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DNA is an excellent biological material that has received growing attention in the

field of nanotechnology due to its unique capability for precisely engineering materials

via sequence specific interactions. Self-assembled DNA nanostructures of prescribed

physicochemical properties have demonstrated potent drug delivery efficiency in vitro

and in vivo. By using various conjugation techniques, DNA nanostructures may be

precisely integrated with a large diversity of functional moieties, such as targeting ligands,

proteins, and inorganic nanoparticles, to enrich their functionalities and to enhance their

performance. In this review, we start with introducing strategies on constructing DNA

nanostructures. We then summarize the biological barriers ahead of drug delivery using

DNA nanostructures, followed by introducing existing rational solutions to overcome

these biological barriers. Lastly, we discuss challenges and opportunities for DNA

nanostructures toward real applications in clinical settings.
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INTRODUCTION

Nanocarriers capable of the potent delivery of therapeutic molecules play a pivotal role in
enhancing their therapeutic efficacy in clinic, and typically aid in minimizing systemic toxicity,
improving biostability/bioavailability, and strengthening delivery efficiency to targeted tissues, cells,
or subcellular locations (Savjani et al., 2012; Huang et al., 2013; Din et al., 2017; Gustafson et al.,
2018; Zhang R. et al., 2019). Enormous progress has been made in this area, accompanied by
the evolution of a large diversity of nanomaterials. Several delivery systems, such as liposomes
and cationic dendritic polymers, have been approved for clinical use (Cheng et al., 2011; Bulbake
et al., 2017). Meanwhile, many other types of delivery systems, including inorganic particles and
cell mimics, are under extensive study in laboratories or in clinics (Chen et al., 2016; Pang et al.,
2017). Nevertheless, there are many limitations that remain to be tackled in order to fully realize
the therapeutic potential of drug delivery systems, which include but are not limited to acute
toxicity in the short term and unknown toxicity in the long run (Lv et al., 2006), heterogenicity
of formulated delivery systems (Adjei et al., 2014), and very limited targeting delivery efficiency
(Wilhelm et al., 2016).

With the substantial development of DNA molecular self-assembly in the last four decades,
DNA-based nanocarriers have emerged as promising delivery systems for drug delivery. Derived
from the unique Watson-Crick base pairing, it is fully possible to create a variety of DNA
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nanostructures with a well-defined size and homogeneous
geometry through the sequence design of DNA molecules
followed by a straightforward self-assembly process, which is
highly predictable, reproducible, and scalable (Seeman and
Sleiman, 2017). DNA is a natural biological molecule, which
is biodegradable with minimal toxicity. Furthermore, drugs
like DNA intercalators (e.g., doxorubicin) and nucleic acids
(e.g., siRNA, antisense oligonucleotides) can be easily integrated
into DNA-based nanocarriers (Li et al., 2011; Lee H. et al.,
2012; Zhao et al., 2012; Fakhoury et al., 2014; Rahman et al.,
2017). Aided by well-established nucleic acid synthesis and
bioconjugation techniques, DNA strands may be incorporated
with various functional moieties to enrich the functionality of
delivery systems, such as loading a variety of macromolecules
(e.g., protein, inorganic particle) or targeting ligands (Li
et al., 2019; Shin et al., 2020). These unique properties make
DNA-based nanomaterials an attractive drug delivery system.
After introducing responsive components, DNA nanocarriers
can acquire dynamic capabilities in response to a variety of
physiological or non-physiological stimuli (Zhang Y. et al., 2019).
However, the high complexity of in vivo microenvironments
poses great challenges to their proper performance in living
organisms (Zhao Z. et al., 2019). Therefore, rational design
strategies are essential in order to maintain their multifunctional
delivery properties in vivo. With improved understanding of
their in vivo fate, the drug delivery performance of DNA
nanocarriers could then be highly predictable and designable
(Jiang et al., 2019). In this review, we will first introduce the
design methods for fabricating DNA-based nanocarriers, and
then discuss strategies of tuning DNA-based nanocarriers for
overcoming biological barriers to maximize their potential for
efficient drug delivery.

FIGURE 1 | Rationally designed DNA nanostructures. (A) An immobile Holliday junction. (B) DNA tetrahedron formed from 4 single-stranded DNAs. Adapted with

permission from Goodman et al. (2005). Copyright 2005 AAAS. (C) 3D DNA origami structure with precisely controlled curvature. Adapted with permission from Han

et al. (2011). Copyright 2011 AAAS. (D) DNA container constructed by folding and joining single-layered 2D origami sheets. Adapted with permission from Ke et al.

(2009b). Copyright 2009 ACS. (E) DNA objects assembled from single-stranded tiles (or DNA bricks). Adapted with permission from Ke et al. (2012). Copyright 2012

AAAS. (F) Spherical nucleic acids tethered onto a gold nanoparticle core. Adapted with permission from Cutler et al. (2012). Copyright 2012 ACS.

CONSTRUCTING DNA
NANOSTRUCTURES FOR DRUG DELIVERY

DNA Self-Assembly Strategies
Distinguishing from DNA vectors like plasmids, DNA
nanocarriers are based on the de novo design of self-assembled
DNA nanostructures. Invented by Seeman in the early 1980s,
methods of constructing DNA nanostructures have advanced
rapidly in the last four decades (Seeman, 2020). In the early stage
of DNA nanotechnology, by breaking the sequence symmetry
of the Holliday junction, the original slidable 4-arm branched
DNA junction can be fixed and serves as a basic assembling
unit to build higher-order structures (Figure 1A) (Seeman,
1982). Seeman’s group later introduced a tile-based method for
DNA assembly. They bundled DNA strands by DNA crossovers
to form a variety of units called “tiles.” Repeated tiles were
interconnected by complementary single-stranded extensions
(sticky ends) and eventually grew into large assemblies (Ding
et al., 2004). Following the initial immobile 4-arm Holliday
junction, junctions of a diverse number of arms were designed
as DNA building blocks (Ma et al., 1986; Wang et al., 1991;
Wang and Seeman, 2007). Well-designed tiles allow for the
construction of highly-ordered 1D, 2D, and 3D DNA structures.
Mao and Seeman later reported the successful fabrication of
DNA 3D crystals by using tensegrity triangular tiles (Zheng
et al., 2009). Yan and Laban first designed a point-star-like
tile containing bulged T loops. These loops are located in the
center of the tile linking two adjacent arms (Yan et al., 2003).
Further tuning the length of the loops allows their linking arms
to bend from the original geometric plane with varying degrees.
For instance, 3-point star tiles with varied lengths of loops can
self-assemble into a number of different polyhedra including
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tetrahedrons, dodecahedrons, and Buckyball structures (He
et al., 2008; Wang et al., 2016).

Differing from polyhedrons assembled by point-star-tiles
which contain repeated units of tiles, DNA nano-objects such
as cubes, tetrahedrons, and octahedrons may also be assembled
from multiple single-stranded DNAs (Chen and Seeman, 1991;
Zhang and Seeman, 1994; Goodman et al., 2005). For example,
in 2005, Goodman et al. reported a simple and rapid way
to assemble 4 single-stranded DNAs into tetrahedrons by one
annealing step with a high yield up to 95%, which has been widely
used for a variety of applications (Figure 1B) (Goodman et al.,
2005).

Another breakthrough in the field of DNA nanotechnology
was the invention of the DNA origami technique by Rothemund
(2006), where one long single-stranded scaffold DNA is folded by
a set of complementary short strands (staples) to form various 2D
objects (Rothemund, 2006; Wang et al., 2017). Further, Shih and
colleagues extended this method to 3D by pleating the plane of
DNA helixes and arranging them into compact lattices (Douglas
et al., 2009; Ke et al., 2009a). Yan and colleagues built 3D hollow
objects by programming the curvature of designated helixes via
adding or deleting bases within DNA crossovers (Figure 1C)
(Dietz et al., 2009). 3D origami structures may also be assembled
by folding and joining single-layered 2D origami sheets, which
resulted in the successful generation of container-like DNA boxes
(Figure 1D) (Andersen et al., 2009; Ke et al., 2009b).

In 2012, Yin and colleagues reported a simple single-stranded
tile (SST) or DNA brick method to build 2D and 3D objects of
arbitrary shapes (Ke et al., 2012;Wei et al., 2012; Ong et al., 2017).
SST consists of 4 domains that interact with adjacent tiles. Each
SST can bind to four adjacent counterparts by complementary
domains and assemble into prescribed structures (Figure 1E) (Ke
et al., 2012).

Other Strategies to Build DNA
Nanostructures
Jones et al. used inorganic nanoparticles to provide rigidity and
initiated another branch of DNA nanotechnology (Jones et al.,
2015). For example, single-stranded DNA oligonucleotides with
thiol modified ends can tightly bind to Au nanoparticles. This
type of structure was named “spherical nucleic acids” (SNA,
Figure 1F) (Cutler et al., 2012). These DNA-particle hybrids have
a variety of applications, including drug delivery. Particularly,
it has been used for the combination of gene regulation and
photothermal therapy (Kim J. et al., 2016).

Rolling-circle amplification (RCA) is another popular method
for constructing drug delivery DNA nanostructures, which
employ DNA/RNA polymerase to generate large quantities of
long concatemeric DNA products from a predesigned circular
DNA template (Mohsen and Kool, 2016). The products contain
repeated sequences and can be cleaved to generate functional
DNA fragments. Due to its high yield of products, the nucleic
acids can directly condense into particles with or without the help
of condensing agents (Lee J. B. et al., 2012), which offers a great
advantage toward high-volume drug loading.

ENHANCING BIOSTABILITY AND
EXTENDING CIRCULATION TIME

Rapid and non-specific clearance is a great challenge for
nanoparticle-based drug delivery systems in vivo. After
intravenous administration, a sufficient circulation time of
nanocarriers is a prerequisite for good therapeutic efficacy
(Wang et al., 2013). It is generally challenging for DNA
nanocarriers to reside in physiological environments due to
the following reasons. Firstly, as a biological material, DNA
is prone to degradation by deoxyribonucleases (DNases) in
serum. Secondly, the ionic strength of body fluids is quite
different from the DNA assembly buffers. In particular, low
cationic concentration may cause the disassembly of DNA
nanostructures due to increased electrostatic repulsion between
negatively charged DNA helices (Hahn et al., 2014). Thirdly, the
opsonization effect by non-specific adsorption of serum proteins
induces macrophages to engulf DNA nanocarriers for clearance
(Surana et al., 2013). Lastly, DNA nanostructures have a high
tendency for fast renal or hepatic clearance (Messaoudi et al.,
2019).

There are numerous strategies to address the challenges that
DNA nanostructures face. One is from a design point of view.
For instance, it has been reported that less compact DNA
structures or structures with a wireframe geometry exhibit higher
resistance to nuclease degradation or cation-depletion-induced
structure disassembly (Jiang et al., 2016; Kielar et al., 2018;
Chandrasekaran et al., 2020). Apart from this design perspective,
many other strategies are available to enhance the biostability of
DNA nanostructures which will be introduced in detail in the
following section.

DNA Backbone Modification
Natural DNA backbone is composed of repeated deoxyribose
and phosphate groups. It is the target of DNases which
catalyze the hydrolytic cleavage of phosphodiester linkages.
Chemical modification of the backbone can drastically enhance
its biological stability by hindering the attack of nuclease.
These backbone-modified nuclei acids containing unnatural
components can be called synthetic nucleic acid polymers,
which includes xeno-nucleic acids (XNA), peptide nucleic acids
(PNA), locked nucleic acids (LNA), threose nucleic acids (TNA),
and phosphorothioate DNA (Figure 2A) (Burns et al., 2013;
Pedersen et al., 2015). These hybrid nanostructures function no
less efficiently than their natural analog counterparts. On that
basis, using a series of engineered polymerases, Philipp’s group
synthesized nano-objects fully composed of unnatural nucleic
acids, where they used 2′F-RNA, 2′-fluoroarabino nucleic acids
(FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic
acids (CeNA) to assemble tetrahedral structures (Figure 2B).
HNA tetrahedrons remained intact after 8 day incubation in
serum-containing cell culture media, while tetrahedrons of
natural DNAs were fully degraded in 2 days (Taylor et al., 2016).

KimK. R. et al. used L-DNA, amirror form of natural D-DNA,
as building materials for DNA nanocarriers (Figure 2B). L-DNA
has identical thermodynamic properties to D-DNA, but it has
significantly higher serum stability, prolonged in vivo residency,
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and enhanced cellular uptake. In xenograft mouse models, an L-
DNA nanocarrier showed better effect on tumor inhibition than
D-DNA tetrahedrons or PEGylated liposomes while loaded with
doxorubicin (Kim K. R. et al., 2016).

Covalent Crosslinking
Self-assembled DNA nanostructures generally contain several
to thousands of DNA single strands, which impose a high
density of nicking points that render the DNA structures

FIGURE 2 | Enhancing the biostability and extending the circulation time of DNA nanocarriers. (A) Natural DNA backbone and common inter-nucleotide linkage

modifications involved in DNA nanotechnology. (B) Natural nucleosides and their analogs involved in DNA nanotechnology. (C) Covalent crosslinking of 6-Helix DNA

structure containing strands modified with azides and alkynes by click chemistry. Adapted with permission from Cassinelli et al. (2015). Copyright 2015 Wiley. (D) Light

triggered dimer formation of adjacent thymidine residues in DNA origami objects. Adapted with permission from Gerling et al. (2018). Copyright 2018 AAAS. (E) Lipid

bilayer encapsulation of DNA nanocages. Adapted with permission from Perrault and Shih (2014). Copyright 2014 ACS. (F) Electrostatically coating DNA origami

nanostructures with polyamine-PEG block copolymers. Adapted with permission from Ponnuswamy et al. (2017). Copyright 2017 Springer Nature. (G) A diblock

protein containing a non-sequence-specific DNA binding domain (BSso7d) and an unstructured blocking domain (C8) for DNA structure coating. Adapted with

permission from Sanchez-Rueda et al. (2019). Copyright 2019 RSC Pub. (H) Dendritic oligonucleotides on DNA brick nanostructures. Adapted with permission from

Kim and Yin (2020). Copyright 2020 Wiley. (I) Albumin dendron conjugates for DNA origami coating. Adapted with permission from Auvinen et al. (2017). Copyright

2017 Wiley. (J) Dendritic alkyl decorating DNA nanocubes with high-affinity binding to human serum albumin. Adapted with permission from Lacroix et al. (2017).

Copyright 2017 ACS.

Frontiers in Chemistry | www.frontiersin.org 4 September 2020 | Volume 8 | Article 751

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xu et al. Self-Assembled DNA Nanocarriers

vulnerable to cationic depletion and nuclease degradation. To
circumvent this instability issue induced by nicking points,
covalent crosslinking of DNA strands represents one elegant
solution. For instance, crosslinking of DNA was shown to be
able to stabilize DNA structures in the presence of denaturing
agents or at elevated temperature (Rajendran et al., 2011).
In 2015, Manetto reported a 6-helix bundle DNA structure
composed of terminal functionalized single stranded DNA with
linear alkyne and azide moieties. A copper-catalyzed click
reaction was performed after assembly to bridge nicking points,
resulting in the formation of cyclized strands interlinking with
each other (Figure 2C). After crosslinking, the 6-helix bundles
were able to remain intact in buffers lacking magnesium
and stay resistant to exonuclease-I (Cassinelli et al., 2015).
In 2018, Gerling et al. reported another strategy to achieve
crosslinking of DNA origami structures without introducing
chemical moieties (Figure 2D). It was accomplished by light-
triggered formation of pyrimidine dimers between adjacent
thymine or cytosine bases. These bases are designed to be placed
in adjacent terminals of nicks formed by strands, branches, or
helixes. Comparing with non-crosslinked structures, crosslinked
origami objects needed a significantly prolonged time (∼6-
fold) to be degraded in biological media (Gerling et al.,
2018).

Encapsulation
Encapsulation of DNA structures by functional agents may also
enhance their stability. For instance, Shih et al. encapsulated
DNA origami structures via in-situ formation of liposomes
surrounding the structures (Perrault and Shih, 2014). The lipid
bilayer envelope not only shielded DNA nanocarriers from
enzymes in serum, but also changed their surface characters
which is important to determine immune responses and
biodistributions. After lipid bilayers’ encapsulation, immune
activation by DNA structures was decreased by 2 orders of
magnitude, and pharmacokinetic bioavailability was improved by
a factor of 17 (Figure 2E).

Cationic polymer is another type of material used for
DNA structure encapsulation. Cationic polymers can tightly
adsorb onto the negatively charged phosphate backbone of
DNA through electrostatic interaction. The molecular ratio of
polymers to DNA structures is critical since an improper ratio
may cause unwanted aggregation or distortion (Kiviaho et al.,
2016). As a widely used anti-opsonization agent, polyethylene
glycol (PEG) has shown to have broad application potentials
in drug delivery. Introducing PEG into coating polymers is a
common strategy to alleviate non-specific adsorption of proteins
(Dai et al., 2014). Shih’s group enveloped DNA barrels with
oligolysine-PEG copolymers, which helped the DNA barrel to
avoid rapid renal clearance and extended its blood half-life from
9 to 45min (Figure 2F) (Ponnuswamy et al., 2017). Similar with
synthetic polymers, a series of diblock recombinant proteins
were also employed, which are composed of a non-specific
DNA-binding domain (e.g., Sso7d, K12) and a hydrophilic
unstructured peptide segment. The diblock proteins form brush-
like structures around the DNA to provide better resistance

to enzyme degradation (Figure 2G) (Sanchez-Rueda et al.,
2019).

Inspired by spherical nucleic acids, of which the densely
packed nucleic acids are highly resistant to nuclease
degradation, Kim and Yin coated the outer surface of DNA
brick nanostructures with dendritic oligonucleotides through
base paring between overhang strands and oligonucleotides
(Figure 2H) (Kim and Yin, 2020). This method can increase
the biostability of DNA brick structures in comparison to their
naked counterparts.

Bound to Albumin
As the most abundant protein, albumin holds a relatively long
circulation half-life in blood. Physiologically, albumin can bind
with other molecules such as bilirubin, fatty acids, and metal
ions to extend their circulation time and to improve their
biodistribution. Albumin is also an anti-opsonization agent that
can prevent phagocytosis of nanocarriers. Therefore, albumin is
a promising agent to be used for drug delivery. In fact, some
albumin-bound chemotherapeutics have already been approved
by the FDA for clinical use, such as Abraxane, an albumin-bound
form of Pacilitaxel.

However, it is generally challenging to achieve high affinity
binding between albumin and DNA nanocarriers. To address this
technical challenge, Kostiainen et al. engineered bovine serum
albumin (BSA) into biohybrid macromolecules with cationic
dendritic conjugates (polyamine analogs). The conjugate was
anchored to BSA via a cysteine–maleimide bond with cysteine
residues (Figure 2I). Thus, the engineered BSA can attach
to DNA structures through electrostatic interactions between
polyamine and DNA backbones (Auvinen et al., 2017). Lacroix
et al. reported another method by decorating DNA structures
with dendritic alkyl chains (Figure 2J). Tuning the number
and orientation of the amphiphilic decorations enables DNA
nanocubes to bind with human serum albumin (HSA) with a
high affinity in low nanomolar range. Meanwhile, HSA did not
hinder the activity of cargo antisense oligonucleotide in vitro
(Lacroix et al., 2017). Since these two reports were lacking in in
vivo experiments, the efficiency of albumin pre-binding strategy
needs to be validated in animal models.

TARGETING STRATEGIES IN VIVO

After systemic administration, another big hurdle ahead of
DNA nanostructure carriers is the targeting delivery to specific
organs/tissues of interest. Enabling selective accumulation of
drug molecules in targeted sites not only boosts its therapeutic
efficacy but also alleviates off-target delivery-related systemic
toxicity. Therefore, targeting functionality is a pivotal factor
determining the therapeutic performance of drug delivery
systems. In this section, in vivo targeting strategies that have been
used on DNA nanocarriers is summarized.

In vivo Biodistribution of Pristine DNA
Nanostructures
In order to investigate the in vivo performance of DNA
nanocarriers, numerous studies have firstly examined their
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biodistributions in various animal models. Generally, pristine
DNA nanostructures have a preferential accumulation in organs
like the liver, kidneys, and lymph nodes. For instance, as one
of the simplest DNA structures, DNA tetrahedrons (Tds) have
been widely researched. Kim K. R. et al. reported a tendency
of hepatic accumulation of Tds after intravenous injection
(Kim K. R. et al., 2016). By changing DNA backbones to
increase biostability, the phenomenon of hepatic accumulation
can be significantly enhanced. They harnessed this property of
Td for liver delivery of siRNA successfully, which targets the
overexpressed ApoB1 mRNA in hypercholesterolemia. ApoB1
siRNAs were loaded on Tds through DNA linkers extending
from each side. As a result, an ∼20–30% decrease in serum
lipid levels was observed when compared with PBS controls
(Figure 3A) (Kim et al., 2020). Jiang et al. studied the
biodistribution of radiolabeled DNA origami nanostructures
(DONs) through positron emission tomography (PET) imaging.
DONs of three different geometries, including rectangle,
triangle, and tube, were tested. All three exhibited predominant
renal uptake, among which triangular DONs were used to
effectively treat acute kidney injury in mice model (Jiang et al.,
2018).

Apart from intravenous injection, subcutaneous injection is
another commonly used administration route. The negative
surface charge and size (6–10 nm) of Tds were found to be quite
suitable for lymphatic drainage. Moreover, Tds can be easily
uptake macrophages and have good intracellular stability, which
extends their lymph node retention time. Taking advantages of
these properties, Kim et al. labeled Tds with Cy5 fluorophore
to visualize the sentinel lymph nodes of tumor (Kim et al.,
2013). Compared with linear DNA probes, Tds showed enhanced

translocation in lymph nodes and a prolonged retention time in
mice xenograft models.

Passive Delivery to Tumors
It is generally believed that most solid tumors exhibit enhanced
permeability and retention (EPR) (Fang et al., 2011; Park-
Windhol and D’Amore, 2016), though this has become
controversial in recent years (Sindhwani et al., 2020). For DNA
nanostructures, the impact of shape diversity on EPR effect
has been revealed. Zhang et al. demonstrated that triangle-
shaped DNA origami exhibited optimal tumor passive targeting
accumulation compared to rectangular and tubular origami
structures (Figure 3B) (Zhang et al., 2014). They revealed that
triangle-shaped origami accumulated at the tumor site and
reached peak levels at 6 h andmaintained high levels for 24 h after
intravenous administration. Kim et al. built a library of wireframe
DNA objects of various backbones for in vivo screening (Kim
et al., 2019). According to their results, cages with backbone
modifications had better tumor accumulation. In terms of shape
effect, pyramid-shaped nanocages exhibited the highest tumor
specific delivery efficiency.

Active Delivery to Cells
With the discovery of pathological mechanisms, disease-specific
molecular markers or microenvironmental characteristics are
constantly revealed. Cells harboring pathological changes, such
as cancerization or infection, usually over-express certain
molecular receptors or biomarkers which could well serve as
targets for active delivery. In addition, microenvironmental
parameters like pH or oxygen level may significantly change

FIGURE 3 | DNA nanocarriers targeting organs, tumors, and cells. (A) Delivery of ApoB1 siRNA to hepatic cells by pristine DNA tetrahedrons. Adapted with

permission from Kim et al. (2020). Copyright 2020 RSC Pub. (B) DNA origami’s passive delivery to malignancy. Adapted with permission from Zhang et al. (2014).

Copyright 2014 ACS. (C) Modifications of DNA nanocarriers for active targeting to specific cells. (D) Non-specific protein adsorption to DNA nanocarriers in serum

environment. Adapted with permission from Oh et al. (2018). Copyright 2018 Springer Nature.
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under pathological conditions that may be targeted to realize
active delivery (Salahpour Anarjan, 2019).

Molecular ligands used for targeting delivery include
antibodies, aptamers, receptor ligands, functional peptides, etc.
They can be tethered onto DNA nanocarriers via various
conjugation methods to realize targeting functionality
(Figure 3C) (Wu et al., 2013; Setyawati et al., 2016; Xia
et al., 2016; Santi et al., 2017). Active targeting functionalized
DNA nanocarriers have been demonstrated to enhance brain
permeability, which passive delivery fails to reach due to the
existence of blood–brain barrier (BBB). Tian et al. modified
framework tetrahedral DNA nanoprobes with peptides targeting
both brain capillary endothelial cells and malignant glioma
cells. Through receptor-mediated transcytosis, DNA nanoprobes
successfully passed through the BBB model and then entered the
cytoplasm of the tumor cells (Tian et al., 2018).

However, despite pronounced selectivity in vitro, some
ligands were found to lose targeting ability in vivo (e.g.,
transferrin) (Mirshafiee et al., 2013). One important reason for
the failure of the targeting capability in complex biological
milieu is the occurrence of biotransformation when adsorbed by
serum proteins, which not only abolishes molecular recognition
capability, but also induces clearance by phagocytes (Figure 3D)
(Oh et al., 2018). Therefore, systematic study and optimization
need to be conducted to fully realize the targeting capability of
various ligands for in vivo delivery applications.

CELL ENTRY ROUTES AND
INTRACELLULAR FATE

Over billions of years of evolution, the cell membrane has
become a wall to protect sophisticated cellular organelles from
the extracellular environment. Only selected substances can pass
through the membrane. Most nanoscale substances, including
molecules and nanoparticles, enter cells through an energy
consuming pathway called endocytosis, which can be categorized
into several distinct subtypes (Figure 4A) (Lee et al., 2016).
Phagocytosis primarily exists in immune cells like macrophages
to engulf large particles (>0.5µm). Pinocytosis is widely
adopted by all types of cells, which can be further subdivided
into macropinocytosis, clathrin-mediated endocytosis, caveolae-
mediated endocytosis, clathrin-, and caveolae-independent
endocytosis. After endocytosis, nanocarriers are encapsulated
and transported in membrane vesicles like endosomes (Conner
and Schmid, 2003). Proteins on the endosome membranes
induce the maturation of endosomes into lysosomes and then
transport cargo into corresponding subcellular regions. The
permeability of lysosomal membranes is complicatedly regulated
and plays an important role in determining the intracellular fate
of nanocarriers (Johansson et al., 2010). Thus, it is critical to tune
and to optimize DNA nanocarriers in order to achieve potent
intracellular delivery performance.

Enhancing Cellular Uptake Efficiency
Since DNA and RNA molecules are negatively charged due
to phosphate groups on the backbone, electrostatic repulsion

from cell membranes makes it difficult for them to enter
cells efficiently. As mentioned earlier, encapsulating DNA
nanocarriers with cationic polymers can facilitate its cell uptake.
For instance, Lee J. B. et al. used polyethylenimine (PEI) to
condense sponge-like structures generated from RCA reactions,
which significantly enhanced the cell uptake efficiency of siRNA
sponges and achieved significant knockdown of target mRNA
(Lee J. B. et al., 2012).

Despite its anionic nature, DNA nanostructures of prescribed
three-dimensional geometries likes cages or origami structures
were found to be able to enter cells efficiently without
the aid of transfection reagents. Ligand binding receptors
on cell membranes are responsible for the uptake of DNA
nanostructures. Liang et al. demonstrated that DNA tetrahedrons
were internalized by a caveolin-dependent endocytosis pathway
and transported to lysosomes in a microtubule-dependent
manner (Liang et al., 2014). Vindigni et al. reported that
scavenger receptor LOX-1 was responsible for mediating
pristine DNA nanocages into cells. Cells overexpressing LOX-
1 internalized cages 30 times higher than their low-expressing
counterparts (Vindigni et al., 2016). Wang et al. reported that
cancer cells can readily uptake DNA origami nanostructures
(DONs) with various sizes and shapes with high efficiency.
Further study revealed that DONs of a larger size and higher
aspect ratio had increased uptake efficiency compared to
their counterparts. Moreover, they visualized the multi-stage
internalization process of DONs on a high-resolution single
particle level (Figure 4B) (Wang et al., 2018). Lee et al. reported
that the number and disposition of targeting ligands (i.e., folate)
on the DNA tetrahedral nanocarriers largely affect its in vitro and
in vivo delivery efficiency (Lee H. et al., 2012).

Modulating Intracellular Fate
Biomolecular drugs like ASOs and siRNAs are prone to
enzymatic degradation. After entering cells through endocytosis,
they need to escape from lysosomes to cytoplasm or avoid
endosomal encapsulation in the first place. Strategies like
membrane fusion and acid swelling have been applied in many
delivery systems to circumvent this challenge (Smith et al.,
2019), which, however, cannot be easily adapted by DNA
nanocarriers. A more feasible strategy for DNA nanocarriers
would be trying to avoid endolysosomal entrapment. It was
reported that endosomes induced by certain receptors of
caveolae-mediated endocytosis may transport to non-lysosome
organells (Parton and Simons, 2007). Targeting these receptors is
a practical method for DNA nanocarriers avoiding degradation
in lysosome. Folic acid, albumin, cholesterol, and transferrin
are ligands that have been proven to be able to serve this
purpose (Figure 4C) (Mirshafiee et al., 2013). Some aptamers
have also been reported to be able to guide DNA nanocarriers
to avoid lysosomal degradation. For example, nucleolin-targeting
aptamer AS1411 can be internalized into a wide variety of
cancer cells and migrates to the nucleus. It was internalized via
macropinocytosis in cancer cells, but via a non-macropinocytic
pathway in normal cells (Reyes-Reyes et al., 2010). Charoenphol
et al. incorporated AS1411 aptamers into DNA pyramids,
which led to selective inhibition of cancer cells (Charoenphol
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FIGURE 4 | Enhancing cell entry of DNA nanostructures and regulating their intracellular fate. (A) Endocytosis pathways involved in nanoparticle’s cell uptake.

Adapted with permission from Lee et al. (2016). Copyright 2016 RSC Pub. (B) Cell internalization process of a DNA origami rod structure. Adapted with permission

from Wang et al. (2018). Copyright 2018 ACS. (C) Bypass lysosome pathway through targeting specific receptors. Adapted with permission from Raniolo et al. (2018).

Copyright 2018 RSC Pub. (D) Lysosome escape and delivery of active enzymes by DNA origami modified with MUC1 aptamer. Adapted with permission from Zhao S.

et al. (2019). Copyright 2019 ACS. (E) Lysosome escape of DNA tetrahedrons modified with nucleus-targeting signaling peptides. Adapted with permission from

Liang et al. (2014). Copyright 2014 Wiley. (F) Drugs on DNA nanocarriers circumvent efflux-pump-mediated drug resistance mechanisms. Adapted with permission

from Halley et al. (2016). Copyright 2016 Wiley.

and Bermudez, 2014). MUC1 aptamer is another example. In
cancer cells, MUC1 protein was reported to be crucial for
the stabilization of lysosome membranes (Dudeja et al., 2007).
Zhao S. et al. found that MUC1 aptamer-tethered DNA origami
structures can be efficiently transported to cytoplasm within
24 h. In contrast, naked DNA origami structures were trapped in
lysosomes (Figure 4D) (Zhao S. et al., 2019). Fan et al. reported
another strategy of escaping lysosomes by using peptides. They
functionalized the tetrahedral DNA nanostructures with nucleus-
targeting signaling (NLS) peptides through a click reaction.
Though entering cells by the endocytosis route, NLS modified
structures were transported to the nucleus after 16 h and
remained intact (Figure 4E) (Liang et al., 2014).

In certain scenarios, lysosomal entrapment of nanocarriers
may not necessarily be a disadvantage. For instance, in some
cases, drugs need to be localized to endosomes in order to
function. Castro et al. used rod-shaped DNA origami to load and
deliver daunorubicin to cancer cells to circumvent efflux-pump-
mediated drug resistance. Compared to free drugs entering cells
via passive diffusion, delivery of daunorubicin by DNA origami
carriers led to a higher amount of drug accumulation and better
resistance to pump-mediated drug efflux (Figure 4F) (Halley
et al., 2016). The endosomatic pathway also plays important roles
in regulating innate immune responses. DNA structures trapped
in endosomes are more accessible by specialized receptors of
the innate immune system. Schüller et al. reported that DNA
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origami rods decorated with CpG-containing oligonucleotides
are quite efficient for cellular immunostimulation. They can
trigger stronger innate immune responses than a standard carrier
system such as lipofectamine (Schüller et al., 2011).

DNA NANOCARRIERS RESPONDING TO
MICROENVIRONMENTS

Microenvironments of pathological sites generally exhibit
distinct characteristics that are different to healthy sites, e.g.,
acidic and hypoxic conditions of tumor microenvironments, or
overexpression of certain molecular biomarkers. Such differences
in environmental characteristics could serve as another type
of target for nanocarriers to aim for. In order to arm pristine
DNA nanostructures with stimuli responsive capability, dynamic
elements need to be integrated into the designed nanocarrier
(Figure 5A) (Harroun et al., 2018; Zhang Y. et al., 2019). In
the following section, we discuss some mechanisms that may
be incorporated into DNA nanocarriers to realize environmental
responsive cargo delivery.

Aptamer-Enabled Robotic Systems
Aptamers are single-stranded nucleic acids of a specific sequence
that can selectively recognize and bind to a target (e.g.,
ions, molecules, proteins), which are generally acquired from
multiple rounds of in vitro selection (Shangguan et al., 2006).
To enable target-binding induced conformational change, a
duplexed aptamer is designed by using a complementary strand
to hybridize to a specific portion of the aptamer sequence, which
may be released from the aptamer once the target of high affinity

is present (Munzar et al., 2019). This element has been used as
a key to unlock DNA origami containers to realize cell specific
cargo transportation (Douglas et al., 2012). Recently, Li et al.
reported the successful in vivo application of an autonomous
DNA robot as an responsive drug delivery system (Li et al., 2018).
This robotic container was fastened by aptamer AS1411, which
can bind to nucleolin that overexpressed on tumor-associated
vascular endothelial cells in a tumor microenvironment. Upon
binding to nucleolin, the DNA robot opens up to unload its cargo
thrombin to induce thrombosis in tumor-associated blood vessels
to starve and eventually kill tumor cells.

Enzyme Mediated Cargo Release
Nuclease degradation of DNA nanocarriers might represent
the simplest way to induce cargo release (Sun et al., 2014).
Nevertheless, it is limited to the delivery of nuclease-resistant
chemical drugs. Different to nuclease, enzymes like telomerase
can recognize specific DNA sequences. Integrating these
sequences into DNA nanostructures enables them to selectively
interact with enzymes (Yin et al., 2004). Ma et al. reported a
telomerase-responsive DNA-icosahedron nanocarrier that can
selectively release caged platinum-nanodrugs into cisplatin
resistance cancer cells. Telomerase primer sequences were
incorporated into the edges of DNA icosahedrons, serving as
a recognition element of telomerase. After binding with DNA
icosahedrons, telomerase was activated and started to generate
telomeric repeats, which hybridize with downstream toehold
sequence, resulting in the detaching of drugs (Ma et al., 2018).
(Figure 5B).

FIGURE 5 | Dynamic DNA nanocarriers for conditional triggered release of cargos in biological environment. (A) Biological inputs and reconfigurable elements to

achieve stimuli responsive cargo release. (B) Active telomerase triggers detachment of DNA icosahedron nanocages resulting in targeted release of drugs. Adapted

with permission from Ma et al. (2018). Copyright 2018 Wiley. (C) DNA nano-suitcases conditionally release siRNA cargos in the presence of oligonucleotide triggers.

Adapted with permission from Bujold et al. (2016). Copyright 2016 ACS. (D) RCA products incorporated with pH responsive i-motif sequences. Adapted with

permission from Zhao et al. (2018). Copyright 2018 ACS.
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Strand Displacement Induced Cargo
Unloading
Strand displacement is widely used for constructing dynamic
structures, in which one strand in a DNA duplex can be released
and replaced by another strand through a toehold design (Yurke
et al., 2000). The invader strand can be mRNA, miRNA, etc. The
released strand may then serve as a trigger of subsequent cascade
reactions. In terms of drug delivery, released strands typically
have a therapeutic effect, such as the delivery of siRNA or ASOs.
For instance, Katherine et al. designed a DNA nano-suitcase that
encapsulated a siRNA cargo, which can be specifically released
upon recognition of an oligonucleotide trigger. The siRNA cargos
partially bind to the edge of DNA cages, with the leftover
sequence serving as a toehold for strand displacement. They
showed that the whole construct was assembled in high yield,
with cargo released on demand, and remained intact in biological
conditions for a long period of time (Figure 5C) (Bujold et al.,
2016).

pH Responsive Cargo Release
DNA triplex and i-motif are two commonly used pH-responsive
structures. They follow strict sequence requirements, which takes
advantage of binding equilibrium shifts according to the A+-
C base pair formation in acidic solution (Fu et al., 2019). An
acidic extracellular microenvironment is well-recognized in the
process of oncogenesis. Zhao et al. incorporated i-motif into RCA
products with bilateral complementary sequences. In an acidic
tumor environment, the i-motif sequences at the loop region
fold, resulting in the opening of the stem region. Thus, previous
intercalated drugs are released in response to environmental
pH. Functionalized with aptamers, the resultant drug-carrier
system accomplishes in vivo targeted delivery, and pH-stimulated
sustained release of Dox (Figure 5D) (Zhao et al., 2018).

CHALLENGES AND OPPORTUNITIES FOR
CLINICAL APPLICATIONS

The unique advantages of using DNA nanocarriers as drug
delivery systems is quite obvious. First, the size and shape of DNA
nanocarriers can be finely tuned. And the robust assembly of
DNA can greatly alleviate batch-to-batch variations. Second, the

numbers and positions of ligand modifications or drug loadings
on DNA nanocarriers may be precisely programmed. Third,
although the biological environment is quite different fromwhere
DNA nanocarriers are originally assembled, optimizing their
biostability, circulation time, biodistribution, cell entry routes,
and intracellular fate enable DNA nanocarriers to perform well
in vivo. Finally, various practicable modifications on DNA allow
the integration of DNA nanostructures with other materials, such
as AuNPs and liposomes (Sun and Gang, 2011; Yang et al., 2016),
making DNA nanocarriers a robust system with a large potential
of holding multiple functionalities.

In laboratory settings, DNA nanocarriers have demonstrated
the capability to conquer drug resistance of cancer cells, serve
as an efficient non-viral vector for gene therapy, induce target
thrombosis in tumor vessels, improve the restoration of kidney
functions, and visualize sentinel lymph nodes. These problems
center around demanding better solutions within real clinical
settings. However, there is still a long way to go to translate their
good performance in cells or in mice to clinical application in
patients. More studies need to be conducted to better understand
the determining factors of in vivo performance. It remains
unclear how the physical and chemical properties, such as surface
charges, oligonucleotide modifications, or protein adhesions of
DNA nanostructures, affect the pharmacokinetic bioavailability.
The preference of hepatic and renal uptake of DNA nanocarriers
limits their applications in other organs. At a cellular level,
cell entry through the endocytosis pathway is far from highly
efficient and selective. Production cost is another concern,
especially when chemical modifications are in high demand. At
last, although DNA material is biodegradable, comprehensive
assessments of their biosafety in humans are essential prior to real
clinical applications. With these issues appropriately addressed,
we believe DNA-based nanocarriers hold a bright future toward
serving as potent drug delivery systems for treatingmany diseases
in clinic.
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