaminobenzaldehyde (DEAB) in MDA sensitized the initially chemo- and
radio-resistant ALDH+ breast cancer cells to the applied treatment [42]. Moreover, knock-
down of ALDH1A1 in a TNBC cell line (MDA-MB-468) sensitized breast cancer cells
to paclitaxel, doxorubicin and radiation therapy [51]. Not only that, previous studies
also reported that CD24−/CD44+-expressing breast CSCs in MDA were more resistant
to doxorubicin than that of non-CSCs (CD24+/CD44+) [50]. In this study, cisplatin inhib-
ited the expression of breast CSC biomarkers (CD24−/CD44+ and ALDH1A1) in tpMDA
(Figure 2) at a higher extent than the sorted MDA. On the other hand, the population of
cells expressing CD24 was increased in both cisplatin-treated pMDA and sMDA. CD24 was
found to be positively correlated to cell differentiation [52–54]. Cisplatin, which increased
CD24 expression, is suggested to induce stem-to-progenitor differentiation in tpMDA and
tsMDA, and this cisplatin-triggered cell differentiation was previously reported in breast
cancer [49]. However, the results have shown that cisplatin more specifically targeted
progenitor cells, rather than the stem breast cancer cells, with the reduction of the popula-
tion of CD24−/CD44+ and ALDH1A1 MDA-MB-231 cells being at higher folds in tpMDA,
compared to tsMDA (Figure 2). These data suggest that tsMDA retained a higher stem
cell phenotype and was differentiated to a lower extent as compared to tpMDA, which
contributed to greater resistance to the anticancer drugs as compared to pMDA, similarly
to the previous findings [34,49,50]. Moreover, cisplatin demonstrated a remarkable in-
hibitory effect on the self-renewability of tpMDA, with the fully self-renewable pMDA
being unable to generate mammospheres completely after being treated with cisplatin
(Figure 5). This result is consistent with a previous study that demonstrated the capa-
bility of 100–200 self-renewable CD24−/CD44+-expressing breast cancer cells to initiate
tumor growth in non-obese diabetic/severe combined immunodeficient (NOD/SCID)
immunocompromised mice, whereas 20,000 of CD24+/CD44+-expressing cells failed to do
so [28]. The higher stem cell phenotype of sMDA and tsMDA contributed to the higher
self-renewable characteristic, which was shown by the ability to generate solid mammo-
spheres, compared to pMDA and tpMDA, suggesting that the sorted subpopulation is more
tumorigenic as compared to its parental cells (Figure 5). Taken together, cisplatin induced
lower suppression of the stem cell phenotype, a lower apoptotic effect, less fragmented
DNA, cell cycle arrest in the S phase and lower suppression of self-renewability in tsMDA
as compared to its parental cells. This suggests that the sorted subpopulation possessed
features of tumorigenic breast CSCs, which may contribute to attenuation of cisplatin
efficacy in TNBC.

To compare the differential expression of CSC-related putative target genes of pMDA
and sMDA when treated with cisplatin, a PCR array was performed. Most (97%) of the
significantly dysregulated putative target genes (≥2-fold, p < 0.05) that were common
between treated subpopulations vs. their respective controls were downregulated, whereas
only one gene was upregulated (Figure 7). These data suggests that cisplatin in general
hindered the expression of CSC-correlated putative target genes in both sMDA and pMDA,
but to a different extent. For example, approximately 60% of these commonly dysregulated
putative target genes were downregulated to a lower extent in the sMDA subpopulation
than the pMDA subpopulation after treatment (Figure 7 and Supplementary Table S1).
The only upregulated putative target gene in both subpopulations after treatment was
DLL4, with a negligible difference of 0.1-fold between the increment in both treated sub-
populations as compared to their respective controls. The remaining 36% of commonly
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dysregulated putative target genes were downregulated to a higher extent in the sMDA
subpopulation after treatment when compared to the pMDA subpopulation (Figure 7 and
Supplementary Table S1). Among these commonly dysregulated putative target genes,
a total of six genes were associated with ‘Notch’ and ‘angiogenesis’ signaling pathways
(NOTCH1, DLL4 and Jagged1 (JAG1)), as well as the ‘PDGF signaling pathway’ (Janus
Kinase 2 (JAK2), Inhibitor of Nuclear Factor Kappa B Kinase Subunit Beta (IKBKB) and
MYC). These downregulated putative target genes were suppressed to a lower extent in
the sMDA subpopulation compared to the pMDA subpopulation after cisplatin treatment
(Figure 8a).

The lower suppression of the members of Notch signaling pathway such as NOTCH1
and JAG1 in the tsMDA subpopulation after treatment could be one of the factors that
contributes to its better maintenance of the CSCs subpopulation, and the higher resistance
of tsMDA than that of tpMDA (Figure 4a,b). For instance, a previous study showed that
elevated Notch1, one of the receptors for the Notch pathway, was found to enhance ALDH1
levels in breast CSCs via the Notch signaling pathway [55]. Consistent with previous
studies, this study shows tsMDA to have a lower reduction of NOTCH1 gene expression,
displaying higher ALDH1 activity as compared to tpMDA (Figure 2c). Moreover, JAG1, a
ligand for Notch receptor, was previously found to be upregulated in drug-resistant breast
cancer cells, and this CSC-driven drug resistance in ER+ breast cancer was correlated to the
interaction of JAG1 and NOTCH4 in association with the Notch signaling pathway [56].
Apart from being involving in the Notch pathway, NOTCH1 and JAG1 are also implicated
in angiogenesis, which is the process of the recruitment of new blood vessels [57]. A
previous study showed that Jag1 ligand overexpression promoted neovascularization and
the growth of experimental tumors in mice [58]. Furthermore, a later study demonstrated
the role of JAG1 as an antagonist for DLL4-mediated Notch signaling within the sprout,
resulting in growth of new vessels [59]. In this study, cisplatin downregulated gene
expression of JAG1 to a lower extent in the sMDA subpopulation, whereas it elevated
DLL4 in both tsMDA and tpMDA (Supplementary Table S1), suggesting that cisplatin
can potentially suppress angiogenesis for both subpopulations but possibly to a lower
extent in sMDA. In addition, the lower suppression of MYC, a gene that correlates to
the PDGF signaling pathway, in the sMDA subpopulation after treatment may be one of
the causes of the higher drug resistance of tsMDA than that of tpMDA as compared to
their respective controls (Figure 4a,b). For example, a previous study showed that the
activation of the PDGF signaling pathway in MYC-enriched human mammary epithelial
(HME) cells—which has a similar phenotype and cellular behavior to the TNBC cell line
(MDA) [60]—can induce a faster and higher Ca2+ increase than that observed in non MYC-
enriched HME cells. This increase in Ca2+ then triggered the higher expression of fatty acid
β-oxidation (FAO) [61] and consequently enhanced drug resistance and the maintenance
of stemness in breast cancer cells [62]. Furthermore, other studies have reported that breast
cancer patients with elevated PDGF levels showed lower responses to chemotherapy and
shorter duration of survival [63,64]. A recent study also demonstrated the correlation
of an aggressive biological phenotype with the PDGF signaling pathway in TNBC by
displaying significant upregulation of intracellular PDGFRα in lymph node metastases
and asynchronous recurrences [65].

As a side note, Plasminogen Activator, Tissue Type (PLAT) was most downregulated
putative target gene discovered among the commonly dysregulated genes for both treated
subpopulations (Supplementary Table S1). A previous study demonstrated its correlation
with anti-apoptosis and tumor proliferation, findings that the knockdown of PLAT restored
anticancer effect of gefitinib in non-small cell lung cancer (NSCLC) [66]. In this study,
PLAT putative target gene expression was highly suppressed in tsMDA and tpMDA
as compared to their respective controls, but to a lower extent in tsMDA after cisplatin
treatment, suggesting anti-proliferate activity and the induction of apoptosis in both
treated subpopulations, but less effectively in tsMDA, supported by the fewer events of late
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apoptosis/necrosis observed in tsMDA as compared to tpMDA after cisplatin treatment
(Figure 4a,b).

Notably, of all the significantly dysregulated putative target genes in tsMDA, approx-
imately 53% of these genes were dysregulated exclusively in the sMDA subpopulation
after cisplatin treatment (Figure 7). Among these putative target genes, five are correlated
to the ‘Hh signaling pathway’ (SMO and GSK3β) and ‘angiogenesis’ (NOTCH2, DLL1,
WNT1 and GSK3β) (Figure 8b). The Hh-pathway-correlated-gene expression of SMO
was upregulated, whereas GSK3β was downregulated in tsMDA as compared to its con-
trol (Supplementary Table S2). As the activation of the Hh signaling pathway, mediated
by SMO, is crucial for the maintenance of CSCs and the self-renewability of breast can-
cer cells [67], whereas GSK3β is positively correlated to apoptosis in the TNBC cell line
(MDA) [68], the upregulation of SMO and the downregulation of GSK3β exclusively in
tsMDA may contribute to higher cisplatin resistance and self-renewal ability in tsMDA,
compared to tpMDA (Figures 4a,b and 5).

Moreover, putative target genes involved in angiogenesis, including the upregulated
DLL1 and WNT1 and downregulated GSK3β and NOTCH2, might enhance the aggres-
siveness of tsMDA. Furthermore, inhibition of WNT1 was previously reported to enhance
apoptosis [69] and suppress self-renewability in breast CSCs in vitro [70]. On the other
hand, NOTCH2, encoded for the receptor of Notch signaling pathway, was reported to
suppress tumor growth in human breast cancer xenografts [71]. Notably, although activa-
tion of Notch2 induced higher vascularization, the vessels were smaller and comprised
a more immature network as compared with Notch4-activated signaling, suggesting its
suppressive role in the angiogenesis of breast cancer [71]. In reference to these previous
findings, the upregulation of DLL1 and WNT1 exclusively in tsMDA observed in this study
may play a part in inducing higher anti-apoptotic and self-renewal abilities in tsMDA
compared to tpMDA (Figure 4a,b and Figure 5), whereas the downregulation of NOTCH2
may suggest that tsMDA possessed greater potential to initiate angiogenesis as compared
to tpMDA.

In agreement with the observed cellular characteristics of cisplatin-treated subpopula-
tions, putative Notch and PDGF pathways, which are positively correlated to breast cancer
progression, were hindered to a lower extent in tsMDA after treatment. Furthermore,
putative Hh and angiogenesis pathways that were exclusively enriched in sMDA after
treatment could be the core putative pathways contributing to the attenuation of cisplatin
effects, including maintaining self-renewability, inhibiting apoptosis and inducing more
aggressive behavior in the sorted subpopulation as compared to the parental subpopu-
lation after treatment. Therefore, putative target gene expression analysis supported the
observed cellular characteristics of tsMDA as being more tumorigenic and resistant to
cisplatin treatment than its parental counterpart. This indicates that the sorted CSC-like
subpopulations played a vital role in the acquirement of cisplatin resistance in TNBC.

4. Materials and Methods
4.1. Cell Culture for Triple-Negative Breast Cancer Cells

The human TNBC cell line MDA-MB-231 was purchased from ATCC (Manassas,
VA, USA). MDA-MB-231 was cultured under adherent culture conditions, sustained by
RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA), supplemented with 10% fetal bovine
serum (FBS) (Gibco, Gaithersburg, MD, USA). Cancer cells were cultured at 37 ◦C in a 5%
CO2 humidified atmosphere and were sub-cultured upon reaching 70% confluency.

4.2. Isolation of Triple-Negative Breast Cancer Stem Cells via Magnetic-Activated Column Sorting

Isolation of the CSC-like subpopulation was conducted via magnetic-activated cell
sorting (MACS) separation, which involved a MACS Column and MACS separator (Mil-
tenyi Biotec, Bergisch Gladbach, Germany). The parental MDA-MB-231 cells (pMDA)
were filtered using a 70-µm cell strainer (BD, Franklin Lakes, NJ, USA) to obtain single
cell suspension prior to cell sorting. MACS separation was conducted according to the
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protocol provided by manufacturer. Briefly, the 24- subpopulation was first isolated via
CD24 MicroBead kit (Miltenyi Biotec, Bergisch Gladbach, Germany) by positive depletion
of CD24-expressing cells, followed by positive selection of CD44-expressing cells using
anti-CD44-PE (Biolegend, San Diego, CA, USA) and anti-PE MicroBead (Miltenyi Biotec,
Bergisch Gladbach, Germany). This resulted in the acquisition of the sorted CD24−/CD44+

CSC-like subpopulation (sMDA).

4.3. Assessment for the Cytotoxicity of Cisplatin

An MTT assay (Sigma-Aldrich, St. Louis, MO, USA) was conducted to determine
the half maximal inhibitory concentration (IC50 value) of cisplatin (Sigma-Aldrich, St.
Louis, MO, USA). The pMDA cells were seeded at a cell density of 8000 cells/well in a
flat-bottom 96-well plate (BD, Franklin Lakes, NJ, USA) and incubated at 37 ◦C in 5% CO2
for 24 h to achieve 70% confluency. Seeded cells were treated with a range of cisplatin
from 0–200 µM. The cisplatin treated plate was incubated for 24, 48 and 72 h, followed
by the addition of 5 mg/mL of MTT solution (Sigma-Aldrich, St. Louis, MO, USA). The
insoluble formazan crystal formed was observed and solubilized in dimethyl sulfoxide
(DMSO) (Fisher Scientific, USA) before absorbance readings were taken using a microplate
reader (µ Quant Biotek Instruments, Winooski, VT, USA) at a wavelength of 570 nm. The
shortest time point with stabilized drug cytotoxicity was selected for the acquisition of
cisplatin-treated triple-negative breast cancer subpopulations.

4.4. Acquirement of Cisplatin-Treated Triple-Negative Breast Cancer Subpopulations

A seeding density of 2 × 105 of cells from pMDA and MACS-sorted sMDA were
seeded in a 6-well plate (BD, Franklin Lakes, NJ, USA) for 24 h until the adhered cancer
cells reached 70% confluency. The confluent cells were then treated with the identified
IC50 value of 56 µM cisplatin (Sigma-Aldrich, St. Louis, MO, USA) for 48 h to acquire
the surviving subpopulation after cisplatin treatment. As a longer culturing duration can
induce a higher rate of cell differentiation, it is crucial to select the shortest time point with
a stabilized cisplatin cytotoxic effect, which was the acquired IC50 value of cisplatin at 48 h,
to acquire cisplatin-treated subpopulations. This can ensure the best maintenance of the
cell stemness of the MACS-sorted untreated sMDA after a total of 72 h of culture duration
(including 24 h of incubation to allow adhered cells to become confluent, followed by 48 h
of incubation time, similar to the treatment duration for cisplatin-treated subpopulations),
prior being harvested and investigated. Therefore, a total of four MDA subpopulations
as listed below were acquired and investigated by means of bioassays, as outlined in the
following Sections.

I. pMDA control
II. Treated pMDA (tpMDA)
III. sMDA control
IV. Treated sMDA (tsMDA)

4.5. Immuno-Phenotyping for Expression of Breast Cancer Stem Cell Surface Markers CD44/CD24
via Flow Cytometry

Anti-CD44 and anti-CD24 flow-cytometry was conducted to quantify CSC-like cells.
Cancer cells were harvested and counted to prepare the appropriate number of cells for
flow analysis. A total of 1 × 106 cells/mL of the single-cell suspension were suspended in
100 µL of phosphate-buffered saline (PBS), followed by double staining with a 1:40 dilution
of anti-CD24-FITC (Biolegend, San Diego, CA, USA) and anti-CD44-PE ((Biolegend, San
Diego, CA, USA) in PBS. The reaction was incubated at 4 ◦C for at least 1 h in the dark.
The cells were then washed with PBS to remove unbound dyes. The stained cell pellet
was resuspended in 500 µL of fresh PBS, then subjected to a BD Accuri C6 flow cytometer
and analyzed using BD Accuri C6 software (BD, Franklin Lakes, NJ, USA). Gating of the
targeted CD44+ and CD24+ population was based on the control cells, incubated with
isotype control mouse IgG2a-FITC and rat IgG2a-PE.
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4.6. Immuno-Phenotyping for Expression of Breast Cancer Stem Cell Intracellular Marker
ALDH1A1 via Flow Cytometry

Anti-Aldehyde dehydrogenase1A1-APC (Anti-ALDH1A1-APC) flow cytometry was
conducted to study the stemness of the MDA subpopulations. The anti-ALDH1A1 (Cell
Signaling Technology, Danvers, MS, USA) antibody was first conjugated using the lightning-
link APC antibody labelling kit (Innova Biosciences Ltd., Cambridge, UK) to obtain the
anti-ALDH1A1-APC antibody. The APC-conjugated anti-ALDH1A1 was prepared at a
concentration of 0.01 µg/µL, mixed in PBS. LL-modifier and LL-APC were first added
to anti-ALDH1A1 and incubated at 4 ◦C overnight. LL-quencher was then added and
incubated with anti-ALDH1A1-APC at 4 ◦C for 30 min in the dark according to the
manufacturer’s manual and prior usage. Harvested cells were pelleted and fixed using a 4%
paraformaldehyde solution (Thermo Fisher Scientific, Arendalsvägen, Göteborg, Sweden)
at 4 ◦C for 10 min. The fixed cells were washed twice in cold PBS and permeabilized using
100 µL of cold 0.25% Triton-X-100 (Sigma-Aldrich, St. Louis, MO, USA) with PBS for 10 min.
The permeabilized cells were rinsed twice with cold PBS (incubated for 5 min each time)
before being stained with a 1:200 dilution of anti-ALDH1A1-APC in PBS at 4 ◦C for 1 h in
the dark. The cells were washed with PBS to remove unbound dyes. Stained cell pellets
were resuspended in 500 µL of fresh PBS, then subjected to a NovoCyte flow cytometer
and analyzed using NovoExpress Software (ACEA Biosciences, San Diego, CA, USA).

4.7. Immunofluorescence Microscopy Detection of Breast Cancer Markers CD44/CD24
and ALDH1A1

Both pMDA and sMDA were seeded at a cell density of 8000 cells/well in a flat-bottom
96-well plate (BD, Franklin Lakes, NJ, USA) and incubated at 37 ◦C in 5% CO2 for 24 h
to achieve 70% confluency. These seeded cells were treated with 56 µM of cisplatin for
48 h. Before the controls and treated pMDA and sMDA were fixed, the medium was
carefully removed from wells and cells were rinsed twice with PBS to remove the residue
from the medium. Cells in each well were fixed using 50 µL of 4% paraformaldehyde
solution (Thermo Fisher Scientific, Arendalsvägen, Göteborg, Sweden) at room temperature
for 10 min. Fixed cells were then washed twice using PBS at room temperature and
blocked with blocking solution, 1% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis,
MO, USA) in PBS for 1 h at room temperature. Cells were double stained with two
antibodies, anti-CD24-FITC (Biolegend, San Diego, CA, USA) and anti-CD44-Alexa-Fluor
647 (Biolegend, San Diego, CA, USA) with a 1:40 dilution of antibodies in PBS at 4 ◦C
for 1 h in the dark, allowing the conjugation of antibodies to the surface markers on the
cells. These immunofluorescent samples for ALDH1A1 were fixed similarly, as described
above for CD44 and CD24 surface markers but without the blocking step. Fixed cells were
permeabilized with 50 µL of cold 0.25% Triton-X-100 with PBS (Sigma-Aldrich, St. Louis,
MO, USA) for 10 min. The permeabilized cells were rinsed twice with cold PBS (incubated
for 5 min each time) before being stained with a 1:200 dilution of anti-ALDH1A1-APC in
PBS, at 4 ◦C for 1 h in the dark. Both CD24/CD44 and ALDH1A1 stained cells were rinsed
twice with PBS (incubated for 5 min each time) before being counterstained with 0.5 µg/mL
of Hoescht solution (Sigma-Aldrich, St. Louis, MO, USA) at room temperature for 10 min.
The counterstained cells were rinsed once with PBS for 10 min and 100 µL of fresh PBS was
added into wells prior to imaging. CD24 and CD44-stained cells were imaged via FITC,
Alexa-Fluor 647 and Hoeschst filters, whereas ALDH1A1-stained cells were imaged via
APC and Hoeschst filters using a Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany).
The captured images were further processed and exported via Zeiss Zen microscope
software (Carl Zeiss AG, Oberkochen, Germany).

4.8. RealTime-Glo™ MT Cell Viability Assay

The cell viability of pMDA and sMDA treated by anti-cancer drugs including cisplatin,
doxorubicin and 5-fluorouracil (5FU) (ranging from 0 µM to 200 µM and at 4 µM and
500 µM, respectively) was measured using the RealTime-Glo™ MT Cell Viability Assay
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(Promega, Madison, WN, USA). Both MDA subpopulations were seeded at their optimum
seeding densities in white 384-well plate (SPL Life Sciences, Pocheon-si, Korea) to achieve
70% confluency after 24 h of incubation at 37 ◦C in 5% CO2. To each well, 60 µL of 1 X
RealTime-Glo™ reagent was added just before the addition of the drug (0 h) at different
concentrations. Luminescence readings were taken at 0, 24, 48 and 72 h after the addition
of the drug. The temperature of each plate was equilibrated to 37 ◦C using the Varioskan
Flash microplate reader (Thermo Fisher Scientific, Arendalsvägen, Göteborg, Sweden)
during the reading of plates. The IC50 value (the concentration of drugs that reduced cell
viability by 50% compared to control cells) of each drug was determined based on the
graph of cell viability (%) vs. drug concentration generated through the formula shown in
below, to evaluate the cytotoxicity.

Percentage of cell viability (%) =
OD of treated sample at 50% cell viability

optical density (OD) of control
× 100%

4.9. FITC-Annexin V/PI Staining Apoptosis Assay

Harvested cells were washed twice with PBS and resuspended in 1 × binding buffer
provided in the FITC Annexin V Apoptosis Detection Kit I (BD, Franklin Lakes, NJ, USA) in
which 100 µL of solution, consisting of 1 × 105 cells, was stained by FITC-Annexin V and
PI as described in the manufacturer’s manual for the FITC Annexin V Apoptosis Detection
Kit I (BD, Franklin Lakes, NJ, USA). The cells were incubated at room temperature for
15 min in the dark. For the identification of apoptotic cells, stained cells were placed in a
BD Accuri C6 flow cytometer and analyzed using BD Accuri C6 software (BD, Franklin
Lakes, NJ, USA).

4.10. Cell Cycle Analysis

Harvested cells were washed with buffer solution (BD Biosciences, San Jose, CA,
USA) and subjected to cell cycle analysis using a CycletestTM Plus DNA Reagent Kit (BD
Biosciences, San Jose, CA, USA) according to the manufacturer’s protocols. The washed
cell pellets were successively resuspended and incubated in solution A (trypsin), solution
B (trypsin inhibitor and RNAse A) and solution C (PI) for 10 min, respectively. Stained
cells in mixed solution were placed in a NovoCyte flow cytometer and analyzed using
NovoExpress Software (ACEA Biosciences, San Diego, CA, USA).

4.11. Mammosphere Formation Efficiency Test

A mammosphere formation efficiency test was used to investigate the self-renewability
of each subpopulation [33] Harvested cells were seeded into U-bottom 96-well plates
(BD, Franklin Lakes, NJ, USA) at a cell density of 200 cells per well and sustained in
DMEM/F12 (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 20 ng/µL of epider-
mal growth factor (EGF) (Peprotech, Rocky Hill, NJ, USA), 20 ng/µL of basic fibroblast
growth factor (bFGF) (Peprotech, Rocky Hill, NJ, USA), 1% B27 (Gibco, Gaithersburg, MD,
USA), 10 µg/mL insulin (Thermo Fisher Scientific, Arendalsvägen, Göteborg, Sweden), 0.5
µg/mL hydrocortisone (Nacalai Tesque, city, Japan), 1% Penicillin-Streptomycin solution
(Gibco, Gaithersburg, MD USA), 1% L-glutamine (Thermo Fisher Scientific, Arendalsvägen,
Göteborg, USA) and 0.4% BSA (Sigma-Aldrich, St. Louis, MO, USA). To study the mammo-
sphere formation efficiency of these MDA subpopulations, the seeded cells were observed
for 14 days and the numbers of generated mammospheres were counted. Experiments
were performed in three biological replicates, each consisting of one technical replicate.
Mammosphere formation efficiency was calculated based on the formula shown below.

Mammosphere formation efficiency (%) =

Number of well with generated
mammosphere on day 14

48 mammosphere
seeded well on day 0

× 100%
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4.12. Quantitative Real-Time PCR Array for Cancer Stem Cell-Correlated Putative Target Genes

Total RNA extraction was conducted using QIAzol (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s recommendations. Only RNA samples that achieved good purity
(absorbance ratios between 1.8 to 2.0 for A260/A280 and greater than 1.8 for A260/A230)
were used in this study. DNA contaminants were removed from 2.5 µg of total RNA
prior to cDNA conversion using the RT2 first stand kit (Qiagen, Hilden, Germany). The
cDNAs obtained were loaded into an RT2 profiler PCR array for a human CSC panel (Qia-
gen, Hilden, Germany), followed by the addition of the SYBR Green Mastermix (Qiagen,
Hilden, Germany). The cDNA was subjected to a real-time polymerase chain reaction using
CFX96 (Bio-Rad, Hercules, CA, USA) to quantify gene expression of the CSC-correlated
putative target genes in the PCR array. Experiments were performed in three biological
replicates that consisted of one technical replicate of each gene for one RT2 profiler PCR
array. Putative target gene expression was analyzed using Bio-Rad CFX Manager (Bio-Rad,
Hercules, CA, USA), whereas the dysregulation of genes was analyzed using the RT2
Profiler PCR Array Data Analysis Webportal (Qiagen, Hilden, Germany), normalized
using beta-2-microglobulin (B2M), hypoxanthine phosphoribosyltransferase 1 (HPRT1)
and ribosomal protein lateral stalk subunit P0 (RPLP0) housekeeping genes.

4.13. Gene Ontology Enrichment Pathway Analysis of Dysregulated Putative Target Genes

Enrichment of gene ontology (GO) terms of dysregulated putative target gene profiles
were determined through the PANTHER classification system (http://www.pantherdb.
org/ (accessed on 12 April 2020) [34]. The PANTHER overrepresentation test, version
15.0, was used (Fisher’s exact test with false discovery rate (FDR) multiple test correction)
via comparison with GO database release 2020-02-14. p-values < 0.05 were regarded as
statistically significant for the analysis.

4.14. Statistical Analysis

Data were analyzed and graphs were generated using PRISM v8.0 (Graph pad soft-
ware) with the analyzed standard deviation (SD) displayed as error bars in the respective
generated bar charts. Data acquired from RealTime-Glo™ MT Cell Viability were ana-
lyzed using Student’s unpaired t-test. Remaining bioassays, including CD24/CD44 and
ALDH1A1 expression, Annexin V/PI assays, cell cycle analysis and mammosphere forma-
tion efficiency test were analyzed using one-way analysis of variance (one-way ANOVA),
followed by multiple comparisons testing with the Tukey correction (comparison of mean
differences between groups). All data were expressed as mean ± SD of three independent
biological replicates, each with three technical replicates. The results were considered to be
statistically significant at a probability level of p-value < 0.05.

5. Conclusions

The findings of this study suggest the higher tolerance of sorted CSC-like cells from
MDA-MB-231 to the therapeutic effect of cisplatin. This conclusion was based on our
observations of fewer events of late apoptosis/necrosis, less fragmented DNA, a greater
protective mechanism against DNA damage and the greater retention of self-renewability
in tsMDA, as compared to parental cells after cisplatin treatment. In agreement with the
observed cellular characteristics of tsMDA after cisplatin treatment, further putative target
gene expression investigations revealed that underlying mechanisms may contribute to
higher cisplatin resistance observed in tsMDA, correlated with the dysregulation of SMO,
GSK3β, NOTCH2, DLL1 and WNT1, which were associated with Hh and angiogenesis
signaling pathways. These annotated signaling pathways were closely correlated to the
regulation of chemoresistance and self-renewability in breast cancer. Significantly, the
findings are of potential clinical importance in understanding the development of cisplatin
resistance in TNBC in association with CSCs. Further research through knockdown or
pharmacological inhibition of the proposed putative targeted genes is required in order to
validate the current findings. Confirmation of the putative targeted genes and pathways

http://www.pantherdb.org/
http://www.pantherdb.org/
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allow future researchers to improve the efficiency of cisplatin to treat TNBC by suppressing
the activity of CSCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14050391/s1, Table S1: Significantly (at least 2-fold) dysregulated mRNAs common to both
tpMDA and tsMDA as compared to their respective controls; Table S2: Significantly (at least 2-fold)
dysregulated mRNAs observed exclusively in tpMDA and tsMDA as compared to their respective
controls.
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