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Abstract: Antenna miniaturization technology has been a challenging problem in the field of antenna
design. The demand for antenna miniaturization is even stronger because of the larger size of the
antenna in the low-frequency band. In this paper, we consider MEMS magnetoelectric antennas
based on mechanical resonance, which sense the magnetic fields of electromagnetic waves through
the magnetoelectric (ME) effect at their mechanical resonance frequencies, giving a voltage output. A
70 µm diameter cantilever disk with SiO2/Cr/Au/AlN/Cr/Au/FeGaB stacked layers is prepared
on a 300 µm silicon wafer using the five-masks micromachining process. The MEMS magnetoelectric
antenna showed a giant ME coefficient is 2.928 kV/cm/Oe in mechanical resonance at 224.1 kHz.
In addition, we demonstrate the ability of this MEMS magnetoelectric antenna to receive low-
frequency signals. This MEMS magnetoelectric antenna can provide new ideas for miniaturization
of low-frequency wireless communication systems. Meanwhile, it has the potential to detect weak
electromagnetic field signals.

Keywords: magnetoelectric coupling; microfabrication process; MEMS mechanical antenna

1. Introduction

With the progress of portable communication technology, antenna miniaturization
technology has acquired more attention [1,2]. The demand for antenna miniaturization
is even stronger because of the larger size of the antenna in the low-frequency band. The
large antenna sizes associated with the low-frequency band restrict the development of
wireless communication systems [3]. The current antenna miniaturization mechanism relies
on electromagnetic resonance; hence, the antenna size is typically larger than one-tenth
of the wavelength [4–6]. In summary, the development of new antenna miniaturization
mechanisms poses a significant research direction for the antenna design field [7,8].

Mechanical antennas are a new type of antenna, which implement the coupling
of the electromagnetic field and current by use of the mechanical movement of charge
or magnetic dipole [9,10]. The new radiation principle makes it possible to change the
physical size constraint associated with the conventional antenna wavelength; therefore,
it is possible to reduce the antenna size significantly [11,12]. A magnetoelectric (ME)
mechanical antenna combines the piezoelectric and magnetostrictive effects and realizes
the mutual conversion of the electromagnetic field and oscillating current through the use
of a distinctive magnetoelectric coupling structure. Unlike the conventional electrically
small antennas that resonate through electromagnetic waves, ME antennas use magnetic
dipole moment oscillations and generate mechanical resonance. This approach breaks the
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complementary relationship between antenna size and wavelength and, so, can lead to
significantly reductions in antenna size [13].

In recent years, with the development of magnetostrictive thin films [14,15], piezoelec-
tric thin films [16], and multiferroic heterojunction technologies [17,18], the magnetoelectric
coupling effect at the micro and nano scales has received wide attention. The magneto-
electric coupling structure can realize the dynamic transformation of electric field and
magnetic field energy [19,20]. For sensors [21–23], applications have laid the foundation
for magnetoelectric mechanical antennas [24,25]. Recently, mechanical antennas based on a
magneto-electric coupling effect have been demonstrated at very high frequency (VHL) and
ultra-high frequency (UHL) [13,26,27]. This magnetoelectric mechanical antenna breaks
the bounded relationship between wavelength and antenna size. Compared to advanced
miniaturized antennas, this magnetoelectric antenna is one to two orders of magnitude
smaller. Currently this miniaturized antenna based on the coupling effect is oriented to ex-
isting 5G, WIFI, or other high-frequency bands, and there is a temporary lack of systematic
research on low-frequency MEMS antennas based on the magnetoelectric coupling effect.

For this paper, we fabricated a low-frequency micromechanical antenna based on
mechanical resonance, which converts electromagnetic waves into oscillating currents
through a magnetoelectric structure for low-frequency electromagnetic wave reception.
During reception, the magnetostrictive film of the magnetoelectric antenna converts the
magnetic component of the electromagnetic field into mechanical vibrations and gener-
ates an oscillating voltage in the lower piezoelectric film. This approach facilitates the
reception of low-frequency electromagnetic wave signals through mechanical resonance
of the micromechanical antenna, rather than by electromagnetic resonance. Therefore, the
micromechanical low-frequency antenna size is smaller than the existing low-frequency
antenna. This micromechanical antenna demonstrates potential, not only for miniaturized
communication systems, but also for integrating different frequency antennas.

2. Materials and Methods
2.1. MEMS Magnetoelectric Antenna Concepts

In this section, we describe the fabrication of and characterize a miniaturized LF mag-
netoelectric coupling antenna based on mechanical resonance. The MEMS magnetoelectric
antenna consists of one layer of aluminum nitride (piezoelectric material) and one layer
of FeGaB (magnetostrictive material); it is based on the magnetoelectric coupling effect,
which converts electromagnetic waves into a dynamic voltage signal.

The magnetic component of an electromagnetic wave can be detected by the mag-
netostriction layer, inducing mechanical vibrations through the magnetic coupling effect.
When the mechanical vibrations transfer to the piezoelectric thin-film, due to the piezo-
electric effects, a dynamic voltage signal is generated. Based on the above principles,
using the five-masks micromachining process, a MEMS magnetoelectric antenna with a
SiO2/Cr/Au/AlN/Cr/Au/FeGaB stack was fabricated on a 300 µm double-side-polished
silicon (1,0,0) chip. A photograph of the MEMS magnetoelectric is shown in Figure 1a.
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When the magnetoelectric-coupled MEMS magnetoelectric antenna operates, the
magnetostrictive material (FeGaB) senses the magnetic component in the external electro-
magnetic field and converts it into stress–strain in the piezoelectric film (AlN). This process
generates a mechanical vibration and converts the stress–strain into an oscillating voltage
signal, thus converting the electromagnetic field into an oscillating voltage. The dimensions
and structure of the MEMS magnetoelectric antenna are shown in Figure 1b.

2.2. MEMS Magnetoelectric Antenna Sample Fabrication

Using the five-masks micromachining process, a MEMS magnetoelectric antenna with
a SiO2/Cr/Au/AlN/Cr/Au/FeGaB stack was fabricated on a 300 µm double-side-polished
silicon (1,0,0) chip. A photograph of a MEMS magnetoelectric antenna is shown in Figure 1.
A SiO2 layer was prepared by thermal oxidation of the silicon wafers, following which
the gold film was sputter-deposited and patterned using the lift-off process to the lower
electrode of the MEMS magnetoelectric antenna. Next, c-axis AlN films were prepared
by magnetron sputtering, after performing lithography, and the vias were etched using
high-temperature phosphoric acid to connect the bottom electrode. Thereafter, the gold
film was evaporated and plated, instead of being sputtered. The upper structural electrode
was formed using the lift-off process. Then, the silicon dioxide on the lower surface was
removed by hydrofluoric acid. The magnetostrictive material, FeGaB, was then sputtered.
The patterning was completed through the lift-off process. Finally, the structure was
released by deep silicon etching on the back side. The structural dimensions of the MEMS
magnetoelectric antenna are shown in Figure 2.

Micromachines 2022, 13, x  3 of 9 
 

 

(a) 

  

Figure 1. (a) Optical microscope photograph. (b) The structure and layers of the of the MEMS mag-

netoelectric antenna. 

When the magnetoelectric-coupled MEMS magnetoelectric antenna operates, the 

magnetostrictive material (FeGaB) senses the magnetic component in the external electro-

magnetic field and converts it into stress–strain in the piezoelectric film (AlN). This pro-

cess generates a mechanical vibration and converts the stress–strain into an oscillating 

voltage signal, thus converting the electromagnetic field into an oscillating voltage. The 

dimensions and structure of the MEMS magnetoelectric antenna are shown in Figure 1b. 

2.2. MEMS Magnetoelectric Antenna Sample Fabrication 

Using the five-masks micromachining process, a MEMS magnetoelectric antenna 

with a SiO2/Cr/Au/AlN/Cr/Au/FeGaB stack was fabricated on a 300 μm double-side-pol-

ished silicon (1,0,0) chip. A photograph of a MEMS magnetoelectric antenna is shown in 

Figure 1. A SiO2 layer was prepared by thermal oxidation of the silicon wafers, following 

which the gold film was sputter-deposited and patterned using the lift-off process to the 

lower electrode of the MEMS magnetoelectric antenna. Next, c-axis AlN films were pre-

pared by magnetron sputtering, after performing lithography, and the vias were etched 

using high-temperature phosphoric acid to connect the bottom electrode. Thereafter, the 

gold film was evaporated and plated, instead of being sputtered. The upper structural 

electrode was formed using the lift-off process. Then, the silicon dioxide on the lower sur-

face was removed by hydrofluoric acid. The magnetostrictive material, FeGaB, was then 

sputtered. The patterning was completed through the lift-off process. Finally, the struc-

ture was released by deep silicon etching on the back side. The structural dimensions of 

the MEMS magnetoelectric antenna are shown in Figure 2. 

 

Figure 2. The structural dimensions of the developed MEMS magnetoelectric antenna. 

In detail, the MEMS magnetoelectric antenna construction process is as follows. First, 

a double-side-polished silicon wafer (100) with a thickness of 300 μm is taken; after stand-

ard cleaning, a silicon dioxide layer of 100 nm was grown on the surface using a thermal 

oxidation process. The silicon dioxide layer acts as an insulating and buffer layer. Gold 

was selected as the lower electrode and support structure for the lithography process, 

Figure 2. The structural dimensions of the developed MEMS magnetoelectric antenna.

In detail, the MEMS magnetoelectric antenna construction process is as follows. First, a
double-side-polished silicon wafer (100) with a thickness of 300 µm is taken; after standard
cleaning, a silicon dioxide layer of 100 nm was grown on the surface using a thermal
oxidation process. The silicon dioxide layer acts as an insulating and buffer layer. Gold was
selected as the lower electrode and support structure for the lithography process, followed
by sputtering of Cr (10 nm) and gold film (100 nm), then ultrasonic stripping in an acetone
solution. The length of the overhanging part of the gold beam was 100 µm, its width was
10 µm, and its thickness was 100 nm.

Next, AlN films were sputtered and deposited with the following process parameters:
0.25 Pa pressure, 20 sccm Ar flow rate, 10 sccm N2 flow rate, and 350 W RF power. This
ensured AlN film growth along the c-axis. The wafer was cleaned, lithographed, and the
ALN vias were etched by high-temperature (80 ◦C) phosphoric acid to connect the bottom
electrodes. The piezoelectric film (AlN) was 500 nm thick. The underlying gold film was
separated by an insulating AlN film, and the lower gold electrode was connected to the
external pads through a window reserved during AlN patterning when preparing the
upper gold electrode. The gold film was prepared using the vacuum vapor deposition
method, ensuring that the upper and lower electrodes were connected. The thickness of the
gold film was 100 nm and the adhesion layer was 10 nm Cr. The length of the overhanging
part of the gold beam was 30 µm, its width was 8 µm, and its thickness was 100 nm. After
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that, the back-side silicon oxide was removed using hydrofluoric acid. The silicon wafer
was cleaned and subjected to a photolithography process.

Then, the sputtering of magnetostrictive thin-film FeGaB was followed by an ultrasonic
stripping process in acetone solution. The Fe7Ga2B1 sputtering process parameters were
as follows: 0.3 Pa pressure, 20 sccm Ar flow, and 50 W RF power. After sputtering, the
magnetostrictive layer was annealed at a temperature of 200 ◦C, with a bias magnetic field
of 10 mT. The FeGaB film was a 70 µm diameter resonant disc. The silicon wafer was
cleaned, and we performed the photolithography process. Next, we performed back cavity
etching to release the MEMS resonant structure. The etching rate was reduced in the final
stage of etching to protect the structure.

Finally, the passivation process was performed, and scribing occurred after cleaning
the silicon wafer. The magnetoelectric heterostructure resonant disc structure had a di-
ameter of 70 µm and a thickness of 1 µm (AlN 500 nm FeGaB 500 nm), while the lower
gold electrodes had a length of 150 µm and a thickness of 100 nm. The specific machining
process for the MEMS magnetoelectric antenna is detailed in Figure 3. The thicknesses and
Young’s moduli of the various materials used are listed in Table 1.
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Table 1. List of used materials thicknesses and Young’s moduli.

Material AlN FeGaB Cr Au SiO2

Thicknesses (nm) 500 500 10 100 100
Young’s modulus

(GPa) 400 55 140 78.9 70

Density (g/cm3) 3.3 7.86 7.19 19.28 2.20
References [13] [13] [28] [29] [28]

2.3. Measurement Setup

To accurately evaluate the performance of the magnetoelectric response of the MEMS
magnetoelectric antenna in a weak magnetic environment, we established a dedicated test
environment for magnetic shielding.

First, a customized high-precision magnetic shielding device was used to provide
a weak magnetic environment for device testing. The high-precision magnetic shielding
device includes a sealed bottom at one end and a live cover at the other end. The inner
and outer layers of the high-precision magnetic shielding device are aluminum, and the
middle layer is a high-permeability permalloy. The device must be kept magnetically clean.
Before testing, the magnetic shielding barrel needed to be demagnetized. To eliminate
self-induced interference in the wire, the wire current input to the Helmholtz coil needs
to be provided by a voltage-to-current conversion circuit to eliminate the weak magnetic
field generated by the current in the wire from affecting the accuracy of the test results. To
further exclude external magnetic interference and accidental errors, a vacant interface was
used at the test port as a control group to verify the validity of the received signal from the
MEMS magnetoelectric antenna.

Under the weak magnetic field, the electrical signal output from the MEMS magne-
toelectric antenna was very weak, and an NI data acquisition card was used to collect
the output voltage information, and the data were analyzed and processed using Lab-
VIEW 2018 software (National Instruments, Austin, TX, USA). The magnetic shield barrel,
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Helmholtz coil, high-precision power supply (Tektronix 6211), and test circuit formed the
hardware part of the MEMS magnetoelectric antenna magnetoelectric response test system.

The sampling rate of LabVIEW 2018 software was 200,000, where each sampling
point was tested with 30 data, and the weighted average was taken as the test result. The
spectrum graph of the channel displayed the test results of the device output and, to
exclude the error of the wire itself, channel two was the vacant wire output signal. When
the channel one and two signals were equal, the test result was the weak magnetic error
generated by the wire itself, which was not included in the data. The set-up and principle
of the test system are shown in Figures 4 and 5, respectively.
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Main steps of the testing process as follows:

(1) Place the MEMS magnetoelectric antenna chip in the magnetic constant position of
the Helmholtz coil after cleaning, with the electromagnetic field vertical to the MEMS
magnetoelectric antenna.

(2) Gradually decrease the current strength of the input Helmholtz coil in suitable steps,
and record and analyze the output signal.

(3) Collect the vacant wire data of channel 2, compare with the test data, and exclude the
wire and chance errors.

3. Results
3.1. Signal Analysis and Processing

The output signal of the LabVIEW 2018 was compared with that of channel 2 and
then collated to obtain the output voltage signal under different magnetic field frequency
magnitudes. The value of the output through LabVIEW was given in dB, and its calculation
formula is:

dB = 20lg
I2

I1
, (1)

where I1 is the reference voltage and I2 is the output voltage.
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The MEMS magnetoelectric antenna output electrical signal is:

U = 10(
dB
20 ). (2)

In addition, as the input current signal is sinusoidal, the peak voltage U1 in the test
result is:

U1 =
√

2U. (3)

The sensitivity of the MEMS magnetoelectric antenna to the magnetic signal is:

Z =
n

1000U1
, (4)

where n is the size of the alternating magnetic field.
The magnetoelectric coupling (ME) voltage output was sensed by the NI data acquisi-

tion card under HRF excitation of approximately 286.11 nT (Wb/m2), with the electromag-
netic field vertical to the MEMS magnetoelectric antenna, as shown in Figure 6.
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The magnetoelectric coupling coefficient αME is calculated as:

αME =
αV

αRF × T
, (5)

where T is the thickness of AlN, αRF is the Ac magnetic field, and the ME coefficient is αME.
The MEMS magnetoelectric antenna magnetoelectric coupling coefficient was

2.928 kV/cm/Oe. It is worth noting that the magnetoelectric coupling coefficients shown
in Figure 6 were obtained without any bias magnetic field, which is comparable to the
recently reported results tested at optimal bias magnetic fields. [14,23,30].

The MEMS magnetoelectric antenna a resonant frequency can be expressed as:

f ∝
1
w

√
ΣEn

Σρ
, (6)

where f is the working frequency of the MEMS magnetoelectric antenna, W is the width
of the resonator, En is the equivalent Young’s modulus, and Σρ is the equivalent density
MEMS magnetoelectric antenna. By adjusting the resonant structure, it is possible to
realize the fabrication of a MEMS magnetoelectric antenna with different frequencies on
the same chip. As can be seen from Figure 5, the magnetoelectric coupling coefficient
was 2.928 KV/cm/Oe at a resonant frequency of 224.1 kHz. Meanwhile, a clear peak
(0.4188 mV) was observed, which demonstrates that the proposed MEMS magnetoelectric
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antenna based on the magnetoelectric coupling effect can achieve LF electromagnetic
wave reception.

3.2. Sensitivity and Detection Limit

The induction limit of the MEMS magnetoelectric antenna to the magnetic field was
characterized in the absence of a bias magnetic field, and the results are shown in Figure 7.
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Figure 7. MEMS magnetoelectric antenna output voltage signal versus external magnetic field.

As shown in Figure 7, the voltage signal generated by the MEMS magnetoelectric
antenna without a bias magnetic field is characterized with the maximum output signal
strength at the mechanical resonant frequency (224.1 kHz). The output magnetic field
strength of the test system is 0.8 nT–1000 nT, and the magnetic field strength and output
voltage signal strength are shown in the blue curve. The output signal under alternating
magnetic field excitation at 1 MHz is shown in the red curve, and the output signal strength
is about 1–8 µV, so the MEMS magnetoelectric antenna shows no sensitivity to magnetic
field excitation at 1 MHz. In addition, at 0.8 nT (800 pT), the output signal strength of
the MEMS magnetoelectric antenna is about 1 µV. The MEMS magnetoelectric antenna
detection limit is about 800 pT with a limit detection voltage of 1 µV. It is noteworthy that
there is still signal output by reducing the magnetic field strength, but the output signal
is drowned in the circuit noise. Therefore, increasing the output signal strength of the
magneto-electric coupling structure enables the MEMS magnetoelectric antenna to receive
fainter electromagnetic signals.

In summary, the MEMS magnetoelectric antenna works in mechanical resonant fre-
quency and realization of low-frequency specific signals (224.1 kHz) electromagnetic field
signal reception. It can also be seen that this MEMS magnetoelectric antenna has the
property of being sensitive to specific frequency electromagnetic waves and the output
signal strength varies linearly with the excitation magnetic field, thus having the potential
to become an ultra-high-sensitivity magnetic sensor.

4. Conclusions

In this paper, we fabricated a MEMS magnetoelectric antenna based on mechani-
cal resonance, which converts electromagnetic waves to oscillating currents through a
magneto-electric coupling effect for low-frequency electromagnetic wave reception. A
70 µm diameter cantilever disk with SiO2/Cr/Au/AlN/Cr/Au/FeGaB stacked layers is
prepared on a 300 µm silicon wafer using the five-masks micromachining process. We
characterize the magnetoelectric coupling coefficient, resonant frequency, and sensitivity
of the MEMS magnetoelectric antenna to electromagnetic field excitation at different fre-
quencies. The magnetoelectric coupling coefficient was 2.928 kV/cm/Oe at the mechanical
resonant frequency of 224.1 kHz, while the detection limit is 800 pT at 1 µV. We found that
the magnetoelectric antenna is only sensitive to electromagnetic waves at frequencies near
its own mechanical resonance frequency, and the detection limit of the portable system
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can be significantly improved by an array structure or vacuum encapsulation. In addi-
tion, this MEMS magnetoelectric antenna has the property of being sensitive to specific
frequency electromagnetic waves and the output signal strength varies linearly with the
excitation magnetic field, thus having the potential to become an ultra-high-sensitivity
magnetic sensor.
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