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Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis
(MS). Despite its wide clinical use, the mechanisms underlying clinical response are not
understood. This study aimed to reveal immune markers of therapeutic response to DMF
treatment in MS. For this purpose, we prospectively collected peripheral blood mononu-
clear cells (PBMCs) from a highly characterized cohort of 44 individuals with MS before
and at 12 and 48 wk of DMF treatment. Single cells were profiled using high-
dimensional mass cytometry. To capture the heterogeneity of different immune subsets,
we adopted a bioinformatic multipanel approach that allowed cell population–cluster
assignment of more than 50 different parameters, including lineage and activation
markers as well as chemokine receptors and cytokines. Data were further analyzed in a
semiunbiased fashion implementing a supervised representation learning approach to cap-
ture subtle longitudinal immune changes characteristic for therapy response. With this
approach, we identified a population of memory T helper cells expressing high levels
of neuroinflammatory cytokines (granulocyte–macrophage colony-stimulating factor
[GM-CSF], interferon γ [IFNγ]) as well as CXCR3, whose abundance correlated with
treatment response. Using spectral flow cytometry, we confirmed these findings in a sec-
ond cohort of patients. Serum neurofilament light-chain levels confirmed the correlation
of this immune cell signature with axonal damage. The identified cell population is
expanded in peripheral blood under natalizumab treatment, substantiating a specific role
in treatment response. We propose that depletion of GM-CSF–, IFNγ-, and CXCR3-
expressing T helper cells is the main mechanism of action of DMF and allows monitoring
of treatment response.
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Dimethyl fumarate (DMF) exerts beneficial immunomodulatory effects in several auto-
immune conditions and is frequently used for treatment in relapsing–remitting multiple
sclerosis (RRMS) (1–3). Various, partially conflicting (4) studies reported alterations in
almost all leukocyte populations under therapy, including T cells (5–9), B cells (10–13),
and antigen-presenting myeloid cells (6, 14). In contrast to recently developed therapies
with designated immune targets, the mode of action of DMF in MS remains poorly
understood. To elucidate which aspects of the drug’s complex effects on the immune sys-
tem are most relevant to its therapeutic effect in MS, we made a detailed comparison
between patients with good and poor response to DMF treatment. We developed a deep
immunophenotyping approach based on mass cytometry in conjunction with a weakly
supervised machine-learning algorithm (15) to characterize the longitudinal effect of
DMF treatment on the immune system of MS patients and to elucidate the immune
substrate of treatment response.

Results

DMF Modifies the Immune System of MS Patients. To study the immunological effects
of DMF in MS, we prospectively collected clinical information from 31 DMF-treated
patients (hereafter “mass cytometry cohort”) and peripheral blood mononuclear cells
(PBMCs) at three time points (T1, baseline; T2, 12 wk of treatment; T3, 48 wk of treat-
ment). Among these patients, we distinguished responders without radiological or clinical
signs of inflammatory disease activity from nonresponders, whose MRI revealed new or
gadolinium-enhancing lesions at T3 and/or who experienced clinical relapses (for the study
design, see Fig. 1A). Characteristics of this cohort are listed in SI Appendix, Table S1.
The first analysis aimed to characterize the effect of DMF therapy on the phenotype

of PBMCs. Using two complementary, partially overlapping antibody panels
(“stimulation panel” with phorbol 12-myristate 13-acetate [PMA]/ionomycin stimula-
tion, and “conventional panel” without stimulation) for mass cytometry, we measured

Significance

Understanding the
immunobiology of multiple
sclerosis remains an unresolved
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therapeutic response to effective
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depleted in responding
individuals. As a biomarker, this
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stratification.
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54 characteristic features, including markers of lineage, activa-
tion, and maturation, transcription factors, chemokine receptors,
and cytokines (SI Appendix, Tables S2 and S3). To capture the
intercluster phenotypic identity, we exploited the partially over-
lapping design of our cytometry by time of flight (CyTOF) pan-
els and the neural network–based algorithm of FlowSOM (16)
to delineate the major immune populations (Fig. 1 B and C).
This multipanel approach was further used to build a uniform
manifold approximation and projection (UMAP) representation
of the identified cell populations (Fig. 1B and all markers in SI
Appendix, Fig. S1). We then analyzed the effect of DMF treat-
ment and found a strong effect on the T cell compartment, with
a sustained reduction in the frequency of CD8 (P = 0.0001)
and γδ-T cells (P = 0.0001) already 3 mo after treatment initia-
tion. A significant reduction of CD4 T cells and T regulatory
cells (Tregs) was evident only after 1 y of treatment (P = 0.039
and P < 0.0001, respectively). Conversely, we observed an
increased frequency of myeloid cells at each time point after the
initiation of DMF. Natural killer (NK) and B cell frequencies
were only minimally affected (Fig. 1D).

In addition to relative frequencies, we also examined the
absolute numbers of the various cell types over time (Fig. 1E).
As expected, DMF led to a decrease in total leukocyte and lym-
phocyte counts, with a strong reduction in CD4 and CD8
T cells (T1 vs. T2, P = 0.0004 and P = 0.00005, respectively).
B cells also decreased (T1 vs. T2, P = 0.011), while NK cells
and monocytes were minimally affected (T1 vs. T2, P = 0.050
and P = 0.067, respectively), indicating that the increase in
their relative frequencies can largely be ascribed to a general
contraction of the lymphocyte compartment.

Complex Rearrangement of Mature Lymphocytes Marks DMF
Treatment. Multiple cell types have been implicated in MS
pathophysiology, especially T and B lymphocytes (17, 18). To
determine the specific modulation pattern exerted by DMF on
lymphocyte subsets, we mapped the longitudinal changes of
cell density in a UMAP representation of T and B cells (for
marker expression, see SI Appendix, Fig. S2A). In this map, the
most drastically reduced cell sets clustered with the expression
of CD45RO, while increases were seen in areas with CD45RA,

Fig. 1. DMF treatment changes the peripheral immune profile of MS. (A) Blood samples and clinical data from a cohort of MS patients (n = 31, as well as
two validation cohorts) before the initiation of DMF therapy and at 3- and 12-mo follow-up were longitudinally collected and analyzed for immune profile by
mass cytometry and SNPs by DNA microarray. (B) UMAP representation of analyzed peripheral blood immune cells with overlaid color code as categorized
by FlowSOM-defined clusters. (C) Immune compartments as defined by FlowSOM-defined clusters. Mean expression profile of all analyzed parameters in
each defined population. (D) Longitudinal frequencies of the immune populations in blood in relative numbers. (E) Longitudinal cell counts of the main
immune populations in blood in absolute numbers.
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CCR7, and CD27 expression (Fig. 2 A–C). The degree of
change within these populations, however, was heterogeneous,
suggesting a more complex rearrangement of lymphocyte popu-
lations (for longitudinal comparisons of T1 vs. T2 and T2 vs.
T3, see SI Appendix, Fig. S2 B and C). We further character-
ized these alterations in T and B cell composition by canonical
maturation patterns. After unsupervised clustering of T cells
based on FlowSOM nodes, we defined subsets for naïve (Tn),
effector memory (Tem), central memory (Tcm), and terminal
effector (Teff) cells based on their expression profile and com-
pared their frequencies. DMF profoundly affected the memory
compartment, inducing a strong reduction in the frequencies of
both Tem (P = 0.01) and Tcm (P = 0.02) already after 3 mo
of treatment as compared with baseline. Conversely, Tn
showed a significant relative increase (P = 0.002) (Fig. 2D and
SI Appendix, Fig. S3 A–E). A similar pattern was observed
in cytotoxic T (Tc) cells (SI Appendix, Fig. S3F). Analogously,
we selected subsets of B cells based on their expression of

maturation markers: naïve, immunoglobulin M (IgM) memory,
class-switched memory, transitional, and plasma cells. We
observed a significant decrease in both IgM (P = 0.009) and
class-switched (P = 0.00004) memory B cells, with a concomitant
increase in the naïve compartment (P = 0.0006). Interestingly,
neither transitional nor plasma cells were significantly affected by
the therapy (Fig. 2D and SI Appendix, Fig. S3 G and H). In con-
clusion, both B cell and T cell compartments undergo a drastic
decrease of mature populations under DMF treatment.

We then deepened the analysis of the most affected cell pop-
ulations to include all measured markers. When assessing the
longitudinal profile of T cells by distinct cytokines, granulocyte–
macrophage colony-stimulating factor (GM-CSF), tumor necro-
sis factor α (TNFα), and interferon γ (IFNγ) were identified as
the most strongly decreased cytokines (Fig. 2E and SI Appendix,
Fig. S4). The expression of the chemokine receptors CXCR3
and CCR4 specifically decreased in Th cells under DMF treat-
ment, contrasting with a rather slight decrease in CXCR4 and

Fig. 2. DMF treatment primarily affects mature T and B cells. (A) UMAP representation of B cell and Th and Tc cell subsets with overlaid color code as cate-
gorized by FlowSOM-defined clusters. (B) The change of density (blue indicating decrease and red indicating increase during follow-up) within the UMAP
representation was computed via a Gaussian kernel density estimation for change between T1 and T3. (C) Expression maps of representative markers of
lymphocyte maturation in the UMAP representation. (D) Frequencies of established maturation cell types of Th cells, Tc cells, and B cells at time points T1 to
T3 visualized in area plots. (E) Radar chart depicting the change of mean cytokine expression (T3/T1) in each cell type for CD4 T cells, CD8 T cells, and B cells.
(F) Radar chart depicting the change of mean cytokine and chemokine receptor expression (T3/T1) in each cell type for CD4 T cells, CD8 T cells, and B cells.
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CXCR5 and a minor effect in Tc cells (Fig. 2F and SI Appendix,
Fig. S4 D and E). Analogously, we assessed the influence of
DMF on B cell composition. TNFα was the most frequently
produced cytokine and most strongly decreased at 12 mo (Fig.
2E). The CXCR3 expression in B cells was significantly reduced
after 3 and 12 mo of DMF therapy, while CXCR4 and CXCR5
were not significantly affected (Fig. 2F and SI Appendix, Fig.
S4F). In summary, superimposed on the global reduction of lym-
phocytes with a memory phenotype, DMF selectively reshapes
the cytokine polarization of T and B cells.

CellCnn Identifies a TNFα/GM-CSF/CXCR3 Effector-Memory
T Cell Signature of DMF Treatment. Given the complex impact
of DMF on the immune system, we employed a weakly super-
vised machine-learning approach in order to identify the
immune features most strongly associated with the effect of
DMF. We utilized the CellCnn algorithm (15) to capture the
longitudinal changes in our dataset, comparing T1 and T3.
This approach was independently applied to the data obtained
from both panels (Fig. 3 A–C). Both analyses identified an
effector-memory population of mainly T helper cells (with
minor contributions of Tc and γδ-T cells) (Fig. 3D). This
treatment-associated phenotype featured high levels of GM-CSF
and TNFα (stimulation panel, Fig. 3E) as well as CXCR3 (con-
ventional panel, Fig. 3F) (for a complete panel of all markers,
see SI Appendix, Fig. S5 A and B). When comparing the fre-
quencies of the CellCnn-selected cells, we observed a dramatic
reduction (P < 0.0001, stimulation panel; P = 0.0002, conven-
tional panel) upon DMF therapy. This decrease developed over
T1 to T2 and T2 to T3. To confirm that both panels identified
a concordant cell population, we compared them regarding a set
of 17 common markers by silhouette analysis (Fig. 3C). The cal-
culated silhouette score of 0.008 identifies no separation between
the two populations, as also indicated in the UMAP projection
(Fig. 3A). To validate the specificity of the identified phenotype,
we independently compared T2 and T3 in both panels, which
resulted in analogous results (silhouette score: T1 vs. T3 and T2
vs. T3 for the conventional panel, 0.008; for the stimulation
panel, 0.02; SI Appendix, Fig. S5 C and D). In conclusion, the
analysis of both surface and intracellular markers of immune cells
consistently identifies a circumscribed Tem population as the
central target of DMF treatment.
Since this immune modulation by DMF varied between

patients, we aimed to identify potentially underlying genetic
predispositions. For this purpose, we characterized our cohort
regarding 198 single-nucleotide polymorphisms (SNPs) associ-
ated with MS (19). When polymorphisms were assessed for
their correlation with change in the identified treatment-
associated population, rs6738544 showed the highest associa-
tion (P = 0.0009; Bonferroni correction 0.099; false discovery
rate 0.089) (Fig. 3G). The disease-associated c allele of this
intronic locus in the STAT4 gene was associated with both a
higher baseline frequency and a more pronounced decrease in
the specific Tem subpopulation (Fig. 3 G and H). This SNP
correlated significantly with the expression of GM-CSF within
the CD4 Tem cell pool (P = 0.05) (Fig. 3I).

CXCR3 Effector-Memory T Cells Constitute a Biomarker of
Treatment Response. Some patients experience disease activity
despite DMF therapy. By comparing the deep immune pheno-
type of these patients with patients without evidence of clinical
or radiological activity, we sought to identify possible predictors
of therapy response. An adapted CellCnn algorithm was devel-
oped to identify common cell populations over all time points

and assess their longitudinal profile change to predict clinical
outcomes like disease activity. By this approach, the highest
predictive accuracy of 79.14% was achieved on the conven-
tional panel. It identified a response-associated phenotype of
mainly effector-memory Th cells (with minor contributions of
Tc and γδ-T cells) (Fig. 4 A–D) expressing CXCR3 as the best
distinctive marker (Fig. 4E, all markers in SI Appendix, Fig.
S6A, and relative frequency in SI Appendix, Fig. S6B). This cell
population showed a constant and strong decrease (median
decrease 77.5%) over the course of 12 mo in responders (Fig.
4B). At 12 mo, treatment nonresponders had a 2.9-fold higher
proportion of this specific population (P = 0.0004). Using a
cutoff of 50% of the maximal frequency of this population,
87.5% of nonresponders could be identified at a false positive rate
of 26.1% (see the receiver operating characteristic [ROC] curve
with an area under the curve [AUC] of 0.85 in Fig. 4F). Inter-
estingly, the response-associated phenotype overlapped strongly
with the above-described treatment-associated phenotype (Fig.
4A), illustrating the therapeutic relevance of this specific
CXCR3+ T cell population in DMF treatment. A silhouette
score of �0.0425 further affirmed the similarity of the identi-
fied populations (Fig. 4C). The prevalence of the response-
associated population showed no significant association with
age (Pearson correlation coefficient (PCC) �0.0550, P =
0.7765 at T1). Furthermore, therapy response did not signifi-
cantly correlate with DMF-induced lymphopenia but rather
depended on the recomposition within the Th cell pool—as
illustrated by the distribution of absolute lymphocyte counts
and the frequency of this phenotype in responders and nonres-
ponders (Fig. 4G) and the respective ROC curves (Fig. 4F). A
divergent cytokine profile of Tem between responding and
nonresponding individuals further highlighted the central role
of GM-CSF, IFNγ, and TNFα in the therapeutic effect (Fig.
4H). In conclusion, these data identify this specific Tem cell
subpopulation as a marker of response to DMF in line with its
proposed role in MS pathophysiology.

Independent Cohorts and Serum Neurofilament Confirm a
DMF-Associated Immune Phenotype. To confirm this predic-
tive signature by an independent method in an independent
patient population, we tested PBMCs from a second cohort
(from here on termed “flow cytometry cohort”; for a scheme,
see Fig. 5 A, Top) by spectral flow cytometry in a comparable
analytical protocol (Fig. 5B and SI Appendix, Fig. S7A). In this
cohort, 13 individuals with RRMS were assessed with clinical
and laboratory follow-up matching the initial cohort. It
included four nonresponders with relapse and MRI activity (of
which one nonresponder experienced disease activity only
within the first month of DMF treatment) and nine age-
matching responders without radiological or clinical signs of
disease activity. Baseline characteristics were similar for res-
ponders and nonresponders (for patient characteristics, see SI
Appendix, Table S4). Both responders and nonresponders expe-
rienced a relative increase in CD4 cells within the 12 mo
follow-up (12.7 vs. 6.1%, P = 0.26). As predicted from find-
ings in the mass cytometry cohort, we saw a decrease of the
CXCR3+ TNFα+ IFNγ+ GM-CSF+ Tem subpopulation by
46.5% in responders and an increase by 22.3% in nonrespond-
ers (P = 0.0427) within Tem cells (SI Appendix, Fig. S7A
and Table S5), with GM-CSF (P = 0.0020) and IFNγ (P =
0.0047) as the main distinctive cytokines at T3 (Fig. 5 C–E).
The high accuracy of its association with therapeutic response
was consistent between the mass cytometry (AUC 0.85) and
flow cytometry cohorts (AUC 0.84) (Fig. 5C). The analysis of
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Fig. 3. Automated multipanel analysis with CellCnn identifies an inflammatory Tem phenotype associated with DMF therapy. CellCnn analysis determined
the core immune features between T1 and T3 from our patient cohort, termed the “treatment-associated phenotype” (TAP). (A) The UMAP algorithm was
used to depict the identified cell filter in the conventional (green) and stimulated (red) panels. (B) Frequency of selected cells within the Th compartment at
T1, T2, and T3, and the relative fold changes compared with baseline. (C) The overlap between both cell filters is estimated using silhouette analysis. The
black dashed line represents the silhouette score. (D) Frequency of selected cell types within the treatment-associated phenotype at T1 in the stimulated
panel and in the conventional panel. (E) Expression patterns of the five key discriminant markers between the treatment-associated phenotype and the ref-
erence cell population for the stimulated panel. Distance between patterns for each marker quantified by the Kolmogorov–Smirnov (KS) test. (F) Expression
patterns of the five key discriminant markers between the treatment-associated phenotype and the reference cell population for the conventional panel.
(G) Frequency change of the treatment-associated population between T1 and T3 in correlation with alleles of rs6738544. (H) Frequency of the treatment-
associated population at T1 in correlation with alleles of rs6738544. (I) Frequency change of GM-CSF expression in Tem and Tn between T1 and T3 in correla-
tion with alleles of rs6738544.
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specific cytokines revealed an analogous divergence for IFNγ
and GM-CSF with response/nonresponse (Fig. 5E) in line with
findings from the mass cytometry cohort.
A possible alternative to our conclusion that the altered Th

profile correlates with the DMF treatment response was the
hypothesis that it might reflect decreased disease activity. To test
this hypothesis, we took advantage of the fact that the CD49d-
blocking antibody natalizumab also has a strong suppressive effect
on disease activity but works by excluding pathogenic lymphocytes
from the central nervous system (CNS) and other tissues (thereby
increasing them in blood), while DMF depletes these cells
(thereby decreasing them in blood). We therefore tested four
patients with samples from three consecutive time points: without
immunomodulatory medication, on natalizumab therapy (with
good treatment response), and on DMF therapy (with good treat-
ment response) (Fig. 5 A, Bottom; for baseline and patient charac-
teristics, see SI Appendix, Table S6). As expected, DMF treatment

led to drastically decreased abundance of the signature population
in peripheral blood compared with the untreated time point (P =
0.026), while under natalizumab treatment the signature popula-
tion was significantly increased (P = 0.0368) (Fig. 5F).

Serum neurofilament light chain (NfL) is a blood biomarker
in MS specific for neuronal damage or loss caused by inflam-
matory activity or chronic neurodegeneration (20). To assess
the association of the cell signature with neuroaxonal damage,
NfL levels were determined at T1 and T3 in the mass and flow
cytometry cohorts. Under DMF treatment, serum NfL age-
adjusted z scores showed a moderate correlation with the fre-
quency of the predictive population under DMF treatment
(mass cytometry cohort, PCC 0.346; flow cytometry cohort,
PCC 0.671; Fig. 5 G and H). Clinically and radiologically
active patients were identified by both high neurofilament levels
and the predictive population fraction as indicated in Fig. 5 G
and H and by a stringent correlation in active patients (mass

Fig. 4. CXCR3 effector-memory T cell population correlates with DMF treatment response. Longitudinal CellCnn analysis determined the characterizing
immune features of the therapy response from our patients’ cohort, as defined by relapses and/or new/active MRI lesions, termed the “response-associated
phenotype” (RAP). (A) The UMAP algorithm was used to depict the identified response-associated (RAP, purple) and DMF treatment–associated cell filters
(TAP, pink). (B) Frequency of the response-associated cell filter in patients with and without signs of disease activity, arranged for all three time points. (C)
The silhouette analysis suggests the overlap of response-associated and DMF treatment–associated cell populations. The black dashed line represents the
silhouette score. (D) Frequency of selected cell types within the response-associated phenotype at T1 in the stimulated panel. (E) Expression patterns of key
discriminant markers between the response-associated population (purple) and the reference cell population (gray). (F) ROC curve depicting the accuracy of
predicting disease activity at T3 for absolute lymphocyte counts at T3, NfL at T3, and response-associated population frequency at T3. Bars illustrate the pre-
dictive accuracy and SD at intragroup cross-validation. (G) Scatter plot of lymphocyte counts and frequency of the response-associated population at T3 with
overlaid color code for disease activity. Each dot represents one patient. (H) Mean relative change between T1 and T3 of cytokine expression of analyzed
cytokines in Tem. Each radius arm represents one cytokine and purple color indicates individuals with disease activity.
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cytometry cohort: PCC 0.46, P < 0.0001; flow cytometry
cohort: PCC 0.94, P = 0.05). As anticipated, NfL at T3 was
reflective of disease activity during the observation period (mass
cytometry cohort, P = 0.12; flow cytometry cohort, P = 0.05).
In a combined approach, we added the z scores of both NfL
and the response-associated phenotype to predict disease activ-
ity. This strategy increased the predictive accuracy compared
with NfL alone in the mass cytometry cohort (AUC 0.73) and
the flow cytometry cohort (AUC 0.94) (SI Appendix, Fig. S7B).

Discussion

This study approaches the challenging immunobiology of MS
through examining the effects of treatment. Assuming that
some type of immune cell is particularly important in causing
the disease, such cells ought to be more abundant in patients
than in the general population and influenced by effective treat-
ments. This study focuses on the latter prediction. Some treat-
ments, including DMF, are highly effective in suppressing
relapses in some patients but less effective in others. This offers
the opportunity to compare the impact of the same drug, when
it works, and when it does not, and thereby to delimit thera-
peutically critical components of its effect.
In agreement with existing literature (6, 7, 21–23), our

cohort shows alterations in several cell types under DMF treat-
ment. The overall decrease of Tc cells was more pronounced
than the global impact on Th cells or B cells (7, 9, 13), and
mass cytometry confirmed the fundamental rearrangement of

the most affected mature subsets of both T cells (5–9) and B
cells (10–13). Among B cells, we observed a primary effect of
DMF on IgM and class-switched memory B cells but not on
transitional B cells or plasma cells, consistent with the target pro-
file of the highly efficacious B cell–depleting therapies in MS
(24, 25). More specifically, our study suggests that mature mem-
ory B cells expressing CXCR3 and TNFα are the main B cell
target of DMF treatment. B cells expressing CXCR3 are
reported to migrate into the CNS in MS and play roles in both
disease activity (24, 26, 27) and as a therapeutic target (24, 28).

In the T cell compartment, a reduction in antigen-experienced
cells (6, 7, 29) was paralleled by relative expansion of naïve T
cells. Cytokine secretion and cytokine receptor expression pat-
terns indicate a shift from Th1 to Th2 and Tfh polarization, and
a strong decrease in proinflammatory cytokine-producing T cells,
pathophysiologically plausible mediators (22, 30) of the therapeu-
tic effect. Specifically, we identified a population of GM-CSF/
IFNγ/CXCR3–expressing Tem cells as the main affected popula-
tion upon DMF treatment. When postulating a pathophysiologi-
cal role of GM-CSF–expressing Tem cells in the CNS, a genetic
predisposition in the STAT4 gene is of specific interest (31). We
here report a potential association of therapeutic response with
the MS-associated allele at locus rs6738544 in the STAT4 gene,
suggesting that DMF rebalances the aberration in this signaling
cascade (32). We note, however, that the size of our cohort is
insufficient for confident inference about genetic influences. It is
instructive to compare the identified population of GM-CSF/
IFNγ/CXCR3 Tem cells with the related cell type recently

Fig. 5. Two independent cohorts and serum neurofilament levels confirm the algorithm-identified DMF-associated immune phenotype. (A) One cohort of
13 patients was analyzed in an analogous setup to the mass cytometry cohort by spectral flow cytometry. Another cohort of 4 patients with samples from
untreated, DMF-treated, and natalizumab (NAT)-treated time points was assessed by conventional flow cytometry. (B) Representative illustration of cytokine
and chemokine receptor staining on Tem subpopulations. (C) ROC curve depicting the accuracy of predicting disease activity at T3 using Tem frequency at
T3, RAP frequency (within Tem) at T3, and NfL levels at T3. Bars illustrate the predictive accuracy and SD at intragroup cross-validation. (D) Frequency of the
response/treatment–associated phenotype (as identified by CXCR3+ TNF+ IFNγ+ GM-CSF+ Tem cells) in patients with and without signs of disease activity at
time point T3 in the flow cytometry cohort. (E) Mean relative change between T1 and T3 of cytokine expression in Tem. Each radius arm represents one cyto-
kine and purple color indicates individuals with disease activity. (F) Frequency of the response/treatment–associated phenotype (as identified by CXCR3+
TNF+ IFNγ+ GM-CSF+ Tem cells) in the same individuals at untreated, DMF-treated, and natalizumab-treated time points in Tem, Th, and all T cells. (G and
H) Scatter plots of the frequency of the response-associated population at T3 and NfL z scores at T3 in the mass cytometry cohort (G) and flow cytometry
cohort (H) with overlaid color code for disease activity (purple) or no disease activity (gray). Each dot represents one patient. A z score of 0 and the mean
value of the immune population are indicated by dashed red lines.
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identified as being associated with MS pathogenesis (29). As
expected for an empirically developed therapeutic like DMF, the
signatures of disease and treatment effect diverge slightly. They
are mainly discriminated by the predominant chemokine recep-
tor, either CXCR4 [MS-associated phenotype (29)] or CXCR3
(DMF-impacted phenotype), a distinction well-explained by the
known class-specific, presumably metabolic suppression of
CXCR3 Th cells by fumaric acid esters (21, 22, 33). Mechanisti-
cally, the specific T cell polarization and proliferation patterns as
well as the effector cell reduction are consistent with a postulated
immunometabolic mode of action. The succination of GAPDH
by DMF was described to inhibit glycolysis, thereby directly
influencing the crucial energetic substrate required by the active
Warburg-like metabolism of activated Th1 cells (6, 21).
Beyond characterizing the global effect of DMF treatment,

the main goal of this study was to compare the phenotypes of
responders versus nonresponders. While the cross-sectional
analysis of baseline samples did not allow the identification of
predictive biomarkers of response, thanks to the unique feature
of our approach, we were able to screen for response-associated
changes in the entire range of longitudinally collected PBMCs.
This automated analysis identified the signature of Tem cells as
the main marker associated with disease activity, with CXCR3
as the top descriptive feature. This circumscribed, response-
associated immune signature accords with previously reported
observations of suggestive Tem alterations (14, 34) but contrasts
with other studies (35, 36). Specifically, in comparison with the
previously suggested alterations in IL17, CD8 (35), and Th17
cells (36), the response-associated population was characterized by
similarly elevated CXCR3 but not CCR6 or IL17a expression. An
independent check on the significance of the response-associated
cell population is offered by examination of the very different
effects of natalizumab. By blocking α4-integrin, natalizumab pre-
vents migration of lymphocytes from the blood into the CNS,
preventing their pathological effect and leading to peripheral over-
representation of brain-homing cells (37, 38). This mechanism of
action yields the prediction that the pathologically critical cell type
depleted by DMF ought to be increased by natalizumab. Indeed,
this is the case—as examined in a cohort of patients with benefi-
cial treatment response to both treatments—providing additional
evidence that this cell type is a causal player in disease pathogene-
sis. Given the multiple disease-modifying therapies currently avail-
able for MS (18, 39, 40), it would be interesting to define
immune biomarkers of response based on patients’ baseline
immune characteristics. Future studies with broader cohorts will
be required to further address this point, aiming to generalize our
findings and expand them to other treatments.
We also examined the relationship between the blood cellu-

lar composition and the neuronal damage marker NfL. Since
increased serum NfL reflects acute disease activity (i.e., relapse-
associated worsening) and also progression independent of
relapse activity (20, 41), the higher specificity of a response-
associated signature for the former offers additional value in a
clinical context. If validated by independent groups, we envis-
age that combined measurement of NfL in blood as a bio-
marker of axonal damage and cellular composition as a marker
of inflammatory activity will allow discrimination of the differ-
ent disease aspects and guide therapeutic strategies.
In summary, our findings indicate that GM-CSF/IFNγ/

CXCR3–expressing T helper cells are a key target of DMF and
that reduced depletion of this population is associated with
relapse of MS. These findings suggest that immune monitoring
of DMF-treated patients might be relevant to determine the
therapeutic response and hence guide clinicians toward an

alternative disease-modifying treatment. Further studies address-
ing the implication of CXCR3 and its ligands in MS might pave
the way for the development of new therapeutic targets. Overall,
we believe that our findings not only provide insights into disease
pathophysiology but also substantially contribute to improved
personalized treatment strategies in MS.

Materials and Methods

Study Design and Sample Processing. Patients with evident diagnosis of
RRMS according to revised McDonald criteria (42) planning to start DMF treat-
ment were prospectively enrolled at the Multiple Sclerosis Center of University
Hospital Basel. Inclusion criteria included no previous treatment with fumaric
acid esters, a negative pregnancy test and effective contraception, and a signed
informed consent. Follow-up regarding clinical parameters and biobanking was
conducted before the start of treatment (T1) as well as at 3 (T2) and 12 mo (T3)
under treatment (±45 d). Cerebral MRI with a standardized study protocol was
conducted at T1 and T3 and assessed according to a standardized protocol by
experienced board-certified neuroradiologists. Prospectively enrolled individuals
were chronologically assigned to two cohorts: the mass cytometry cohort [SI
Appendix, Table S1; referred to in Diebold et al. (43)] and flow cytometry cohort
(SI Appendix, Table S4). All patients were instructed about the study design and
signed an informed consent. The study was approved by the Ethics Committee
for Northwest and Central Switzerland, EKNZ 48/12 (for DMF treatment samples:
mass cytometry and flow cytometry cohorts) and EKNZ 49/06 (for the natalizu-
mab cohort).

Blood samples obtained at each time point were freshly characterized by
automated flow cytometry for main leukocyte and lymphocyte populations.
PBMCs were collected from each donor’s blood (ethylenediaminetetraacetate
[EDTA] Monovette, Sarstedt) by density gradient centrifugation (Lymphoprep,
AXIS-Shield) and cryopreserved in liquid N2 in a medium of 10% dimethyl sulf-
oxide, 30% RPMI-1640, and 60% fetal calf serum (FCS). Serum samples (serum
Monovette, Sarstedt) were centrifuged at 2,000 × g and stored at �80 °C until
analysis.

Neurofilament. We measured serum NfL levels in duplicates using the high-
sensitivity single-molecule array (Simoa) NF-Light Advantage Kit (Quanterix)
according to the manufacturer’s instructions on an HDX platform (Quanterix). We
repeated measurements for a few samples with an intraassay coefficient of varia-
tion (CV) above 20%. Interassay CVs for three control samples were below 10%.
Analyses were performed blinded to clinical data.

Identification of SNPs. DNA was acquired from additionally sampled blood
cells (1 to 3 × 106 cells per sample) with the DNeasy Blood & Tissue Kit
(Qiagen). DNA was then analyzed for 654,027 SNPs by Global Screening Array
Multidisease 2.0 (Illumina). In total, 198 SNPs were extracted for each patient,
selected based on their correlation with the disease MS mentioned in recent lit-
erature (19). We encoded the genotypes using an additive method (44) with
respect to disease-associated bases, extracted from the literature. ANOVA was
used to test for differences in mean expression of immune cell populations of
each patient (only SNPs with at least three available allele constellations were
used for analysis). For each group of tests, we corrected the P values for multiple
testing using Bonferroni, considering a cutoff of 0.1 as significant.

Ex Vivo Reactivation of PBMCs. Short-term reactivation of cryopreserved
PBMCs and subsequent mass cytometry analysis were performed as described
recently (29). In short, PBMCs were kept in liquid N2 before thawing in a 37 °C
water bath. Cells were resuspended in cell-culture medium (RPMI-1640, 10% FCS
[Biochrom], 1× L-glutamine, 1× penicillin/streptomycin [both Life Technologies])
supplemented with 1:10,000 benzonase (Sigma) and centrifuged (300 relative
centrifugal force, 7 min, 24 °C). Samples were then rested overnight at 37 °C
before restimulation with 50 ng�mL�1 PMA (Sigma) and 500 ng�mL�1 ionomycin
(Sigma) in the presence of 1× brefeldin A (BD Biosciences) for 4 h at 37 °C.

Antibodies. For mass cytometry, monoclonal anti-human antibodies (SI
Appendix, Tables S2 and S3) were purchased either preconjugated to heavy-
metal isotopes (Fluidigm) or conjugated using the Maxpar X8 Chelating
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Polymer Kit (Fluidigm). Flow cytometry antibodies were purchased precon-
jugated (SI Appendix, Table S5).

Live-Cell Barcoding for Mass Cytometry. To minimize intersample staining
variability, sample handling time, and antibody consumption, we made use of a
live-cell barcoding approach. In short, isothiocyanobenzyl-EDTA (Dojindo) was
loaded with palladium isotopes (104Pd, 105Pd, 106Pd, 108Pd, and 110Pd; all
from Trace Sciences International; 113In or 115In also from Trace Sciences Inter-
national) as described previously, or niobium (93Nb) and tantalum (181Ta), and
conjugated to anti-human CD45 (BioLegend). 89Y-CD45 (Fluidigm) was used as
an additional barcoding reagent. Samples were stained with anti-CD45 antibod-
ies following reactivation at 37 °C for 25min in cell-staining medium (CSM;
RPMI-1640 and 4% FCS) on a rotating shaker (500 rpm), washed twice with
CSM, and combined into a single reaction vessel for further staining steps. Using
this approach, up to 84 samples (all longitudinal samples were acquired within
the same barcoded panel) were combined and processed together. In total, mul-
tiple barcoding reactions were performed on three independent occasions.

Surface Staining. As previously described (29), the barcoded and combined
sample for mass cytometry was resuspended in 400μL of surface-antibody mix-
ture [SI Appendix, Tables S2 and S3, for the conventional and stimulation panels,
respectively; the stimulation panel was identical to Diebold et al. (43)] in CSM.
Surface staining was performed for 20min at 37 °C on a rotating shaker
(500 rpm). After Fc blocking (BioLegend) and an additional wash, 2.5μM cis-
platin (Sigma-Aldrich) was added for 2min on ice to identify dead cells. For flow
cytometry, 50μL surface-antibody mixture (SI Appendix, Tables S2 and S3) was
added to the samples after Fc blocking, followed by incubation for 30min at
room temperature.

Intracellular Cytokine Staining. For mass cytometry, the combined surface
and live/dead–stained sample was fixed with 1.6% paraformaldehyde (Electron
Microscopy Sciences) in phosphate-buffered saline (PBS) for 30min at 4 °C on a
rotary shaker (500 rpm) or in intranuclear fixative (Invitrogen, FoxP3/Transcription)
for 1 h, washed, and resuspended in permeabilization buffer mix with intranuclear
antibodies for staining. Fixed cells were washed twice with permeabilization buffer
(PBS, 0.5% saponin, 2% bovine serum albumin, and 0.01% sodium azide [all
Sigma-Aldrich]). Cells were resuspended in 400μL intracellular antibody mixture
(SI Appendix, Tables S2 and S3) in permeabilization buffer for 1 h at 4 °C on a
rotary shaker (500 rpm). The sample was washed, the supernatant was removed,
and the cells were resuspended in 1× iridium intercalator solution (Fluidigm) over-
night. Lastly, the sample was washed twice with PBS/bovine serum albumin and
once with double-distilled water before acquisition. For flow cytometry, similar fixa-
tion and permeabilization were performed. Cells were resuspended in 50μL intra-
cellular antibody mixture (SI Appendix, Table S2) in permeabilization buffer for 1 h
at 4 °C on a rotatory shaker. Samples were then washed with CSM.

Data Acquisition and Preprocessing. For acquisition with a CyTOF2 mass
cytometer (Fluidigm), quality control and tuning were performed daily. Acquisi-
tions and data normalization were achieved using five-element beads (Fluidigm).
A shared reference sample across multiple runs was used as an independent
control. For downstream analysis, live, single cells were identified based on
event length, DNA (191Ir and 193Ir), and live cell (195Pt and 198Pt) channels
using FlowJo (TreeStar). The combined sample was debarcoded using Boolean-
gating or MATLAB-based software. Cytometry data were transformed with an
inverse hyperbolic sine (arcsinh) function with a cofactor of 5 (45) using the R
environment (R Development Core Team 2008, https://www.r-project.org/). To
balance the influence of markers with different dynamic ranges, we performed
background subtraction and channel-based percentile normalization using the
99th percentile of each marker across the whole barcoded dataset. Individual
cytokine positivity thresholds were determined based on the 99th percentile of
the residual staining in an unstimulated control sample.

Algorithm-Based High-Dimensional Analysis. Preprocessed data were ran-
domly down-sampled to a maximum of 300,000 cells per donor. Unless otherwise
indicated, only samples with more than 5,000 cells were considered for the analy-
sis. FlowSOM clustering was performed on cohort-combined samples after interrun
normalization. Metaclustering of nodes was performed with the indicated k
values (elbow criteria–based), and annotated according to their protein-
expression pattern. UMAP visualization was performed on a reduced dataset

of equal numbers of cells randomly selected (100,000 cells per condition) uti-
lizing the UMAP package (n_component = 2, n_neighbors = 15/50,
n_epochs = 400, min_dist = 0.1/0.8). All plots were drawn using ggplot2.

Statistical Analysis. The change of density was computed via a Gaussian kernel
density estimation using the two-dimensional UMAP representation as input for
the three time points T1, T2, and T3, respectively. We defined a grid along both
UMAP axes and computed the density based on the fitted kernels of the respec-
tive time points. Afterward, we subtracted the density grids T3–T1 and T3–T2.

CellCnn Longitudinal Application. CellCnn (15) is a weakly supervised
machine-learning model which can be applied to detect and define rare disease-
associated cell subpopulations. The model predicts disease phenotypes based
on relative cell subpopulation frequencies, which are encoded in a model intern
CellCnn score defined via a convolutional filter. For more details on CellCnn, we
refer to ref. 15. We adapted the method into a longitudinal setup, which allows
taking all of our three time points (T1, T2, T3) in a single model into account,
which was not possible before. Therefore, instead of predicting directly on the
cell subpopulation frequencies, we computed the time residuals T3–T1 and
T3–T2. This allows us to define disease-associated cell subpopulations which
change over time and explain the disease phenotype.

We used a threefold cross-validation and trained multiple models with ran-
domly selected hyperparameters (cell bag size ∈ [500, 1,000, 2,000, 3,000,
4,000, 5,000]; max pooling percentages ∈ [1, 5, 10, 15, 20]; number of
filters ∈ [3, 4, … , 9, 10]; same patient in bags cell bags T1, T2, T3 ∈ [true,
false] [otherwise from only the same phenotype]; L1 penalty coefficient on
filters ∈ [0, 0.0001]; L2 penalty coefficient on filters ∈ [0, 0.0001]) which results
in multiple above-mentioned filters per run, which all define a separate cell sub-
population. We then applied t tests to all filters at each time point between the
disease phenotypes to select those filters which show a significant difference
and therefore define phenotype-relevant cell subpopulations.

Silhouette Analysis. A silhouette analysis (46) was performed to measure
the separation and clustering properties between defined populations. This
visual testing approach shows for each cell whether it lies well within its clus-
ter or if it is rather located between clusters. The silhouette coefficient is defined
as (b � a)/max(a,b), where a is the mean intracluster distance and b stands for
the mean nearest-cluster distance. The average of all cells’ silhouette coefficients
can be used as the silhouette score and is per definition between 1, which indi-
cates a perfect separation of the clusters, and �1, which indicates incorrect clus-
tering of cells. A silhouette score of 0 indicates overlapping clusters. All silhouette
coefficients were computed on the maximum overlapping original marker space
and only visualized in reduced dimensions.

Spectral and Conventional Flow Cytometry. In-depth analysis of the flow
cytometry cohort was performed in analogy to the mass cytometry approach on
an Aurora spectral flow cytometer (Cytek) after stimulation with PMA/ionomycin
(for antibodies, see SI Appendix, Table S5). Blood samples from the mass cytom-
etry and flow cytometry cohorts were measured by automated flow cytometry for
main leukocyte and lymphocyte populations on a FACSCanto II (BD Biosciences)
and a FACSymphony (BD Biosciences) for cross-treatment comparison.

Data Availability. Anonymized mass cytometry data can be accessed at:
http://doi.org/10.17632/425ppfhjnv.1. The R-based custom workflow is available
at https://github.com/GalliES/DMF_repository. been deposited in GitHub (https://
github.com/GalliES/DMF_PNAS) (47).
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