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Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of 
sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia 
patients using machine learning techniques.
Methods: This retrospective study included 4310 leukemia patients admitted to the Affiliated Hospital of Guangdong Medical 
University from 2005 to 2024, using 70% for training and 30% for validation. Feature selection was performed using univariate 
logistic regression, LASSO, and the Boruta algorithm, followed by multivariate logistic regression analysis. Seven machine learning 
models were constructed and evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). 
Shapley additive explanations (SHAP) were applied to interpret the results, and restricted cubic spline (RCS) regression explored the 
nonlinear relationships between variables and sepsis risk. Furthermore, we examined the interactions among predictors to better 
understand their potential interrelationships.
Results: The random forest (RF) model outperformed all others, achieving an AUC of 0.765 in the training cohort and 0.700 in the 
validation cohort. Key predictors of sepsis identified by SHAP analysis included C-reactive protein (CRP), procalcitonin (PCT), 
neutrophil count (Neut), lymphocyte count (Lymph), thrombin time (TT), red blood cell count (RBC), total bile acid (TBA), and 
systolic blood pressure (SBP). RCS analysis revealed significant non-linear associations between CPR, PCT, Neut, Lymph, TT, RBC 
and SBP with sepsis risk. Pairwise correlation analysis further revealed interactions among these variables.
Conclusion: The RF model exhibited robust predictive power for sepsis in leukemia patients, providing clinicians with a valuable 
tool for early risk assessment and the optimization of treatment strategies.
Keywords: leukemia, sepsis, prediction model, biomarkers, machine learning

Introduction
Sepsis is a life-threatening condition that significantly increases mortality in leukemia patients.1 Due to the immuno-
suppressed state of leukemia patients, they are particularly vulnerable to infections, which can rapidly escalate to 
sepsis.2–4 Early identification of sepsis is critical for improving outcomes, yet accurately predicting sepsis risk remains 
challenging.5

Although several biomarkers and clinical indicators have been associated with sepsis, there is a need for a reliable, 
data-driven predictive model that can identify patients at high risk for sepsis.2 This challenge arises due to the 
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multifactorial nature of sepsis and the intricate immune dysfunctions seen in leukemia.6 Leukemic blasts can significantly 
impair immune responses by inhibiting T cell ligands (such as PD-L1 and Gal-9) and diminishing the cytotoxic activity 
of NK cells, which increases vulnerability to infections.7 Furthermore, treatments like chemotherapy and hematopoietic 
stem cell transplantation further elevate the risk of severe infections.8 As a result, identifying more sensitive biomarkers 
is critical to improving sepsis prediction accuracy in leukemia patients.

In recent years, machine learning has offered new insights for the comprehensive analysis of biomarkers, holding 
promise for the development of more sensitive and specific predictive models to aid clinicians in identifying high-risk 
patients and optimizing treatment strategies.9,10 These methods are now widely used in clinical practice to facilitate early 
disease detection and timely prevention.9 However, their application in leukemia remains limited. For example, the Epic 
sepsis model, a proprietary tool for predicting sepsis, has been adopted by several hospitals across the United States.11 

Despite its widespread use, the model’s sensitivity is relatively low, and its predictive performance has been suboptimal 
compared to current clinical practices.

This study aims to develop a predictive model using machine learning techniques to assess sepsis risk in leukemia 
patients. By incorporating clinical, demographic, and laboratory data, we seek to identify key predictors of sepsis and 
design a model that can be effectively applied in clinical settings to enhance the timely detection and management of this 
severe complication. To achieve this, we compared multiple machine learning models to evaluate their performance. 
Each model possesses unique strengths and limitations, making a comprehensive comparison essential to identify the 
most suitable approach for this specific clinical scenario. This comprehensive comparison was critical to identify the 
most clinically feasible and effective approach for sepsis prediction, prioritizing sensitivity to ensure timely identification 
of high-risk cases in this vulnerable population.

Materials and Methods
Data Source
A total of 5872 eligible participants with leukaemia were retrospectively enrolled from the Affiliated Hospital of 
Guangdong Medical University between January 2005 and June 2024. The diagnoses were made based on the criteria 
of the World Health Organization (WHO), the Society for Hematopathology, and the European Association for 
Hematopathology. Patients were excluded if more than 20% of their data were missing and with prior malignancy. 
After applying the criteria, 4310 eligible leukaemia patients were included (Figure 1). For participant allocation, we 
divided the data into training (70%) and validation (30%) cohorts to develop and test the predictive model effectively, 
ensuring a balance between learning complex patterns and validating model performance to prevent overfitting. Ethical 
approval for the study was obtained from the Institutional Review Board of the Affiliated Hospital of Guangdong 
Medical University (Approval No. PJKT2024-211). This study complies with the Declaration of Helsinki.

Data and Variables
The extracted variables included demographic and clinical characteristics of the patients, Age, Weight, Marital Status, 
Hypertension, coronary heart disease (CHD), Diabetes, Smoking, Alcohol, Infection History, Hepatitis, Family Cancer 
History, Family History, Gender, ABO blood, duration of hospital stay, discharge status, basic vital signs, and laboratory 
parameters. Blood and biochemical test results were collected on the first day of admission. In cases where multiple test 
results were available for a specific variable, the first measurement was used in the analysis.

Model Construction and Validation
Univariate logistic analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, and Boruta 
algorithm were employed to determine the potential risk factors in the training dataset. In the univariate logistic analysis, 
variables with p < 0.05 were considered potential biomarkers. We chose LASSO regression analysis due to its ability to 
impose penalties on variables, helping to reduce the likelihood of overfitting. To determine the most predictive variables, 
we employed 10-fold cross-validation, focusing on those that minimized the cross-validated error. Boruta is a feature 
selection method based on random forests that determines the importance of each variable by comparing its Z-score with 
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that of its “shadow” counterparts. During the algorithm’s execution, all real features were duplicated and randomly 
shuffled to generate Z-scores. If a real feature’s Z-score consistently exceeded the maximum Z-score of the shadow 
features across multiple independent tests, it was deemed important and included in subsequent machine learning model 
construction. The identical variables obtained by the above three methods were subsequently included in the multivariate 
logistic regression analysis to determine the final model. A variance inflation factor (VIF) of ≤5 indicated no collinearity 
among the variables in the final model.

The important variables were incorporated into seven different machine learning algorithms for model construction, 
including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), decision tree (DCtree), 
random forest (RF), extreme gradient boosting (XGBoost), and artificial neural network (NNET). To prevent overfitting, 
we employed a 10-fold cross-validation strategy. The dataset was split into ten folds, with nine folds used for training and 
one-fold used for validation, cycling through all folds. Grid search was used for hyperparameter tuning, optimizing 
parameters such as the number of trees (n-estimators), maximum tree depth (max-depth), and minimum samples per leaf 
(min-samples-leaf). The optimal configuration was selected based on the highest AUC and F1 score from the valida-
tion set.

The model with the highest area under the receiver operating characteristic curve (ROC) was selected to determine 
model performance. Model discrimination was further assessed using sensitivity, specificity, recall, accuracy, and F1 
score metrics. Decision curve analysis (DCA) was conducted to evaluate the clinical utility of the models. The best- 
performing model was subsequently used for further interpretive analysis. After training the model on the training cohort, 
all model parameters were fixed, and the model’s performance was further evaluated using the validation cohort.

To better understand the decision-making process of the best-performing model, Shapley additive explanations 
(SHAP) were employed. Based on cooperative game theory’s Shapley values, SHAP rationally allocates contributions 
to the model’s output among individual input features. SHAP also reveals feature importance and visually displays the 
direction and magnitude of each feature’s contribution to the predictive outcome, thereby providing a deep understanding 
of the model’s decision-making process. Restricted cubic spline (RCS) regression was used to describe the non-linear 
relationship. Possible nonlinear relationships between the change in important variables and Sepsis were examined by 

Figure 1 Flow diagram of patient selection.
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a logistic regression model with RCS. In addition, we explore the interactions between predictors to gain insight into the 
potential relationships between predictors.

Statistical Analysis
Missing data (<20% of total) were imputed using the Multiple Imputation (MI) method. Additionally, to assess the 
impact of missing data handling on the model, we performed sensitivity analysis. Continuous variables were expressed as 
medians and interquartile ranges (IQR), while categorical variables were expressed as total numbers and percentages. 
Chi-square (χ2) tests, Wilcoxon rank-sum tests, or Fisher’s exact tests were used as appropriate. Propensity score 
matching (PSM) was performed using 1:1 optimal pair matching to minimize the influence of confounding factors and 
enhance the validity of our findings. The matching was considered optimal when the sum of the absolute pairwise 
distances in the matched sample was minimized. The analyses were performed using R software (version 4.2.2). 
Statistical significance was determined by a two-tailed P value of less than 0.05.

Results
Comparative Analysis of Clinical Profiles in Leukemia Patients With and Without 
Sepsis
Based on the inclusion and exclusion criteria, a total of 4310 patients with leukemia were enrolled and randomly assigned 
to the training (n=3017) and validation cohorts (n=1293) in a ratio of 7:3. The baseline characteristics table provides key 
insights into the demographic and clinical profiles of the study population. As a result, all the characteristics were equally 
distributed between the two cohorts (Table 1). A total of 3017 leukemia patients were included in the training cohort, of 
whom 917 experienced sepsis.

Table 1 Patient Demographics and Baseline Characteristics in the Training Cohort and Validation Cohort

Characteristic Group p-value

Overall, N = 4,310 Train, N = 3,017 Validation, N = 1,293

Age 46 (15, 66) 46 (15, 65) 46 (15, 66) 0.743

Hospital Days 14 (6, 24) 14 (6, 24) 15 (6, 24) 0.618
Weight 55 (45, 60) 55 (46, 60) 55 (45, 60) 0.232

Temperature 36.70 (36.50, 37.10) 36.70 (36.50, 37.10) 36.70 (36.50, 37.10) 0.483

Pulse Rate 90 (82, 104) 90 (82, 103) 90 (82, 104) 0.382
HR 90 (83, 100) 90 (83, 100) 90 (83, 100) 0.524

RR 20.0 (20.0, 21.0) 20.0 (20.0, 21.0) 20.0 (20.0, 21.0) 0.183
DBP 68 (62, 73) 68 (63, 73) 68 (62, 74) 0.462

SBP 120 (110, 127) 120 (110, 127) 119 (110, 127) 0.244

WBC 14 (4, 33) 14 (4, 33) 14 (4, 32) 0.648
RBC 2.76 (2.12, 3.63) 2.78 (2.12, 3.64) 2.74 (2.12, 3.58) 0.464

MCV 90 (84, 97) 90 (84, 98) 90 (84, 97) 0.206

MCHC 330 (318, 341) 330 (318, 340) 330 (319, 341) 0.215
MCH 29.8 (27.6, 32.1) 29.9 (27.6, 32.1) 29.8 (27.5, 32.1) 0.637

RDW 16.5 (14.6, 19.2) 16.4 (14.6, 19.2) 16.5 (14.6, 19.4) 0.562

Lymph 2 (1, 7) 2 (1, 8) 2 (1, 7) 0.578
Mono 1 (0, 3) 1 (0, 3) 1 (0, 3) 0.847

Neut 4 (1, 12) 4 (1, 13) 4 (1, 12) 0.852

Hct 25 (19, 33) 26 (19, 33) 25 (19, 33) 0.647
Eos 0.02 (0.00, 0.13) 0.02 (0.00, 0.13) 0.02 (0.00, 0.14) 0.467

Baso 0.01 (0.00, 0.07) 0.01 (0.00, 0.07) 0.01 (0.00, 0.07) 0.916

(Continued)
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Table 1 (Continued). 

Characteristic Group p-value

Overall, N = 4,310 Train, N = 3,017 Validation, N = 1,293

Hb 76 (50, 103) 75 (51, 103) 77 (49, 103) 0.921

PLT 81 (29, 217) 82 (29, 224) 77 (27, 205) 0.076
MPV 9.20 (8.00, 10.20) 9.20 (8.00, 10.20) 9.10 (8.00, 10.20) 0.598

PDW 16.45 (12.00, 17.70) 16.40 (11.90, 17.70) 16.50 (12.50, 17.60) 0.526

PCT1 0.07 (0.03, 0.18) 0.07 (0.03, 0.18) 0.07 (0.03, 0.16) 0.061
ALT 21 (13, 35) 21 (13, 36) 21 (12, 35) 0.568

AST 25 (17, 39) 25 (17, 40) 25 (17, 39) 0.970

GGT 34 (19, 58) 34 (19, 58) 33 (19, 56) 0.460
TBIL 10 (8, 12) 10 (8, 13) 10 (8, 12) 0.807

DBIL 4.3 (3.2, 5.8) 4.3 (3.2, 5.8) 4.3 (3.2, 5.7) 0.555

IBIL 5.5 (3.7, 7.7) 5.5 (3.7, 7.6) 5.6 (3.8, 7.8) 0.229
ALB 38 (33, 41) 38 (33, 41) 38 (33, 41) 0.431

GLO 26 (24, 29) 26 (24, 29) 26 (24, 29) 0.194

TP 64 (59, 69) 64 (59, 69) 65 (59, 69) 0.192
A.G 1.44 (1.14, 1.70) 1.45 (1.17, 1.70) 1.42 (1.10, 1.70) 0.124

PA 156 (106, 209) 157 (105, 209) 154 (106, 208) 0.659

TBA 6 (4, 11) 6 (4, 11) 6 (3, 11) 0.106
CREA 67 (48, 83) 67 (48, 83) 67 (47, 84) 0.797

UREA 4.61 (3.80, 5.50) 4.60 (3.80, 5.45) 4.66 (3.73, 5.61) 0.484

UA 314 (260, 370) 314 (262, 371) 314 (255, 369) 0.643
TC 3.49 (2.83, 4.21) 3.49 (2.83, 4.22) 3.48 (2.84, 4.20) 0.858

TG 1.41 (0.96, 1.93) 1.40 (0.96, 1.93) 1.43 (0.95, 1.93) 0.664

HDL.C 0.83 (0.61, 1.03) 0.84 (0.61, 1.03) 0.83 (0.61, 1.02) 0.608
LDL.C 1.92 (1.44, 2.47) 1.92 (1.45, 2.48) 1.92 (1.40, 2.45) 0.430

LPa 113 (68, 185) 112 (67, 185) 115 (72, 187) 0.359

apoAI 0.89 (0.71, 1.05) 0.89 (0.71, 1.05) 0.89 (0.71, 1.05) 0.997
apoB 0.71 (0.58, 0.87) 0.71 (0.58, 0.87) 0.71 (0.57, 0.87) 0.852

Ca 2.16 (2.05, 2.27) 2.16 (2.05, 2.27) 2.16 (2.05, 2.28) 0.640

K 3.87 (3.56, 4.18) 3.87 (3.55, 4.18) 3.86 (3.57, 4.18) 0.911
Na 139.4 (136.7, 141.1) 139.4 (136.8, 141.1) 139.3 (136.3, 141.0) 0.093

Cl 103.0 (100.4, 105.3) 103.1 (100.5, 105.4) 103.0 (100.3, 105.0) 0.135

LDH 350 (219, 608) 355 (217, 607) 336 (225, 613) 0.776
ALP 83 (64, 123) 83 (64, 123) 82 (64, 121) 0.566

ChE 5.82 (4.17, 7.29) 5.82 (4.18, 7.28) 5.82 (4.10, 7.30) 0.861

HCY 11 (8, 14) 11 (8, 14) 11 (8, 14) 0.596
Cys.C 0.88 (0.71, 1.12) 0.87 (0.70, 1.12) 0.88 (0.71, 1.13) 0.356

CO2 22.4 (20.1, 23.9) 22.4 (20.1, 24.0) 22.4 (20.1, 23.9) 0.500

AG 13.8 (11.8, 15.8) 13.7 (11.7, 15.8) 13.8 (11.9, 15.9) 0.312
Glu 5.84 (4.84, 6.88) 5.81 (4.82, 6.83) 5.90 (4.89, 6.95) 0.129

TT 17.10 (15.90, 18.49) 17.10 (15.80, 18.47) 17.18 (15.99, 18.50) 0.772

PT 13.30 (12.30, 15.00) 13.20 (12.26, 14.90) 13.40 (12.32, 15.20) 0.011
PTR 1.09 (1.02, 1.22) 1.09 (1.02, 1.22) 1.11 (1.02, 1.25) 0.005

APTT 35 (31, 40) 35 (31, 40) 35 (31, 40) 0.209

APTTR 1.12 (1.02, 1.24) 1.12 (1.02, 1.24) 1.12 (1.01, 1.24) 0.653
PT.INR 1.08 (1.00, 1.22) 1.07 (1.00, 1.21) 1.08 (1.01, 1.24) 0.016

Fbg 3.32 (2.59, 4.06) 3.31 (2.63, 4.06) 3.34 (2.51, 4.09) 0.672

CRP 32 (14, 54) 31 (14, 53) 32 (14, 56) 0.684
NRBC 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.227

α.HBDH 300 (200, 463) 299 (198, 461) 303 (203, 471) 0.480

(Continued)
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Table 1 (Continued). 

Characteristic Group p-value

Overall, N = 4,310 Train, N = 3,017 Validation, N = 1,293

AFU 18 (14, 22) 18 (14, 22) 17 (14, 22) 0.460

RET 0.05 (0.03, 0.08) 0.05 (0.03, 0.08) 0.05 (0.03, 0.08) 0.532
RET 5 (2, 14) 5 (2, 14) 6 (2, 14) 0.323

IRF 6 (0, 15) 5 (0, 15) 6 (0, 15) 0.857

PCT 0.29 (0.12, 0.68) 0.28 (0.11, 0.68) 0.30 (0.12, 0.68) 0.183
Sepsis 0.145

No 2,971 (68.9%) 2,100 (69.6%) 871 (67.4%)

Yes 1,339 (31.1%) 917 (30.4%) 422 (32.6%)
Gender 0.273

Male 2,554 (59.3%) 1,804 (59.8%) 750 (58.0%)

Female 1,756 (40.7%) 1,213 (40.2%) 543 (42.0%)
ABO 0.768

A 1,090 (25.3%) 763 (25.3%) 327 (25.3%)

AB 256 (5.9%) 179 (5.9%) 77 (6.0%)
B 1,157 (26.8%) 797 (26.4%) 360 (27.8%)

O 1,807 (41.9%) 1,278 (42.4%) 529 (40.9%)

Death 0.140
No 4,016 (93.2%) 2,800 (92.8%) 1,216 (94.0%)

Yes 294 (6.8%) 217 (7.2%) 77 (6.0%)

Marital Status 0.394
Single, divorced, and windowed 1,762 (40.9%) 1,246 (41.3%) 516 (39.9%)

Married 2,548 (59.1%) 1,771 (58.7%) 777 (60.1%)

Hypertension 0.141
No 4,014 (93.1%) 2,821 (93.5%) 1,193 (92.3%)

Yes 296 (6.9%) 196 (6.5%) 100 (7.7%)

CHD 0.573
No 4,229 (98.1%) 2,958 (98.0%) 1,271 (98.3%)

Yes 81 (1.9%) 59 (2.0%) 22 (1.7%)

Diabetes 0.636
No 4,149 (96.3%) 2,907 (96.4%) 1,242 (96.1%)

Yes 161 (3.7%) 110 (3.6%) 51 (3.9%)

Smoking 0.234
No 4,039 (93.7%) 2,836 (94.0%) 1,203 (93.0%)

Yes 271 (6.3%) 181 (6.0%) 90 (7.0%)

Alcohol 0.878
No 4,176 (96.9%) 2,924 (96.9%) 1,252 (96.8%)

Yes 134 (3.1%) 93 (3.1%) 41 (3.2%)

Infection History 0.611
No 4,099 (95.1%) 2,866 (95.0%) 1,233 (95.4%)

Yes 211 (4.9%) 151 (5.0%) 60 (4.6%)

Hepatitis 0.935
No 4,192 (97.3%) 2,934 (97.2%) 1,258 (97.3%)

Yes 118 (2.7%) 83 (2.8%) 35 (2.7%)

FamilyCancer History 0.731
No 4,284 (99.4%) 2,998 (99.4%) 1,286 (99.5%)

Yes 26 (0.6%) 19 (0.6%) 7 (0.5%)

Family History 0.763
No 4,172 (96.8%) 2,922 (96.9%) 1,250 (96.7%)

Yes 138 (3.2%) 95 (3.1%) 43 (3.3%)

(Continued)

https://doi.org/10.2147/JIR.S505813                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 1018

Kou et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)



To minimize potential confounding factors, PSM was performed on variables such as age, weight, marital status, 
hypertension, CHD, diabetes, smoking, alcohol, infection history, hepatitis, family cancer history, family history, gender, 
and ABO blood, achieving a balanced distribution of these selected characteristics between the groups. Supplementary 
Table 1 compares the baseline characteristics before and after matching. Post-PSM, no statistically significant differences 
were observed between the groups for the matched variables (P > 0.05), indicating that the matching process effectively 
reduced confounding bias.

The detailed demographic and baseline clinical characteristics of the PSM-adjusted training cohort are summarized in 
Table 2, with 917 cases each in the sepsis and non-sepsis groups. The analysis revealed significant differences in various 
clinical parameters between the two groups, particularly in hospitalization days, pulse rate, heart rate, respiratory rate, 
diastolic pressure, systolic pressure, and several hematological indices. Patients with sepsis experienced longer hospital 
stays and exhibited elevated pulse rates, heart rates, respiratory rates, white blood cell counts, and lower hemoglobin 
levels compared to the non-sepsis group. Additionally, liver function tests, including ALT, AST, and GGT, demonstrated 
significant disparities between the groups. Biochemical markers also indicated lower albumin levels and higher creatinine 
levels in the sepsis cohort. Furthermore, lipid profiles showed lower HDL cholesterol and higher LDL cholesterol in the 

Table 1 (Continued). 

Characteristic Group p-value

Overall, N = 4,310 Train, N = 3,017 Validation, N = 1,293

Fecal OB 0.298

Negative 3,316 (76.9%) 2,308 (76.5%) 1,008 (78.0%)
Positive 994 (23.1%) 709 (23.5%) 285 (22.0%)

Urine TP 0.823

Negative 3,441 (79.8%) 2,406 (79.7%) 1,035 (80.0%)
Positive 869 (20.2%) 611 (20.3%) 258 (20.0%)

Urine URO 0.825

Negative 3,080 (71.5%) 2,153 (71.4%) 927 (71.7%)
Positive 1,230 (28.5%) 864 (28.6%) 366 (28.3%)

Urine BIL 0.619

Negative 3,225 (74.8%) 2,251 (74.6%) 974 (75.3%)
Positive 1,085 (25.2%) 766 (25.4%) 319 (24.7%)

Urine KET 0.795

Negative 3,711 (86.1%) 2,595 (86.0%) 1,116 (86.3%)
Positive 599 (13.9%) 422 (14.0%) 177 (13.7%)

Urine Glu 0.569

Negative 3,923 (91.0%) 2,751 (91.2%) 1,172 (90.6%)
Positive 387 (9.0%) 266 (8.8%) 121 (9.4%)

Urine OB 0.100

Negative 3,189 (74.0%) 2,254 (74.7%) 935 (72.3%)
Positive 1,121 (26.0%) 763 (25.3%) 358 (27.7%)

Abbreviations: HR, heart rate; RR, respiratory rate; DBP, diastolic blood pressure; SBP, systolic blood pressure; WBC, white blood cell count; RBC, 
red blood cell count; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; 
RDW, red cell distribution width; Lymph, lymphocyte count; Mono, monocyte count; Neut, neutrophil count; Hct, hematocrit; Eos, eosinophil count; 
Baso, basophil count; Hb, hemoglobin; PLT, platelet count; MPV, mean platelet volume; PDW, platelet distribution width; PCT1, plateletcrit; ALT, alanine 
transaminase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, 
albumin; GLO, globulin; TP, total protein; A.G, albumin-to-globulin ratio; PA, prealbumin; TBA, total bile acid; CREA, creatinine; UREA, urea; UA, uric 
acid; TC, total cholesterol; TG, triglycerides; HDL.C, high-density lipoprotein cholesterol; LDL.C, low-density lipoprotein cholesterol; LPa, lipoprotein 
(a); apoAI, apolipoprotein A-I; apoB, apolipoprotein B; Ca, calcium; K, potassium; Na, sodium; Cl, chloride; LDH, lactate dehydrogenase; ALP, alkaline 
phosphatase; ChE, cholinesterase; HCY, homocysteine; Cys.C, cystatin C; CO2, carbon dioxide; AG, anion gap; Glu, glucose; TT, thrombin time; PT, 
prothrombin time; PTR, prothrombin ratio; APTT, activated partial thromboplastin time; APTTR, activated partial thromboplastin time ratio; PT.INR, 
prothrombin international normalized ratio; Fbg, fibrinogen; CRP, C-reactive protein; NRBC, nucleated red blood cells; α.HBDH, alpha- 
hydroxybutyrate dehydrogenase; AFU, alpha-L-fucosidase; RET, reticulocyte count; IRF, immature reticulocyte fraction; PCT, procalcitonin; CHD, 
coronary heart disease; Urine OB, urine occult blood; Urine Glu, urine glucose; Urine TP, urine protein; Urine URO, urine urobilinogen; Urine BIL, 
urine bilirubin; Urine KET, urine ketones.
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Table 2 Patient Demographics and Baseline Characteristics in the Training Cohort

Characteristic Overall, N = 1,834 Non-Sepsis, N = 917 Sepsis, N = 917 p-value

Age 26 (7, 54) 26 (7, 55) 26 (8, 53) 0.726
Hospital Days 16 (7, 26) 11 (5, 21) 22 (10, 30) <0.001

Weight 53 (26, 59) 54 (29, 59) 52 (23, 59) 0.277

Temperature 36.80 (36.50, 37.20) 36.79 (36.50, 37.10) 36.80 (36.50, 37.50) 0.168
Pulse Rate 94 (84, 110) 91 (84, 106) 100 (84, 114) <0.001

HR 92 (84, 108) 90 (84, 102) 95 (84, 110) <0.001

RR 20.0 (20.0, 23.0) 20.0 (19.9, 22.0) 20.0 (20.0, 24.0) <0.001
DBP 67 (62, 72) 68 (64, 72) 66 (60, 72) <0.001

SBP 118 (108, 124) 119 (112, 125) 116 (105, 123) <0.001
WBC 12 (4, 30) 16 (6, 35) 10 (3, 25) <0.001

RBC 2.77 (2.14, 3.53) 2.87 (2.20, 3.79) 2.66 (2.10, 3.34) <0.001

MCV 89 (83, 96) 89 (82, 96) 89 (83, 97) 0.201
MCHC 330 (318, 341) 329 (316, 340) 331 (320, 342) 0.005

MCH 29.6 (27.3, 31.8) 29.3 (26.9, 31.6) 29.8 (27.6, 31.8) 0.021

RDW 16.5 (14.6, 19.3) 16.3 (14.5, 19.2) 16.7 (14.7, 19.6) 0.074
Lymph 2 (1, 8) 3 (1, 10) 2 (1, 5) <0.001

Mono 1 (0, 3) 1 (0, 4) 1 (0, 2) <0.001

Neut 3 (1, 10) 4 (1, 16) 2 (1, 7) <0.001
Hct 25 (19, 32) 26 (19, 34) 24 (19, 30) <0.001

Eos 0.01 (0.00, 0.10) 0.04 (0.00, 0.18) 0.01 (0.00, 0.08) <0.001

Baso 0.01 (0.00, 0.05) 0.02 (0.00, 0.09) 0.01 (0.00, 0.04) <0.001
Hb 74 (51, 99) 77 (52, 104) 72 (50, 94) <0.001

PLT 75 (27, 214) 78 (27, 225) 73 (27, 202) 0.247

MPV 9.20 (8.00, 10.20) 9.10 (8.00, 10.20) 9.20 (8.00, 10.20) 0.575
PDW 16.40 (11.90, 17.70) 16.40 (12.20, 17.70) 16.30 (11.60, 17.80) 0.819

PCT1 0.07 (0.03, 0.18) 0.07 (0.03, 0.18) 0.06 (0.03, 0.17) 0.098

ALT 22 (13, 37) 21 (12, 34) 23 (13, 41) 0.001
AST 26 (18, 42) 27 (19, 41) 25 (17, 44) 0.047

GGT 32 (17, 58) 31 (16, 55) 33 (18, 64) 0.016

TBIL 10 (7, 13) 10 (8, 12) 10 (7, 13) 0.721
DBIL 4.2 (3.0, 5.8) 4.3 (3.1, 5.5) 4.2 (2.9, 6.4) 0.462

IBIL 5.2 (3.4, 7.5) 5.5 (3.7, 7.5) 4.7 (3.1, 7.6) <0.001

ALB 38 (33, 41) 39 (35, 42) 37 (32, 40) <0.001
GLO 25.9 (22.9, 28.4) 25.8 (23.8, 28.1) 26.0 (22.0, 28.9) 0.441

TP 64 (58, 68) 64 (60, 69) 62 (57, 68) <0.001

A.G 1.48 (1.20, 1.75) 1.50 (1.29, 1.76) 1.45 (1.16, 1.73) 0.005
PA 153 (100, 200) 158 (110, 204) 146 (89, 196) <0.001

TBA 7 (4, 12) 7 (4, 11) 7 (4, 14) 0.384

CREA 59 (38, 78) 63 (40, 78) 56 (35, 77) 0.006
UREA 4.50 (3.52, 5.30) 4.52 (3.68, 5.15) 4.50 (3.35, 5.50) 0.955

UA 307 (251, 363) 314 (267, 364) 297 (229, 363) <0.001

TC 3.43 (2.77, 4.13) 3.48 (2.85, 4.19) 3.34 (2.69, 4.07) 0.004
TG 1.38 (0.94, 1.93) 1.44 (0.97, 1.94) 1.33 (0.91, 1.92) 0.024

HDL.C 0.82 (0.58, 1.02) 0.85 (0.63, 1.02) 0.78 (0.54, 1.03) 0.002

LDL.C 1.88 (1.40, 2.43) 1.93 (1.47, 2.51) 1.84 (1.33, 2.38) 0.017
LPa 106 (59, 176) 111 (67, 181) 101 (53, 171) <0.001

apoAI 0.86 (0.69, 1.04) 0.90 (0.75, 1.05) 0.82 (0.64, 1.03) <0.001

apoB 0.70 (0.57, 0.86) 0.71 (0.58, 0.87) 0.69 (0.55, 0.85) 0.014
Ca 2.17 (2.06, 2.28) 2.19 (2.09, 2.30) 2.15 (2.02, 2.27) <0.001

K. 3.89 (3.57, 4.24) 3.90 (3.63, 4.24) 3.87 (3.53, 4.24) 0.132

Na. 139.3 (136.6, 141.1) 139.7 (137.5, 141.1) 138.9 (136.0, 141.0) <0.001

(Continued)
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Table 2 (Continued). 

Characteristic Overall, N = 1,834 Non-Sepsis, N = 917 Sepsis, N = 917 p-value

Cl. 103.0 (100.4, 105.3) 103.1 (101.2, 105.4) 102.8 (99.8, 105.2) 0.009

LDH 351 (219, 610) 402 (252, 642) 292 (196, 561) <0.001
ALP 89 (66, 142) 85 (67, 138) 94 (66, 145) 0.195

ChE 5.84 (4.26, 7.30) 6.23 (4.76, 7.50) 5.34 (3.89, 6.84) <0.001

HCY 10 (7, 14) 10 (8, 14) 9 (6, 13) <0.001
Cys.C 0.84 (0.67, 1.05) 0.84 (0.69, 1.07) 0.82 (0.65, 1.05) 0.040

CO2 22.0 (19.8, 23.7) 22.3 (19.9, 23.7) 21.8 (19.6, 23.8) 0.150

AG 13.9 (11.9, 16.2) 13.9 (12.2, 16.1) 13.9 (11.7, 16.3) 0.517
Glu 5.64 (4.72, 6.63) 5.71 (4.78, 6.66) 5.55 (4.68, 6.58) 0.173

TT 17.10 (15.80, 18.50) 17.40 (16.30, 18.62) 16.80 (15.50, 18.30) <0.001

PT 13.10 (12.22, 14.70) 13.00 (12.20, 14.50) 13.30 (12.30, 14.90) 0.021
PTR 1.08 (1.01, 1.21) 1.08 (1.01, 1.19) 1.10 (1.02, 1.22) 0.019

APTT 35 (31, 40) 35 (32, 39) 36 (31, 40) 0.020

APTTR 1.12 (1.03, 1.24) 1.12 (1.03, 1.21) 1.13 (1.02, 1.27) 0.017
PT.INR 1.07 (1.00, 1.20) 1.06 (1.00, 1.18) 1.08 (1.00, 1.22) 0.086

Fbg 3.30 (2.58, 4.04) 3.19 (2.56, 3.82) 3.42 (2.61, 4.25) <0.001

CRP 29 (12, 59) 27 (12, 41) 33 (11, 94) <0.001
NRBC 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.680

α.HBDH 296 (203, 464) 316 (224, 470) 281 (183, 449) <0.001
AFU 18 (14, 22) 18 (15, 22) 17 (14, 23) 0.175

RET 0.05 (0.03, 0.08) 0.05 (0.04, 0.08) 0.05 (0.03, 0.08) 0.001

RET. 4 (1, 13) 6 (2, 13) 3 (1, 12) <0.001
IRF 5 (0, 15) 4 (0, 14) 6 (0, 16) 0.969

PCT 0.28 (0.11, 0.72) 0.28 (0.10, 0.59) 0.29 (0.12, 1.09) <0.001

Gender 0.848
Male 1,116 (60.9%) 556 (60.6%) 560 (61.1%)

Female 718 (39.1%) 361 (39.4%) 357 (38.9%)

ABO 0.947
A 478 (26.1%) 236 (25.7%) 242 (26.4%)

AB 111 (6.1%) 58 (6.3%) 53 (5.8%)

B 502 (27.4%) 249 (27.2%) 253 (27.6%)
O 743 (40.5%) 374 (40.8%) 369 (40.2%)

Death <0.001

No 1,669 (91.0%) 873 (95.2%) 796 (86.8%)
Yes 165 (9.0%) 44 (4.8%) 121 (13.2%)

Marital Status 0.852

Single, divorced, and windowed 974 (53.1%) 485 (52.9%) 489 (53.3%)
Married 860 (46.9%) 432 (47.1%) 428 (46.7%)

Hypertension 0.471

No 1,762 (96.1%) 884 (96.4%) 878 (95.7%)
Yes 72 (3.9%) 33 (3.6%) 39 (4.3%)

CHD 0.826

No 1,813 (98.9%) 907 (98.9%) 906 (98.8%)
Yes 21 (1.1%) 10 (1.1%) 11 (1.2%)

Diabetes 0.900

No 1,769 (96.5%) 885 (96.5%) 884 (96.4%)
Yes 65 (3.5%) 32 (3.5%) 33 (3.6%)

Smoking 0.316

No 1,768 (96.4%) 888 (96.8%) 880 (96.0%)
Yes 66 (3.6%) 29 (3.2%) 37 (4.0%)

(Continued)
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sepsis group. Overall, the sepsis group displayed more severe pathological conditions across most physiological and 
laboratory characteristics. These findings suggest distinct clinical profiles between sepsis and non-sepsis patients, which 
may facilitate early identification and management of individuals with sepsis.

Table 2 (Continued). 

Characteristic Overall, N = 1,834 Non-Sepsis, N = 917 Sepsis, N = 917 p-value

Alcohol 0.512

No 1,796 (97.9%) 900 (98.1%) 896 (97.7%)
Yes 38 (2.1%) 17 (1.9%) 21 (2.3%)

Infection History 0.847

No 1,720 (93.8%) 859 (93.7%) 861 (93.9%)
Yes 114 (6.2%) 58 (6.3%) 56 (6.1%)

Hepatitis 0.810

No 1,762 (96.1%) 882 (96.2%) 880 (96.0%)
Yes 72 (3.9%) 35 (3.8%) 37 (4.0%)

Family Cancer History 0.223

No 1,817 (99.1%) 911 (99.3%) 906 (98.8%)
Yes 17 (0.9%) 6 (0.7%) 11 (1.2%)

Family History 0.295

No 1,757 (95.8%) 883 (96.3%) 874 (95.3%)
Yes 77 (4.2%) 34 (3.7%) 43 (4.7%)

Fecal OB 0.079

Negative 1,437 (78.4%) 703 (76.7%) 734 (80.0%)
Positive 397 (21.6%) 214 (23.3%) 183 (20.0%)

Urine TP 0.131
Negative 1,499 (81.7%) 762 (83.1%) 737 (80.4%)

Positive 335 (18.3%) 155 (16.9%) 180 (19.6%)

Urine URO <0.001
Negative 1,371 (74.8%) 637 (69.5%) 734 (80.0%)

Positive 463 (25.2%) 280 (30.5%) 183 (20.0%)

Urine BIL <0.001
Negative 1,399 (76.3%) 664 (72.4%) 735 (80.2%)

Positive 435 (23.7%) 253 (27.6%) 182 (19.8%)

Urine KET 0.015
Negative 1,565 (85.3%) 801 (87.4%) 764 (83.3%)

Positive 269 (14.7%) 116 (12.6%) 153 (16.7%)

Urine Glu 0.522
Negative 1,662 (90.6%) 835 (91.1%) 827 (90.2%)

Positive 172 (9.4%) 82 (8.9%) 90 (9.8%)

Urine OB 0.012
Negative 1,413 (77.0%) 729 (79.5%) 684 (74.6%)

Positive 421 (23.0%) 188 (20.5%) 233 (25.4%)

Abbreviations: HR, heart rate; RR, respiratory rate; DBP, diastolic blood pressure; SBP, systolic blood pressure; WBC, white blood cell count; RBC, 
red blood cell count; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; 
RDW, red cell distribution width; Lymph, lymphocyte count; Mono, monocyte count; Neut, neutrophil count; Hct, hematocrit; Eos, eosinophil count; 
Baso, basophil count; Hb, hemoglobin; PLT, platelet count; MPV, mean platelet volume; PDW, platelet distribution width; PCT1, plateletcrit; ALT, alanine 
transaminase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, 
albumin; GLO, globulin; TP, total protein; A.G, albumin-to-globulin ratio; PA, prealbumin; TBA, total bile acid; CREA, creatinine; UREA, urea; UA, uric 
acid; TC, total cholesterol; TG, triglycerides; HDL.C, high-density lipoprotein cholesterol; LDL.C, low-density lipoprotein cholesterol; LPa, lipoprotein 
(a); apoAI, apolipoprotein A-I; apoB, apolipoprotein B; Ca, calcium; K, potassium; Na, sodium; Cl, chloride; LDH, lactate dehydrogenase; ALP, alkaline 
phosphatase; ChE, cholinesterase; HCY, homocysteine; Cys.C, cystatin C; CO2, carbon dioxide; AG, anion gap; Glu, glucose; TT, thrombin time; PT, 
prothrombin time; PTR, prothrombin ratio; APTT, activated partial thromboplastin time; APTTR, activated partial thromboplastin time ratio; PT.INR, 
prothrombin international normalized ratio; Fbg, fibrinogen; CRP, C-reactive protein; NRBC, nucleated red blood cells; α.HBDH, alpha- 
hydroxybutyrate dehydrogenase; AFU, alpha-L-fucosidase; RET, reticulocyte count; IRF, immature reticulocyte fraction; PCT, procalcitonin; CHD, 
coronary heart disease; Urine OB, urine occult blood; Urine Glu, urine glucose; Urine TP, urine protein; Urine URO, urine urobilinogen; Urine BIL, 
urine bilirubin; Urine KET, urine ketones.
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Identifying Key Predictors of Sepsis Risk in Leukemia Patients
To identify key variables associated with sepsis occurrence in leukemia patients, univariate logistic analysis, Boruta 
algorithm, and LASSO regression analysis were employed for feature selection.

Univariate logistic regression analysis revealed several variables significantly associated with sepsis risk, including 
urine indicators such as Urine URO (p < 0.001), Urine BIL (p < 0.001), and Urine OB (p = 0.013). Physiological metrics 
like temperature (p < 0.001), pulse rate (p < 0.001), diastolic pressure (DBP, p < 0.001), and systolic pressure (SBP, p < 
0.001) were also significant. Hematological indices, including white blood cell count (WBC, p < 0.001), red blood cell 
count (RBC, p < 0.001), hemoglobin (Hb, p < 0.001), and C-reactive protein (CRP, p < 0.001), showed notable 
differences. Additionally, mean platelet volume (MPV, p = 0.029) and the activated partial thromboplastin time ratio 
(APTTR, p = 0.020) were significant as well. These results may provide crucial clinical insights for the early 
identification and management of sepsis patients (Supplementary Table 2). Figure 2A illustrates the Z-scores of each 
variable, demonstrating how this analysis enhanced model optimization by concentrating on the most relevant features. 
A total of 45 variables were identified as important, including vital signs such as Temp, PR, HR, RR, DBP, and SBP; 
hematological indices including WBC, RBC, Lymph, Mono, Neut, Hct, Eos, Baso, and Hb; liver function tests like ALT 
and AST; biochemical markers such as ALB and TP; lipid profiles including HDL.C and LPa; and coagulation factors 
like Fbg and CRP. This grouping underscores the multifaceted nature of sepsis risk assessment, indicating their strong 
explanatory power in predicting sepsis occurrence. In the LASSO regression analysis, the optimal tuning parameter λ, 
determined through 10-fold cross-validation, was 0.032, based on the one standard error of the minimum criteria. At this 
λ value, the following variables were identified as risk factors for sepsis: Urine URO, Temperature, Pulse Rate, SBP, 
RBC, Lymph, Neut, TP, TBA, ChE, TT, CRP, and PCT (Figure 2B and C).

Following the identification of 13 common biomarkers through the three selection methods (Figure 2D), we 
incorporated these variables into a multivariate logistic regression analysis to determine the most reliable predictors of 
sepsis risk. The analysis indicated that SBP, RBC, Lymph, Neut, TBA, TT, CRP, and PCT emerged as significant 
independent risk factors for sepsis in leukemia patients (Table 3). To ensure the robustness of our model, we conducted 
a multicollinearity analysis, which yielded an average VIF of 1.038. This result suggests that there is no significant 
multicollinearity among the selected variables, thereby reinforcing the reliability of our findings (Supplementary 
Table 3). These variables were incorporated as primary predictors in the subsequent model construction and analysis, 
providing a solid foundation for developing predictive models.

The RF Model Outperforms Other Machine Learning Models in Predicting Sepsis in 
Leukemia Patients
The performance of seven machine learning models in predicting Sepsis in leukemia patients was compared, with their 
ROC curves and DCA results presented (Figure 3). In the training cohort, the SVM model exhibited excellent predictive 
performance, achieving an AUC of 0.972, indicating high accuracy. In contrast, the AUC values for the other models 
were as follows: RF at 0.765, XGBoost at 0.762, NNET at 0.727, LOGI at 0.722, and DCtree at 0.685, while the KNN 
model performed the poorest with an AUC of 0.665 (Figure 3A). DCA assessed the clinical utility of the models, further 
confirming that the RF model provided the highest net benefit across most threshold ranges, particularly within the 
intermediate range, highlighting its superiority in predicting sepsis (Figure 3B). The RF model exhibited the best overall 
performance, with the highest AUC and net gain, indicating that it was superior in predictive power for sepsis, hence the 
choice of the RF model as the best model. To further evaluate the model’s performance, results from the validation cohort 
are depicted in Figure 3C. The RF model achieved an AUC of 0.700, demonstrating its ability to generalize effectively to 
new data. Similarly, the net benefit of the RF model in the validation cohort, shown in Figure 3D, reflects trends akin to 
those observed in the training group, reaffirming its robust predictive capability for sepsis among leukemia patients 
across both cohorts.

Further detailed performance metrics for each model, including sensitivity, specificity, recall, accuracy, and F1 score 
(Table 4). The RF model demonstrated the highest performance, achieving an accuracy of 0.710, a sensitivity of 0.727, 
a specificity of 0.694 and a F1 score of 0.715, indicating its strong ability to differentiate between sepsis and non-sepsis 
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Figure 2 Feature selection process for variables included in the prediction model. (A) Variable importance based on the Boruta algorithm, where attributes are classified as 
“Tentative” (green), “Confirmed” (blue), “Rejected” (red), and “NA” (grey). (B) LASSO regression path showing the coefficients of variables across different values of the 
regularization parameter (λ). (C) Cross-validation error plot for selecting the optimal λ in LASSO. The vertical dashed line represents the optimal λ where the minimal 
cross-validation error is achieved. (D) Venn diagram comparing variables selected by three different methods: univariate logistic regression (green), LASSO (blue), and the 
Boruta algorithm (red), showing the overlap of selected variables.
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patients. The XGBoost model maintained balanced metrics, with an accuracy of 0.689. The SVM model followed 
closely, achieving an accuracy of 0.686, with a sensitivity of 0.710 but a lower specificity of 0.661. The NNET model 
showed moderate performance, with an accuracy of 0.675 and a sensitivity of 0.623, while the KNN model had the 
lowest overall performance, with an accuracy of 0.593 and a sensitivity of 0.541. The Logistic Regression model 
exhibited an accuracy of 0.658, demonstrating balanced sensitivity and specificity. The DCtree model reached 
a specificity of 0.792 but had a low sensitivity of 0.508, leading to an overall accuracy of 0.650. In the validation 
cohort, the performance metrics exhibited similar trends, further validating the models’ effectiveness. The RF model 
achieved an accuracy of 0.758, with a sensitivity of 0.655 and a specificity of 0.714, affirming its reliability in 
distinguishing sepsis cases (Supplementary Table 4). We also performed sensitivity analyses to assess the impact of 
missing data processing on the model, confirming the robustness of the chosen imputation method (Supplementary 
Table 5). The analysis showed that the results produced by no imputation were consistent with those imputed using the 
MI method.

Overall, the RF model consistently outperformed other machine learning models in both predictive accuracy and 
clinical utility, making it the most reliable tool for predicting sepsis in leukemia patients across multiple datasets.

SHAP Analysis Quantifies Feature Contributions to Sepsis Risk in Leukemia Patients
The SHAP analysis was employed to interpret the predictions of the best-performing model the RF. SHAP analysis 
highlighted the impact of 8 key features on the sepsis prediction model in leukemia patients, ranked by SHAP values 
(Figure 4A). Figure 4B provides a detailed visualization of the multidimensional influence of each feature, with the 
SHAP values clearly showing how both high and low levels of these variables contribute to the overall prediction model. 
CRP demonstrates the strongest predictive power, with elevated levels significantly increasing the risk of sepsis. PCT 
follows closely, contributing substantially to the model, indicating that higher levels of PCT are also associated with an 
increased risk. Immune-related markers, such as Neut and Lymph, further play important roles in the prediction, where 
lower neutrophil and lymphocyte counts are linked to a greater sepsis risk. TT, RBC, and TBA also have notable impacts, 
with abnormal values correlating with heightened risk. Lastly, SBP adds to the prediction, where lower blood pressure 
suggests a higher likelihood of sepsis, possibly reflecting cardiovascular instability. This analysis highlights the critical 
roles of inflammatory, immune, and coagulation markers in predicting sepsis risk.

Table 3 Multivariate Logistic Regression Analysis for 
Sepsis in the Training Cohort

Characteristic OR 95% CI p-value

Urine URO

Negative — —

Positive 0.43 0.34, 0.54 0.053
Temperature 1.07 0.93, 1.22 0.345

Pulse Rate 1.00 1.00, 1.01 0.155

SBP 0.99 0.98, 1.00 0.004
RBC 0.85 0.76, 0.94 0.002

Lymph 1.00 0.99, 1.00 0.003
Neut 0.99 0.99, 1.00 <0.001

TP 0.99 0.97, 1.00 0.057

TBA 1.01 1.00, 1.01 0.008
ChE 0.97 0.92, 1.02 0.246

TT 0.94 0.91, 0.97 <0.001

CRP 1.01 1.01, 1.01 <0.001
PCT 1.08 1.04, 1.13 <0.001

Abbreviations: OR, odds ratio; CI, confidence interval; systolic blood 
pressure (SBP); red blood cells (RBC), lymphocytes (Lymph); neutrophils 
(Neut); total protein (TP); total bile acid (TBA); cholinesterase (ChE); 
thrombin time (TT); C-reactive protein (CRP); procalcitonin (PCT).
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Nonlinear Relationship Between Model Factors and Sepsis Risk in Leukemia Patients 
and Interactions Between Model Factors
The RCS analysis, as shown in Figure 5A–H, visualizes the nonlinear relationships between sepsis risk and various 
continuous clinical variables in leukemia patients. In the analysis of sepsis risk factors, we utilized standardized odds 
ratios to compare the relative impact of various variables on sepsis risk (Supplementary Table 6). The results show that 
CRP levels above 24.068 mg/L significantly increase the risk of sepsis, with a standardized OR of 3.22 (95% CI: 2.58, 
4.03, p<0.001), while lower CRP levels (<24.068 mg/L) are associated with a decreased sepsis risk (OR=0.85, 95% CI: 
0.74, 0.98, p=0.029). Additionally, lower of Lymph and Neut (Lymph <5, Neut <5) are associated with a reduced sepsis 
risk, with standardized ORs of 0.68 (95% CI: 0.61, 0.77, p<0.001) and 0.76 (95% CI: 0.67, 0.86, p<0.001), respectively. 
Elevated PCT levels (≥0.324 μg/L) are also significantly associated with a higher risk of sepsis (OR=4.91, 95% CI: 2.77, 
8.71, p<0.001). Similarly, higher TBA levels (≥6.012 μmol/L) increase the risk of sepsis (OR=1.37, 95% CI: 1.18, 1.59, 
p<0.001), while lower TT values (<17 seconds) reduce the risk (OR=0.83, 95% CI: 0.71, 0.96, p=0.015). Furthermore, 

Figure 3 Predictive performance of the model in training and validation cohorts. (A and C) Receiver Operating Characteristic (ROC) curves for the training (A) and 
validation (C) cohorts. The curves illustrate the discriminatory ability of different predictive models, with the area under the ROC curve (AUC) values displayed for each 
model: Random Forest (RF), XGBoost (XGB), Support Vector Machine (SVM), Neural Network (NNET), K-Nearest Neighbors (KNN), Logistic Regression (LOGI), and 
Decision Tree (DCTree). (B and D) Decision Curve Analysis (DCA) for the training (B) and validation (D) cohorts. The curves show the net benefit of each model across 
various threshold probabilities, comparing them with the “Treat All” and “Treat None” strategies, indicating their potential clinical utility.
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RBC counts above 2.48 x10^6/μL are associated with a significantly decreased risk of sepsis (OR=0.68, 95% CI: 0.60, 
0.77, p<0.001). Lastly, lower SBP (<128.63 mmHg) is associated with a decreased risk of sepsis (OR=0.68, 95% CI: 
0.61, 0.75, p<0.001).

In addition to the nonlinear associations, pairwise correlation analysis among the eight variables included in the final 
model revealed key insights into their interactions (Supplementary Figure 1). CRP and PCT show a significant positive 
correlation (r = 0.231, p < 0.001), as do Neut and Lymph (r = 0.153, p < 0.001). TT exhibits a moderate positive 
correlation with TBA (r = 0.159, p < 0.001) and weak but significant positive correlations with Neut (r = 0.100, p < 
0.001), Lymph (r = 0.092, p < 0.001), and RBC (r = 0.104, p < 0.001). TBA showed positive correlations with Lymph (r 
= 0.057, p < 0.05). SBP exhibits a negative correlation with PCT (r = −0.066, p < 0.01) and TBA (r = −0.053, p < 0.05), 
while showing weak but significant positive correlations with Neut (r = 0.048, p < 0.05) and RBC (r = 0.124, p < 0.001). 
RBC and CRP exhibit a weak negative correlation (r = −0.077, p = 0.001).

Table 4 Comparison of Training Cohort Results of the Machine Learning 
Models

Model Accuracy Sensitivity Specificity Recall F1 score

RF 0.710 0.727 0.694 0.727 0.715

XGB 0.689 0.689 0.689 0.689 0.689

SVM 0.686 0.710 0.661 0.710 0.693
NNET 0.675 0.623 0.727 0.623 0.657

KNN 0.593 0.541 0.645 0.541 0.571

LOGI 0.658 0.639 0.678 0.639 0.652
DCtree 0.650 0.508 0.792 0.508 0.592

Abbreviations: RF, Random Forest; XGB, eXtreme Gradient Boosting; SVM, Support Vector 
Machine; NNET, Neural Network; KNN, K-Nearest Neighbors; LOGI, Logistic Regression; 
DCtree, Decision Tree.

Figure 4 SHAP (SHapley Additive exPlanations) analysis of the model. (A) Bar plot showing the mean SHAP values for the top features ranked by their contribution to 
sepsis prediction in leukemia patients. Features include C-reactive protein (CRP), procalcitonin (PCT), neutrophil count (Neut), lymphocyte count (Lymph), thrombin time 
(TT), red blood cell count (RBC), total bile acid (TBA), and systolic blood pressure (SBP). Higher mean SHAP values indicate greater importance of the feature in the model. 
(B) SHAP summary plot visualizing the distribution of SHAP values for each feature. Each dot represents an individual data point, with the x-axis showing the SHAP value 
(feature’s impact on the model output) and the color representing the feature value (yellow for higher values, purple for lower values).
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Discussion
In this study, we compared multiple machine learning models to evaluate their performance in predicting sepsis in 
leukemia patients. Based on a comprehensive analysis of multiple metrics, including ROC, DCA, accuracy, sensitivity, 
specificity, recall, and F1 score, the RF model was selected for its superior overall performance and its ability to 
effectively balance predictive accuracy and clinical utility.12 These metrics underscore RF’s ability to balance sensitivity 
and specificity, minimizing missed sepsis cases while maintaining predictive accuracy. Key features, including CPR, 
PCT, Neut, Lymph, TT, RBC, TBA, and SBP, were identified as significant predictors of sepsis through SHAP analysis. 
These findings highlight the importance of inflammatory, immune, and coagulation markers in predicting sepsis risk in 
leukemia patients. The nonlinear relationships between these variables and sepsis risk, as revealed by RCS analysis, 
provide valuable insights into how changes in these parameters affect patient outcomes.

Previous studies on sepsis diagnosis have identified some biomarkers, including CPR, PCT, RBC, neutrophil-to- 
lymphocyte ratio (NLR), and prothrombin time (PT).13,14 PCT and CRP are among the most widely used, showing good 
sensitivity for sepsis screening and monitoring, making them valuable tools for early diagnosis.13,15 PCT, while more 
specific for bacterial infections, can also be influenced by other factors, reducing its utility in some contexts. Similarly, 
while CRP is a common marker of systemic inflammation, its elevation in various pathological states limits its 
effectiveness as a sepsis biomarker.16,17 These challenges are particularly pronounced in leukemia patients, where severe 
immunosuppression can blunt inflammatory responses, potentially masking sepsis-related elevations in these 
biomarkers.18,19 This does not negate their relevance in sepsis, as these markers are commonly associated with 
disseminated intravascular coagulation (DIC) and other coagulopathies in septic patients.20 The significant positive 
correlation between CRP and PCT (r = 0.231, p < 0.001) aligns with their roles as systemic inflammatory markers. Both 
are widely used in sepsis detection, and their correlation underscores their complementary contribution to the inflam-
matory response in septic patients.21 Interestingly, the weak negative correlation between RBC and CRP (r = −0.077, p = 
0.001) suggests a potential inverse relationship between systemic inflammation and oxygen-carrying capacity. This 
finding may reflect the anemia of inflammation commonly observed in sepsis patients, where elevated inflammatory 
markers are associated with reduced RBC counts.22,23

For inflammatory and immune-related predictors, our final model includes Neut and Lymph counts, both of which 
provide valuable insights into the systemic inflammatory response and immune status of leukemia patients. NLR, while 
conceptually relevant, was not explicitly included as a separate predictor because its components (Neut and Lymph) are 
directly incorporated in the model.24 This approach ensures that the underlying inflammatory dynamics are captured 
while avoiding redundancy. NLR is a marker of acute inflammation, especially useful for predicting bacterial infections 
leading to sepsis.25,26 However, as sepsis progresses, most patients quickly exhibit signs of severe immune suppression.27 

In leukemia patients, who experience secondary bone marrow suppression and severely reduced leukocyte production,28 

Figure 5 Restricted cubic spline (RCS) analysis of the continuous variables included in the model. (A–H) The RCS curves illustrate the nonlinear relationships between the 
risk of sepsis in leukemia patients and the following variables: C-reactive protein (CRP), Procalcitonin (PCT), Neutrophil count (Neut), Lymphocyte count (Lymph), 
Thrombin time (TT), Red blood cell count (RBC), Total bile acid (TBA), and Systolic blood pressure (SBP).
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NLR may not accurately reflect their true immune status, limiting its reliability in this population. Similarly, the positive 
correlation between Neut and Lymph (r = 0.153, p < 0.001) highlights the interplay between different components of the 
immune system, although the suppressed immune response often observed in leukemia may moderate this relationship.29

The protective effects of higher RBC counts and SBP further emphasize the role of cardiovascular stability and 
oxygen transport in preventing sepsis.30,31 SBP also showed weak but significant positive correlations with Neut (r = 
0.048, p < 0.05) and RBC (r = 0.124, p < 0.001), highlighting the interplay between immune response and cardiovascular 
function.32 Conversely, the negative correlations observed between SBP and PCT (r = −0.066, p < 0.01) and SBP and 
TBA (r = −0.053, p < 0.05) reflect the hemodynamic instability and liver impairment characteristic of sepsis 
progression.33 Elevated TT indicates impaired clotting efficiency, which is common in sepsis due to DIC.34 This 
prolonged TT may reflect the consumption of clotting factors and fibrinolysis, contributing to the higher risk of sepsis- 
related complications in these patients.20 Higher TBA levels may reflect liver dysfunction, a common complication in 
sepsis, where impaired bile acid metabolism leads to accumulation in the bloodstream. This can further contribute to 
systemic inflammation and immune dysregulation, exacerbating the severity of sepsis.35,36 TBA’s positive correlation 
with Lymph (r = 0.057, p < 0.05) reinforces its role as a marker of liver dysfunction and its downstream effects on 
immune regulation. TT exhibited a moderate positive correlation with TBA (r = 0.159, p < 0.001), suggesting a potential 
link between coagulation dysfunction and liver impairment in sepsis.37 This connection is well-documented in the 
pathophysiology of sepsis, where DIC and hepatic dysfunction are common complications.38 Additionally, TT showed 
weaker but significant positive correlations with Neut (r = 0.100, p < 0.001), Lymph (r = 0.092, p < 0.001), and RBC (r = 
0.104, p < 0.001). These findings further emphasize the multifaceted impact of coagulation abnormalities on immune 
cells and oxygen transport capacity in septic patients.39 During model development, we considered a wide range of 
potential predictors, including coagulation markers such as D-dimer and PT. However, after rigorous feature selection 
using SHAP and other statistical methods, these coagulation markers were not retained in the final model due to their 
relatively lower contributions to predictive performance within our dataset. Although these markers are known to play 
a role in the coagulopathy associated with sepsis, their signal in this specific leukemia cohort may have been over-
shadowed by other variables.

In this study, RF demonstrated clear advantages over traditional methods like logistic regression in predicting sepsis 
risk among leukemia patients. While logistic regression is valued for its simplicity and interpretability, its reliance on 
linear assumptions and limited ability to capture complex interactions among predictors constrained its performance.40 

By contrast, RF achieved higher accuracy, recall, and F1 score due to its ability to model nonlinear relationships and 
interactions. Furthermore, the use of SHAP analysis addressed RF’s interpretability limitations, providing meaningful 
insights into the importance of individual predictors, thereby enhancing its clinical utility.41 Although individual 
biomarkers may contribute to sepsis prediction, their accuracy is often limited.42 The underlying mechanisms of sepsis 
in leukemia are complex, involving multiple biological pathways and immune responses, making it difficult for a single 
biomarker to capture the entire pathological process.43,44 SHAP analysis identified eight key predictors of sepsis in 
leukemia patients, these variables provide a holistic view of sepsis risk by capturing inflammation, immune function, 
coagulation abnormalities, and hemodynamic stability. For example, CRP and PCT are established inflammatory 
biomarkers, while Neut and Lymph reflect immune status, critical in immunosuppressed leukemia patients. TT highlights 
coagulopathy, a hallmark of sepsis, and TBA reflects liver dysfunction, a frequent complication. This comprehensive 
approach ensures that the model’s predictions are grounded in clinically relevant markers, supporting its potential utility 
in risk stratification and management. Combining multiple biomarkers offers a more comprehensive view of the dynamic 
changes in immune function, inflammatory response, and pathogen activity, thereby enhancing the accuracy of early 
sepsis detection and risk assessment.45 Recently, combined biomarker models have emerged as a key area of research for 
sepsis prediction, and their integration into machine learning models has shown improved sensitivity and specificity.46

The eight biomarkers selected in this study are easily accessible in clinical settings and reflect various aspects of 
inflammation, immune function, and pathological changes, providing a more accurate assessment of sepsis risk in 
leukemia patients compared to single biomarkers. Their combined use significantly improved the model’s predictive 
accuracy, offering clinicians better tools for identifying high-risk patients. This study has limitations. The data were 
sourced from a single medical center, which may introduce regional bias and limit the generalizability of the model. 
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Additionally, the retrospective nature of the study, while potentially introducing inherent biases, was mitigated through 
rigorous preprocessing techniques such as multiple imputation and cross-validation. Nonetheless, external validation 
using multi-center data from diverse geographical regions is essential to ensure the robustness and broader applicability 
of the model. Collaborative efforts with other institutions are underway to address these limitations and improve its 
clinical utility across varied patient populations.

Conclusion
The RF model demonstrated strong predictive performance for sepsis in leukemia patients, using eight key biomarkers. 
This model provides a valuable tool for early sepsis detection, enhancing clinical decision-making in high-risk patients.
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