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Rhythmic neural activities are critical to the efficiency of regulatory

procedures in brain functions. However, brain functions usually decline in

aging as accompanied by frequency shift and temporal dedifferentiation of

neural activities. Considering the strong oscillations and long-lasting after-

effects induced by rhythmic brain stimulations, we suggest that non-invasive

rhythmic brain stimulation technique may help restore the natural frequencies

of neural activities in aging to that in younger and healthy brains. Although

with tremendous work to do, this technique offers great opportunities for the

restoration of normal brain functions in aging, or even in those suffering from

neurodegenerative diseases and neuropsychiatric disorders.
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Introduction

Rhythmic neural activities are the basic characteristic of brain function (Buzsáki,
2006). In response to various cognitive demands, the human brain functions across
multiple frequencies (Soltani et al., 2021) with distinct mechanisms (Brookes et al.,
2016) or multi-layer functional networks (Sasai et al., 2020). Intrinsic frequencies have
been stressed for local neural activities (Murray et al., 2014), neural circuits (Rosanova
et al., 2009), as well as cognitive functions (Palva and Palva, 2018). Neural activities at
intrinsic frequencies form spectral fingerprints of brain functions (Siegel et al., 2012).
Throughout the human lifespan, frequencies of these neural activities, however, are
constantly changing, as presented in the form of the shift of frequency between adjacent
frequency bands and/or temporal dedifferentiation among multiple bands (Alcauter
et al., 2015; Yang et al., 2018; Ao et al., 2022). For instance, the individual alpha peak
frequency slowed from 10 Hz at the age of 20 years (i.e., younger age) to 8.8 Hz
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at the age of 70 years (i.e., older age) and from 9.9 Hz in
healthy adults aged 18–60 years old to 9.4 Hz in patients
with schizophrenia of the same age range (Scally et al., 2018;
Ramsay et al., 2021). These altered frequency characteristics due
to aging and/or age-related conditions are closely associated
with changes in brain functions and behavioral performances,
such as cognitive and motor functions, the control of standing
and walking (He et al., 2010; Assenza et al., 2017). In other
words, such altered frequency characteristics may interfere with
neural activities that are related to cognitive and behavioral
performances, leading to their non-optimal (less efficient)
neural control (Klimesch, 2018; Wolinski et al., 2018).

This may be a potential explanation for the findings that
though many cognitive training strategies can help improve
cognitive performances in relatively older adults, no benefits
for the prevention of age-related cognitive decline have
been observed (Butler et al., 2018), which may potentially
be because those interventions cannot restore the altered
frequency behaviors (e.g., frequency shift and/or temporal
dedifferentiation), the important factor underlying the etiology
of cognitive impairment. Therefore, age-related declines in brain
function can be linked to altered frequency characteristics,
which may be preserved by strategies targeting the restoration of
such frequency characteristics (i.e., rhythmic brain stimulation
techniques).

Main perspective

Non-invasive rhythmic brain stimulation techniques
have been widely used in the rehabilitation of cognitive
and brain functions in relatively older adults (Tatti et al.,
2016; Assenza et al., 2017), which facilitate the neural
entrainment or resonance (Henry et al., 2017) of the brain
activities. These techniques are usually imposed physically
or psychologically. The former primarily includes repetitive
transcranial magnetic stimulation (rTMS), transcranial
alternating current stimulation (tACS), and oscillatory
transcranial direct current stimulation (O-tDCS) (Wischnewski
et al., 2019; Chou et al., 2020; Qiao et al., 2022); and the latter
includes cognitive tasks or sensory stimulations focusing on
particular frequencies (Norcia et al., 2015; Wang et al., 2016,
2019).

In the application of these techniques, the selection of
appropriate stimulation frequency is critical to maximize their
benefits. For instance, the effects of 4 and 7 Hz tACS on
working memory are quite different, even though they all
belong to the theta rhythm (Wolinski et al., 2018). More
precise design of targeting frequency in rhythmic stimulation is
critical to improve the efficiency of the intervention (Tatti et al.,
2016).

Natural frequencies of neural activities related to particular
cognitive functions are defined as the frequencies at which

FIGURE 1

Illustration for the perspective. The overall power and frequency
patterns in healthy brain signals follow the scale-free law in
which power is proportional to 1/frequency. There are also
some oscillations (e.g., the two peaks on the power spectra) of
brain signals which correspond to different network patterns
(e.g., the two networks in the figure). Due to the shift of
frequency between adjacent frequency bands and/or temporal
dedifferentiation among multiple bands, the decrease in the
efficiency of neural activity and related functional declines are
often observed in aging brains. The application of rhythmic brain
stimulation to modulate the natural frequency in aging group to
that of younger brains may thus help retard the decline of brain
functions by reversing neural activities in aging brains to their
younger and healthy states.

neural activities and/or cognitive functions can achieve the
optimal efficiencies. The optimal efficiencies of neural activities
and/or cognitive functions are oftentimes observed in people
younger than 40 years old (i.e., young adults) (Edde et al.,
2021). For example, the resonant frequencies in Brodmann
areas 6, 7, and 19 appeared at about 29, 18.6, and 10.8 Hz,
respectively, in people about 30 years old (Rosanova et al.,
2009). Another example is that the natural frequency of
sustained attention occurred at around 0.05 Hz in children
and young adults (Qiao et al., 2022). The resonances at
natural frequencies of neural activities (Rosanova et al., 2009)
related to sensorimotor or other behavioral performances
(Lu et al., 2017; Klimesch, 2018) have been demonstrated.
Appropriately characterizing these natural frequencies, which
are the promising targets for rhythmic stimulations, is thus
important for the design of these techniques. Recently, Qiao
et al. (2022) observed that as compared to conventional
tDCS, the O-tDCS targeting the potential natural frequency
(i.e., 0.05 Hz) of sustained attention may induce significantly
greater effects on this function, suggesting that using the
natural-frequency-based rhythmic stimulation can further help
the higher-order cognitive function. These findings indicate
that natural frequencies may serve as precise and efficient
targets of rhythmic interventions to improve cognitive and
other functions (Lee et al., 2021), holding great promise of
retarding the age-related decline of brain functions by reversing
frequency shift and temporal dedifferentiation in aging brains
(see Figure 1).
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Discussion

Rhythmicity is a critical component for the regulation
of neural activities related to cognitive and other important
functions. Rhythmic brain stimulation techniques have been
demonstrated to improve or restore neural activities at
particular frequencies (Klink et al., 2020; Qiao et al., 2022),
indicating it may be a novel strategy for the restoration of
functions in aging by entraining the altered frequencies in aging
brain to those in younger and healthy brain. Still, though it is of
great promise, future work is highly demanded and warranted to
(1) explicitly examine and characterize the efficacy of this kind
of technology, helping maximize its benefits at individual level
(Knyazeva et al., 2018; Jafari et al., 2020; Wang et al., 2022); and
(2) determine the optimal design of this intervention that would
be appropriate for different populations (e.g., those with and
without neurodegenerative diseases), including the immediate
and longer-term effects, dose-response relationship, etc. (Wang
et al., 2015; Solomon et al., 2021).

Taken together, the natural-frequency-based rhythmic brain
stimulation techniques hold great potential to restore brain
functions in aging process with their significant benefits,
which may be expanded to benefit those suffering from
neurodegenerative diseases and neuropsychiatric disorders
(Mingoia et al., 2013). Future research efforts are warranted
to provide critical knowledge and insights into the relationships
between natural frequency of brain activities and functional
performances, as well as the underlying pathway through
which the modulation of such frequency benefits the
functions.
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