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Subcellular localization is crucial for understanding the functi-
ons and regulatory mechanisms of biomolecules. Long non-co-
ding RNAs (lncRNAs) have diverse roles in cellular processes,
and their localization within specific subcellular compartments
provides insights into their biological functions and implica-
tions in health and disease. The nucleolus and nucleoplasm
are key hubs for RNA metabolism and cellular regulation.
We developed a model, LncDNN, for identifying the localiza-
tion of lncRNAs in the nucleolus and nucleoplasm. LncDNN
uses three different encoding schemes and employs Shapley Ad-
ditive Explanations for feature analysis and selection. The re-
sults show that LncDNN is more accurate than other models.
Additionally, an interpretable analysis of the features influ-
encing the model was conducted. LncDNN is applicable for
identifying the localization of lncRNA in the nucleolus and
nucleoplasm, aiding in the understanding and in-depth study
of related biological processes and functions.

INTRODUCTION
Subcellular localization plays a crucial role in understanding the func-
tions and regulatory mechanisms of biomolecules within the complex
cellular environments. In recent years, long non-coding RNAs
(lncRNAs) have emerged as key players in cellular processes, exhibit-
ing diverse functions ranging from gene regulation to structural orga-
nization.1–4 The localization of these transcripts within specific subcel-
lular compartments provides critical insights into their biological roles
and their potential implications in health and disease.5–8 Among the
various subcellular compartments, the nucleolus and nucleoplasm
are key hubs for RNA metabolism and cellular regulation.9–12 The
nucleolus, a distinct subnuclear organelle, is primarily associated
with RNAprocessing and the regulation of cell-cycle progression.13–15

In contrast, the nucleoplasm encompasses the entire nuclear content
excluding the nucleolus and is involved in diverse cellular processes,
including transcription, RNA splicing, and DNA repair.16,17

Aberrant lncRNA localization patterns of lncRNAs have been impli-
cated in various diseases, highlighting the clinical significance of
elucidating subcellular distribution.5,18–21 Under normal conditions,
the localization of lncRNAs in specific subcellular compartments re-
flects their specific functional roles. However, when lncRNAs are
aberrantly localized to inappropriate subcellular regions, it can lead
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to a series of dysregulations in cellular processes.22 Such abnormal
localization is often associated with various diseases, including cancer,
neurodegenerative disorders, and other complex diseases, high-
lighting the importance of precise subcellular regulation in maintain-
ing normal cellular function.23 For instance, aberrant lncRNA local-
ization can lead to dysregulated ribosome biogenesis, which is a
hallmark of cancers.24

Under normal conditions, the localization of lncRNAs in specific sub-
cellular compartments reflects their specific functional roles. Howev-
er, when lncRNAs are mislocalized to inappropriate subcellular re-
gions, it can lead to a series of dysregulations in cellular processes.
Such abnormal localization is often associated with various diseases,
including cancer, neurodegenerative disorders, and other complex
diseases, highlighting the importance of precise subcellular regulation
in maintaining normal cellular function.

Understanding the subcellular localization patterns of lncRNAs in
relation to the nucleolus and nucleoplasm is of paramount impor-
tance.25,26 The localization of these transcripts to specific subcellular
compartments reflects the functional relevance and regulatory roles
within the cell. The nucleolus is crucial for ribosomal RNA synthesis
and ribosome assembly, which are fundamental to cellular protein
production.27 Localization of lncRNAs in the nucleolus often indi-
cates their involvement in ribosome biogenesis and cell-cycle regula-
tion. Nucleolar lncRNAs are involved in ribosome biogenesis and
have been found to be overexpressed in certain cancers, suggesting
their role in promoting tumor cell growth.28,29 Nucleoplasmic
lncRNAs play a critical role in transcriptional regulation and RNA
splicing, and their dysregulation is associated with the pathology of
neurodegenerative diseases.30,31 The localization of lncRNAs in
nucleolus or nucleoplasm thus reflects distinct regulatory mecha-
nisms and biological functions.

Traditional laboratory methods for obtaining the localization of
lncRNA in the nucleolus and nucleoplasm typically require a
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significant amount of time, manpower, and resources. For example,
fluorescence in situ hybridization requires specialized equipment.
Moreover, due to experimental conditions and resource limitations,
it may not be feasible to handle large-scale samples. In contrast, ma-
chine learning-based models for predicting lncRNA localization in
the nucleolus and nucleoplasm can make faster predictions, saving
time and human resources. Additionally, machine learning methods
do not require large amounts of experimental materials and equip-
ment, resulting in relatively lower costs. Importantly, machine
learning methods can handle large-scale datasets, thereby providing
more comprehensive analyses.32 Throughmachine learning methods,
the exploration of the potential mechanisms and correlations of
lncRNA in the nucleolus and nucleoplasm can help elucidate the
cellular functions and mechanisms of disease occurrence.

In recent years, several studies on RNA subcellular localization have
been published. Zhang et al.26 published a model for RNA subcellular
localization. The model was trained using a support vector machine
approach, integrating a mutual information algorithm and an incre-
mental feature selection strategy to address issues like low discrimina-
tive power and overfitting. Tree-based stacking approach for cell-spe-
cific lncRNA subcellular localization (TACOS)33 combines tree-based
classifiers and feature descriptors to predict the subcellular localiza-
tion of human lncRNAs across 10 cell types. TACOS integrates
AdaBoost baseline models through a stacking approach for improved
prediction accuracy. SubLocEP23,34 is a two-layer integrated pre-
diction model that comprehensively considers additional feature at-
tributes and combines them with LightGBM for accurate and stable
prediction of eukaryotic mRNA subcellular localization, overcoming
the limitations of existing models.

RNAlight,35 developed using LightGBM, identifies nucleotide k-mers
linked to subcellular localizations of mRNAs and lncRNAs. It em-
ploys the Tree SHAP (Shapley Additive Explanations) algorithm to
extract features determining RNA localization, revealing the sequence
basis. Additionally, RNAlight maps features to known RNA-binding
protein motifs, uncovering associations with distinct subcellular
localizations. DeepLncLoc,36 a deep learning framework, predicts
lncRNA subcellular localization by introducing a novel subsequence
embedding method to retain sequence order information. It divides
sequences into consecutive subsequences, extracts patterns from
each subsequence, and combines those subsequences to represent
the full sequence. GraphLncLoc,37 a graph convolutional network-
based deep learning model, predicts lncRNA subcellular localization
by transforming lncRNA sequences into de Bruijn graphs.
GraphLncLoc then employs graph convolutional networks to extract
high-level features from these graphs and uses a fully connected layer
for prediction. DeepmRNALoc,38 a deep neural network-based
method, predicts eukaryotic mRNA subcellular localization by utiliz-
ing a two-stage feature extraction strategy. This approach involves
bimodal information splitting and fusing in the first stage and convo-
lutional neural network module in the second stage. GM-lncLoc,39 a
novel predictionmodel for lncRNA subcellular localization, combines
low-level sequence information with graph structure information to
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extract high-level features. Additionally, GM-lncLoc utilizes meta-
learning to obtain meta-parameters, enabling rapid learning of pa-
rameters for similar tasks and addressing the few-samples problem.
So far, no dedicated tool for identifying the subcellular localization
of mRNA in the nucleolus and nucleoplasm has been developed.
Our primary objective in this study is to fill this gap.

In this study, we performed a comprehensive analysis of lncRNA
localization patterns. Using machine learning approaches, we have
developed predictive models for the classifying lncRNAs in nucleolus
or nucleoplasm. By integrating the features from different levels, we
trained LncDNN, and the advantages are as follows:

(1) This model focuses on identifying the localization of lncRNA in
the nucleolus and nucleoplasm.

(2) By analyzing features extracted at different levels, it was found
that the 12 features obtained from feature fusion and feature se-
lection of enhanced nucleic acid composition (ENAC),40

binary,40 and accumulated nucleotide frequency (ANF)40 can
effectively identify the localization of lncRNA in the nucleolus
and nucleoplasm.

(3) Experimental results demonstrate that LncDNN has good predic-
tive and generalization ability, with area under the curve (AUC)
scores of 0.873and 0.831on the validation and test sets, respectively.
RESULTS
Model development

To effectively identify the localization of lncRNA in the nucleolus and
nucleoplasm, features at different levels of lncRNA were extracted.
These features include nucleic acid composition, pseudo-nucleotide
composition, nucleic acid composition, and binary. To ensure the val-
idity of the features, feature selection was employed. Considering the
ability of random forest to handle high-dimensional data and capture
nonlinear relationships,41 we chose random forest to identify the
localization of lncRNA in the nucleolus and nucleoplasm. Owing to
the slight imbalance present in this dataset, the AUC was selected
as the primary optimization objective for model performance on
the validation dataset.42–45 Using random forest to evaluate different
subsets of features with AUC as the optimization objective, it was
found that ENAC, binary, and ANF had the highest AUC among
the single features. Therefore, ENAC, binary, and ANF were subse-
quently retained for further analysis (Figure 1B).

Feature fusion can help capture information that a single feature
cannot express. Feature selection helps remove redundant and irrele-
vant features, reducing noise. The combination of feature fusion and
feature selection can help improve model performance, reduce over-
fitting, and enhance model interpretability. We fused ENAC, binary,
and ANF to form a more comprehensive feature set. Then, SHAP46

was used to analyze the features. After ranking features by mean ab-
solute SHAP values47 (MASVs), it was found that the model trained
with the top 12 features (Figure 1C) had strong predictive power and
generalization ability. This model is called LncDNN.



Figure 1. The overall framework of LncDNN

(A) Data process. (B) Feature extraction, analysis, and fusion. (C) Feature selection by using SHAP (top 12 features). (D) Model training (top 12 features).
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Model performance and validation

Performance of individual features

In the evaluation of feature subsets in the autocorrelation feature
group, metrics such as precision, recall, accuracy (ACC), F1 score,
and AUC were calculated. The average AUC for sub-features in the
autocorrelation group was 0.649 (Table 1). In the pseudo-nucleotide
composition feature group, the average AUC for general parallel cor-
relation pseudo-dinucleotide composition (PC-PseDNC-General)
and general series correlation pseudo-dinucleotide composition
(SC-PseDNC-General) was 0.622 (Table 1). In the nucleic acid
composition group, the average performance metrics for sub-features
were precision: 0.634, recall: 0.909, ACC: 0.678, F1 score: 0.747, and
AUC: 0.743. The AUC for ENAC and ANF were 0.101 and 0.076
higher than the average AUC, respectively. Additionally, the AUC
for binary was 0.838 (Table 1). In summary, the AUCs for the sin-
gle-feature models of ENAC, binary, and ANF all exceeded 0.80.

Model performance after feature fusion and feature selection

We directly fused ENAC, binary, and ANF to train the model, and
found that the AUC of the model on the validation set was 0.827,
which is 0.011 lower than the AUC of ENAC on the validation set
(Table 1). Then, we used SHAP to perform feature selection on the
combined feature set of ENAC, binary, and ANF (Figure 1C). Figure 2
presents the top 20 MASV features. To obtain a better-performing
model, we analyzed and evaluated the top 20 features and found
that selecting the top 12 features (LncDNN) resulted in the highest
AUC on the validation set, reaching 0.873, which exceeded all other
models (Figures 2 and 3; Table 2).

The proposed LncDNN outperforms other models on

independent test set

To demonstrate the advantages of LncDNN in identifying the locali-
zation of lncRNA in the nucleolus and nucleoplasm, we compared
LncDNN with single-feature models (including ENAC, binary, and
ANF) and models with MASV top 13/18/20 features on an indepen-
dent test set (Table 3). In the single-feature models, the average AUC
of ENAC, binary, and ANF on the validation set was 0.795, which is
0.036 lower than LncDNN (Table 3). The AUCs of models with
MASV top 12/18/20 features (Figure 2) on the independent test set
were 0.813, which is 0.018 lower than LncDNN (Table 3). In sum-
mary, LncDNN achieved a higher AUC on both the validation and
independent test sets compared to other models, indicating its supe-
rior performance in identifying the localization of lncRNA in the
nucleolus and nucleoplasm.
DISCUSSION
Our study optimized the model by applying feature fusion and feature
selection on ENAC, binary, and ANF. This approach not only ad-
dressed the limitations of individual features but also removed redun-
dant features, significantly improving model accuracy. The proposed
model, LncDNN, demonstrates superior performance, with an AUC
of 0.873 on the validation set and 0.831 on the independent test set,
outperforming other models including those based on single features
and various top feature subsets. This indicates the robustness and
generalization ability of LncDNN in identifying the subcellular local-
ization of lncRNAs. Our findings contribute to the understanding of
subcellular localization patterns of lncRNAs, which is crucial for
elucidating their functional roles and regulatory mechanisms within
the cell. Additionally, this research provides valuable insights for
studies related to diseases associated with aberrant lncRNA localiza-
tion. However, we acknowledge that there are also limitations to this
work. Although LncDNN applies feature fusion and selection, which
effectively enhances model performance, there is still the issue of
insufficient information. The training and testing data for our model
come from RNALocate version 2.0, which, while being a comprehen-
sive database, still has limitations regarding data sources. The model
may perform poorly under different contexts and experimental
Molecular Therapy: Nucleic Acids Vol. 36 March 2025 3
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Table 1. The performance of single features of random forest models on

valid dataset

Features Precision Recall ACC F1 score AUC

Autocorrelation

DAC 0.584 0.894 0.611 0.707 0.651

DCC 0.630 0.879 0.669 0.734 0.714

DACC 0.617 0.879 0.651 0.725 0.703

MAC 0.593 0.773 0.603 0.671 0.615

NMBAC 0.574 0.818 0.587 0.675 0.564

Pseudo-nucleotide composition

PC-PseDNC-General 0.584 0.788 0.595 0.671 0.601

SC-PseDNC-General 0.621 0.818 0.6429 0.706 0.642

Nucleic acid composition

ENAC 0.670 0.924 0.722 0.777 0.851a

TNC 0.621 0.894 0.659 0.733 0.663

CKSNAP 0.606 0.864 0.635 0.713 0.659

4-mer 0.617 0.879 0.651 0.725 0.724

ANF 0.657 0.985 0.722 0.788 0.820a

Binary encoding

Binary 0.670 0.985 0.738 0.798 0.838a

Only feature fusion

ENAC + binary + ANF 0.649 0.955 0.706 0.773 0.827

aThe single-feature model’s AUCs on the validation set exceeds 80%.

Figure 2. The importance of the MASV top 20

This figure displays the importance of features as meansured by Mean Absolute

SHAP Value. SHAP values (SHapley Additive exPlanations) quantify the contribution

of each featres to the model’s prediction, providing a meansure of feature

importance.
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conditions, posing a risk of insufficient generalizability. In addition,
our study lacks wet-lab experiments to support the model’s findings.
Therefore, in the future, we will focus on expanding feature types,
improving feature extraction and enhancing dataset diversity. We
aim to further improve model performance by adding new types of
features and employing more advanced feature extraction methods.
We will also work on improving the model’s generalizability to
different contexts by incorporating lncRNA data from various species
and tissues. Additionally, if laboratory conditions permit, we will
conduct experiments to validate the superiority of the LncDNN.
MATERIALS AND METHODS
Data description

This study harnessed the extensive RNALocate 2.0 database,48 which
provides a comprehensive collection of nucleic acid sequences,
including lncRNAs, mRNAs, small nucleolar RNAs, and small non-
coding RNAs, across a multitude of species. This database is acces-
sible at http://www.rnalocate.org/ or http://www.rna-society.org/
rnalocate/. RNALocate 2.0 is an RNA subcellular localization data-
base that integrates data from various sources and experimental vali-
dation. It covers over 213,000 RNA localization entries across 104
species. These data are derived frommanual curation of the literature,
five additional databases, and 35 RNA sequencing datasets. Although
RNALocate 2.0 offers a broad dataset, this study specifically focused
on the lncRNA sequences because of their significant roles in various
4 Molecular Therapy: Nucleic Acids Vol. 36 March 2025
biological processes. Within the scope of lncRNA analysis, we focused
on data from two key species: humans and mice. The datasets
compiled for this investigation comprised 11,616 human samples
and 343 mouse samples, thereby allowing us to delve into the inves-
tigation of lncRNA functions and their evolutionary aspects in these
organisms (Figure 4).

In a comprehensive analysis of lncRNA data, a varied distribution of
lncRNA localizations across cellular components was observed, re-
flecting the complexity and diversity of lncRNA functions. The data-
set encompasses a broad range of locations, including the exosome
(5,574 samples); nucleus (3,804 samples); nucleoplasm (969 samples);
nucleolus (700 samples); chromatin (897 samples); cytoplasmic re-
gions such as the cytoplasm (912 samples), cytosol (760 samples),
and insoluble cytoplasm (96 samples); and other specific sites like
the membrane (327 samples) and ribosome (143 samples). Given
the significant role of lncRNAs in gene regulation, their localization
can offer valuable insights into their functional mechanisms within
the cells (Figure 4).

Given the pivotal roles played by the nucleolus and nucleoplasm in
the regulation of genetic material and RNA processing, we focused
on the localization of lncRNAs within these two cellular compart-
ments. The nucleolus, known as the site of ribosomal RNA synthesis,
and the nucleoplasm, which serve as the milieu for a variety of nuclear
processes, are critical for understanding the regulatory landscapes of
lncRNAs.49,50 This study narrowed the focus to the nucleolus and
nucleoplasm, accounting for 1,669 samples in the dataset, and further
refined the data through sequence similarity clustering. Using Cluster
Database at High Identity with Tolerance (cd-hit)51 with a threshold
set of 90% to ensure the uniqueness of the sequences, the dataset was

http://www.rnalocate.org/
http://www.rna-society.org/rnalocate/
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Figure 3. The performance of the model with the MASV top 5 to 20 features on the validation dataset

This figure illustrates the performance of the model across various subsets of features from top 5 to 20 as ranked by MASV, including metrics such as Precision, Recall,

Accuracy (ACC), F1-score, and Area Under the Curve (AUC). Precision: The proportion of positive identifications that were actually correct. Recall: The proportion of actual

positives that were correctly identified. ACC: The ratio of correctly predicted observations to the total observations. F1-score: The harmonic mean of Precision and Recall.

AUC: The area under ROC curve, reflecting the overall performance of the model.

Table 2. The performance of selected features on invalidation dataset

Features Precision Recall ACC F1 score AUC

Top 5 0.754 0.742 0.738 0.748 0.809

Top 6 0.779 0.803 0.778 0.791 0.825

Top 7 0.746 0.803 0.754 0.774 0.857

Top 8 0.771 0.818 0.778 0.794 0.849

Top 9 0.764 0.833 0.778 0.797 0.847

Top 10 0.775 0.833 0.786 0.803 0.862

Top 11 0.781 0.864 0.802 0.820 0.858

LncDNN = top 12 0.787 0.894 0.817 0.837 0.873a

Top 13 0.776 0.894 0.810 0.831 0.866a

Top 14 0.727 0.848 0.754 0.783 0.843

Top 15 0.75 0.864 0.778 0.803 0.847

Top 16 0.740 0.864 0.770 0.797 0.850

Top 17 0.757 0.848 0.778 0.800 0.859

Top 18 0.76 0.864 0.786 0.809 0.863a

Top 19 0.733 0.833 0.754 0.780 0.838

Top 20 0.744 0.879 0.778 0.806 0.863a

aThe model’s AUC on validation set exceeds 86%.
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effectively distilled into a more manageable and representative subset.
This process resulted in the identification of 500 unique samples
localized to the nucleolus and 341 unique samples associated with
the nucleoplasm (Figures 1A and 4). The data supportintg this study
are availabel at http://github.com/lijingtju/LncDNN, providing across
to the refined datasets and associated analysis. In this study, we con-
ducted a detailed statistical analysis of the lengths of lncRNA se-
quences in the dataset to better understand the data characteristics.
Figure 1A shows the distribution of sequence lengths. The results
indicate that most lncRNA sequences are between 500 and 2,000 ba-
ses in length, with the highest frequency around 1,000 bases. Addi-
tionally, some longer sequences, up to 25,000 bases, were observed,
although they are fewer in number. We divided the data processed
by cd-hit into training, validation, and test sets in a ratio of 70%,
15%, and 15%, respectively. This partitioning ensures that the model
can learn and be evaluated on different datasets, thereby improving its
prediction capability and reliability on new data.

Feature extraction

Feature extraction techniques were used to analyze the lncRNA se-
quences and their subcellular localization. These techniques were
divided into three hierarchical levels to capture the intrinsic and
compositional features of the lncRNAs. Employing these established
feature extraction techniques, we aimed to construct a multidimen-
sional feature space that accurately represented the complexities of
lncRNA sequences for effective classification in a biological context.

Nucleic acid composition features

Tri-nucleotide composition (TNC)40 reflects tetra-nucleotide fre-
quencies. ENAC40 enriches the representation by considering posi-
tional information. ENAC captures the overall proportion of each
nucleotide (A, U, G, C) in the nucleic acid sequence, reflecting the
basic chemical characteristics and composition of the sequence.
k-Spaced nucleic acid pairs (CKSNAP)40 captures complex patterns
and spacing effects by counting pairs of nucleotides separated by k
spaces within a sequence. The 4-mer40 represents all possible combi-
nations of four adjacent nucleotides in the lncRNA sequences. These
4-mer patterns serve as features to capture important sequence infor-
mation, enabling the characterization and classification of lncRNA se-
quences based on the underlying nucleotide composition. ANF40 cre-
ates a cumulative frequency profile across the sequence. ANF is a
cumulative nucleotide frequency-encoding method that calculates
Molecular Therapy: Nucleic Acids Vol. 36 March 2025 5

http://github.com/lijingtju/LncDNN
http://www.moleculartherapy.org


Table 3. The performance of selected features on independent test set

Features Precision Recall ACC F1 score AUC

Single-features models

ENAC 0.706 0.935 0.724 0.804 0.814

ANF 0.716 0.948 0.740 0.816 0.790

Binary 0.682 0.948 0.701 0.793 0.780

Models based on top 12/13/18/20 features

LncDNN = top 12 0.75 0.818 0.724 0.783 0.831a

Top 13 0.759 0.779 0.717 0.769 0.822

Top 18 0.733 0.818 0.709 0.773 0.822

Top 20 0.703 0.831 0.685 0.762 0.794

aLncDNN achieves the highest AUC o the test set.
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the cumulative occurrences of each nucleotide in the sequence to
reflect the global characteristics of the sequence. The cumulative dis-
tribution of nucleotides provides additional information on nucleo-
tide distribution trends, thus providing richer features for the model.
This is crucial for capturing the global patterns of the sequence.

Autocorrelation features

At an initial stage, autocorrelation features were extracted to quantify
the internal structure and inter-nucleotide relationships within the
lncRNA sequences. Dinucleotide-based auto covariance (DAC)40

measures the variation in the properties of dinucleotide pairs within
a sequence over distances, thereby capturing the structural tendencies
of sequence. Dinucleotide-based cross-covariance (DCC)40 evaluates
the covariance between different dinucleotide properties or seque-
nces, which is useful for understanding sequence interactions. Dinu-
cleotide-based auto-cross-covariance (DACC)40 combines DAC and
DCC, analysis within-sequence variations and between-sequence in-
teractions, and offers a detailed view of the sequence features. Moran
autocorrelation (MAC)52 was utilized to evaluate spatial correlations,
and normalized Moreau-Broto autocorrelation (NMBAC)52 normal-
ized these autocorrelations to enable comparison across varying
sequence lengths.
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Pseudo-nucleotide composition features

The third level focuses on the global sequence order information
by computing the pseudo-nucleotide composition features. This
included PC-PseDNC-General,52 which encompasses dinucleotide
composition and the physicochemical properties of nucleotides, and
SC-PseDNC-General,52 which integrates sequence order effects
with the dinucleotide composition to capture the sequential correla-
tion information.

Binary encoding

The binary encoding40 scheme represents each nucleic acid as a four-
dimensional binary vector. Binary encoding captures the positional
information of each nucleotide in the sequence, preserving the
sequential characteristics of the sequence.
Feature analysis

Using random forest to train single features, it was found that among
single-feature models, ENAC, binary, and ANF had AUCs exceeding
0.8 (Figure 1B; Table 1). Subsequently, ENAC, binary, and ANF were
concatenated horizontally to generate a comprehensive feature set (Fig-
ure 1B).However, the AUCof themodel directly trained on the concat-
enated features was only 0.827 on the validation set, lower than the
AUC of the ENAC single-feature model (Table 1). This performance
decline may be due to redundancy among features, which reduces
the effective information density of the model. To obtain a better-per-
forming model, SHAP was used to analyze the ENAC + binary + ANF
feature set (Figure 1C). Based on theMASVs, we selected the top 20 fea-
tures for further analysis (Figure 2). The figure shows the training re-
sults of the top 5 to 20 features, and it was found that the top 12 features
(Figures 1C and 2) based on MASV (LncDNN) exhibited the highest
AUC of 0.87 on the validation set (Figure 3; Table 2). Similarly, accord-
ing to Table 3, LncDNN also demonstrated the highest AUC on the in-
dependent test set. This indicates that these features exhibit strong
complementarity, effectively enhancing the performance of the model.
Through an in-depth analysis of feature complementarity, we found
that ENAC, binary, and ANF capture different sequence information.
ENAC provides the overall composition, binary retains positional
Figure 4. Data collection and process
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information, andANF offers a cumulative perspective. Their combina-
tionhelps themodel understand sequence characteristics frommultiple
dimensions, thereby improving prediction accuracy.

We used SHAP to analyze the combined features of ANF + binary +
ENAC and found that the top 12 features with the highestMASVs (Fig-
ure 4),ANF.82,ANF.75,ANF.109,ANF.97, andANF.117, represent the
cumulative nucleotide frequencies up to positions 83, 76, 110, 172, 98,
and 118 in the RNA sequence, with MASV values of 0.054, 0.0252,
0.0241, 0.0155, and 0.0151. This indicates that the cumulative nucleo-
tide frequencies at these positions play a crucial role in ourmodel.Addi-
tionally, the top 12 MASVs also included ENAC.33, ENAC.77,
ENAC.164, ENAC.100, ENAC.3, ENAC.21, and ENAC.12, which
represent the nucleotide frequencies at positions 34, 78, 165, 101, 4,
22, and 13 in the RNA sequence, respectively. According to SHAP anal-
ysis, the MASVs for ENAC.33, ENAC.77, ENAC.164, ENAC.100,
ENAC.3, ENAC.21, and ENAC.12 were 0.044, 0.027, 0.0213, 0.0183,
0.0161, 0.0157, and 0.0135, which are significantly higher than those
of other features. In other words, the MASVs top 12 features not only
improve the AUC of the model but also reduce model complexity.
Evaluation metrics

Several evaluation indicators were employed to assess the perfor-
mance of the classifier, including precision, recall, ACC, F1 score,
and AUC.53–56 These indicators comprehensively evaluate the ability
of the classifier to discriminate between the nucleolus and the nucle-
oplasm. Precision measures the accuracy of the positive predictions of
a classifier. It quantifies the ratio of correctly predicted nucleolus sam-
ples to all the samples predicted as nucleolus. Precision quantifies the
accuracy of the positive predictions of the LncDNN within the nucle-
olus samples. Recall measures the ability of a classifier to identify
nucleolus samples correctly. F1 score is the harmonic mean of the
precision and recall, providing a balance between the two indicators.
The AUC represents the area under the receiver operating character-
istic curve, which plots the true positive rate (sensitivity) against the
false positive rate (1 � specificity). This provides an overall measure
of the ability of the classifier to discriminate between the nucleolus
and nucleoplasm across different threshold values.57,58

Precision=
TP

TP+FP
(Equation 1)

Recall =
TP

TP+FN
(Equation 2)

ACC =
TP+TN

TP+TN+FP+FN
(Equation 3)

F1 score=
2 � Precision � SN
Precision+SN

(Equation 4)

where TP represents true positives, the number of samples correctly
classified as nucleolus; FN represents false negatives, the number of
samples incorrectly classified as nucleoplasm; TN represents true neg-
atives, the number of samples correctly classified as nucleoplasm; and
FP represents false positives, the number of samples incorrectly clas-
sified as nucleolus.
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